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Abstract
& Key message Multivariate mixed models can be used to
combine complex data into a single-step analysis to im-
prove prediction accuracy of open-pollinated seed lots for
all attributes and candidates, and identify elite seed lots.

& Context Data available for genetic selection may be com-
plex and unbalanced; however, utilisation of all available in-
formation for prediction of genetic value may improve predic-
tion accuracy to better identify elite candidates for selection.
& Aims This study aimed to develop, implement and evaluate
a single-step multivariate mixed model for complex and un-
balanced data and use the results to identify elite candidates.
& Methods Multivariate mixed models were developed and
applied to a case study of seed-orchard open-pollinated
Eucalyptus dunnii families grown in progeny trials in
Australia and Uruguay to identify elite seed lots for biofuel
utilisation. This approach combined all available data across
trials and ages and included models of spatial variation to
predict OP seed lot values for growth and wood quality attri-
butes. Predictions were used to estimate response to selection
and correlations between breeding values of parents predicted
from their own performance and seed lot values predicted
from the progeny trials.
& Results Prediction accuracy was highest for a single-
step multivariate model. Prediction of seed lot values
using this model indicated that selection of the best
12.5 % resulted in a gain of 30 % in cellulose content,
and breeding value of parents predicted from own per-
formance was only weakly correlated with seed lot per-
formance in progeny trials.
& Conclusion Single-step multivariate approaches provide
the most accurate prediction of genetic value for all
attributes, for all candidates, and hence leads to greater
selection response. In eucalypts, gain from selection
using seed lot values predicted from progeny trials will
be greater than from selection using breeding values of
parents predicted from their own performance.
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1 Introduction

Genetic improvement is a proven strategy for increasing forest
profitability (Borralho et al. 1993; Greaves and Borralho
1996). Response to selection is directly proportional to accu-
racy of predicting the genetic value of selection candidates
(Falconer and Mackay 1996). Data available in forestry for
prediction of genetic value may be complex, including multi-
ple traits and locations (Burdon 1977), repeated measures
(Greaves et al. 2003) and possibly local spatial variation
(Dutkowski et al. 2006; Gilmour et al. 1997). In addition, data
are likely to be unbalanced with not all candidates assessed for
all traits in all trials. Correlated traits, such as pilodyn pene-
tration (e.g. Greaves et al. 1996) or NIR (e.g. Downes et al.
2010), which are relatively inexpensive to assess, may also be
used to predict genetic value for objective traits that are oth-
erwise expensive to assess.

Mixed linear models that treat genetic effects as random
provide a flexible framework for combining all available in-
formation from complex data structures to support best (i.e.
lowest variance), unbiased prediction (BLUP) of genetic value
(Henderson 1984; Thompson and Meyer 1986; White et al.
2007). In addition, prediction of accurate genetic values has
been demonstrated when terms for global, systematic and lo-
cal stationary trends in non-genetic variation have been in-
cluded in the model (Dutkowski et al. 2006; Gilmour et al.
1997). Prediction of genetic effects with these models requires
knowledge of the genetic architecture of traits (i.e. variances,
heritabilities and correlations). These parameters are often es-
timated from the available data, with the estimated parameters
used to predict empirical best linear unbiased predictions (E-
BLUPs) (Kackar and Harville 1981).

Here, we report on the development and implementation of
a multivariate linear mixed model with spatial variation
modelling to combine growth and wood quality trait data
assessed across international progeny trials of open-
pollinated seed orchard-derived Eucalyptus dunnii families
for the prediction of seed lot value and response to selection
for pulp and biofuel utilisation.

E. dunnii Maiden is a subtropical tree with limited dis-
tribution along the central coastal ranges of Australia
(Benson and Hagar 1993). Potential for pulp production
in subtropical climates is promising due to frost resistance,
pulpwood productivity, growth rate and good form
(Thomas et al. 2009). E. dunnii plantations have been
established in Australia and in drier and frost-affected
areas, such as southern Brazil, central China, South
Africa, Uruguay, and Argentina, where E. dunnii outper-
forms E. grandis, a widely used hardwood species, partic-
ularity for pulp and biofuel utilisation where breeding
objectivities for both uses are similar (Arnold et al.
2004; Geary 2001; Jovanovic et al. 2000; Sheperd et al.
2011).

When selection seeks to improve multiple traits,
methods are required to identify the best overall candi-
date. Selection indices have been used to identify elite
germplasm for pulp production using volume, density
and pulp yield (Borralho et al. 1993; Greaves et al.
1997; Wei and Borralho 1999). Alternatively, others
(Brawner et al. 2012) have used standing pulp produc-
tivity, which is the product of volume, density and pulp
yield, as the selection objective.

Open-pollination (OP) is a common mating strategy
for genetic evaluation and deployment in eucalypts. A
half-sib relationship among OP siblings is often as-
sumed (White et al. 2007); however, mixed mating is
general in eucalypts (Byrne 2008; Eldridge et al. 1993;
Hardner and Potts 1995), suggesting the assumption of
half-sib relationships may not be valid in these species.
Inbreeding inflates additive genetic variation, and, for
traits influenced by dominance, inbreeding depression
and additional components of genetic variance arise
(Cockerham and Weir 1984). Previous studies have
attempted to adjust for inbreeding by inflating the addi-
tive relationship coefficients (Squillace 1974), but this
does not account for outcrossing rate heterogeneity and
dominance effects (Borralho 1994; Hardner et al. 1996).
Hence, breeding values for OP individuals predicted
using their own performance data may not reflect the
value of seed lots collected from these individuals.

2 Methods

2.1 Stockdale seed orchard

Seed lots included in the progeny trials described below
were originally selected based on breeding value of seed
orchard individuals predicted using their own perfor-
mance. In 1989, a trial was established near Stockdale
in eastern Victoria, Australia (Table 1), with 57 OP
families collected from individual native forest
E. dunnii trees at Boomi Creek NSW, Dead Horse
Track, South Yabbra State Forest and unknown origin
planted in 15 completely replicated blocks of single tree
plots per OP family (total of 870 individuals). At
14 years, diameter at breast height (DBH, cm) was
assessed for all individuals and wood basic density
(BD kg/m3 from cores) for individuals in 4 blocks
(Table 2). Basal area (BA, cm2) was calculated from
DBH. Prior to the current study, breeding values for
these selection traits for individuals within the seed or-
chard were predicted using only the seed orchard data
and a simple (i.e. non-spatial models) individual (Mrode
2005) univariate model assuming a coefficient of rela-
tionship of 2.5 (i.e. selfing rate of 30 %, Griffin and
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Cotterill 1988). A selection index of breeding values for
volume, wood density, stem form and pulp yield was
constructed from the additive genetic correlation matrix
between selection and objective traits and economic
weights derived from Greaves et al. (1997). Selection
index values were used to identify the 50 % poorest
performing individuals for removal in 2003 to convert
the trial into a seed orchard and identify elite seed lots
for deployment in subsequent progeny trials.

2.2 Progeny trials

2.2.1 Blackwood progeny trial

The ‘Blackwood’ progeny trial was planted in September
2007 at Yahl, South Australia, with OP seed lots collected
in January 2007 from 77 highly ranked individuals at the
Stockdale seed orchard (Table 1). Ninety native-forest OP
seed lots collected from mother trees across 6 provenances
(Acacia Creek, Beaury Creek, Boomi Creek, Lindesay

Creek, Teviot Brook and Wallaby Creek) and a single bulk
of seed from orchards in NSW were also included. Single
tree plots of each seed lot were established in 16 complete-
ly replicated blocks using a resolvable row-column design.
Failed trees were replanted in the first year. DBH was
assessed at 3 years on the 3 largest stems of all non-
replant individuals across all 16 blocks (2326 individuals)
and used to estimate BA as the sum of the BA of the two
largest stems.

Only a subset of blocks were assessed for subsequent traits
due to resource constraints. BAwas again assessed at 4 years and
7months (5 years) after planting for 1200 trees in blocks 9 to 16.
Height (HT, m) was also assessed at this age for 759 trees in
blocks 9, 12, 13, 15 and 16. Pilodyn penetration (PP) (mm) was
assessed at 3 years on the largest stem for individuals in all 16
blocks except 4, 8 and 14 (1866 trees), and wood basic density
(BD, kg/m3) was assessed at 5 years for the 642 trees in blocks 9,
10, 11, 12 and 13. Separate air-dried drill swarfs from 585 trees in
blocks 10, 11, 12 and 13 were used for NIR prediction of basic
density (DN kg/m3), pulp yield (PY, % kg/kg) and cellulose

Table 1 Overview of the
experimental design of the trials
included in this study

Trial Lat. Long. nRow nSp nB nP/B nT/P nSL nT/SL

Stockdale (SD) 37° 50′ S 147° 11′ E 34 48 15 64 1 64 15

Blackwood (BW) 37° 54′ S 140° 50′ E 34 80 16 170 1 168 16.1

FEA (FEA) 28° 43′ S 152° 27′ E 40 73 5 161 2–3 183 12.6

Uruguay—143 (U143) 32° 49′ S 57° 54′ W 90 60 6 52 6 52 34.8

Uruguay—144 (U144) 32° 28′ S 57° 24′ W 76 94 6 50 6 50 36

Row planting row, Sp planting space, B block, P plot, T tree, SL seed lot

Table 2 Summary of data
collected at different ages from
the five trials (SD Stockdale seed
orchard, BWBlackwood progeny
trial, FEA Banalbo Forest NSW
progeny trial, U143 Uruguay
progeny trial 143, U144 Uruguay
progeny trial 144) included in this
study

Trial Trait Age (yrs) Unit nobs mean var

SD Basal Area (BA) 14 cm2 734 224 6920

Basic wood density (BD) 14 kg/m3 202 493 1340

BW Basal Area (BA) 3 cm2 2328 85 1400

Basal Area (BA) 5 (4.6) cm2 1199 195 5270

Height (HT) 5 (4.6) m 757 9.2 1.72

Pilodyn penetration (PP) 3 mm 1841 16.1 3.41

Basic wood density (BD) 5 (4.6) kg/m3 645 455 1190

Wood density- NIR (DN) 5 (4.6) kg/m3 585 577 925

Pulp Yield – NIR (PY) 5 (4.6) %kg/kg 584 44.4 8.25

Cellulose content – NIR (CC) 5 (4.6) %kg/kg 584 38.2 4.34

FEA Height (HT) 2 (1.7) m 2186 3.1 0.71

Basal Area (BA) 3 (2.7) cm2 2153 16 97.7

Basal Area (BA) 5 (5.3) cm2 1871 27 301

U143 Basal Area (BA) 2 cm2 1655 30 166

Height (HT) 2 m 1666 5.8 1.14

U144 Basal Area (BA) 2 cm2 1483 29.4 201

Height (HT) 2 m 1492 5.2 1.18

Values in the parentheses alongside age refer to the precise assessment age
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content (CC, % kg/kg) using the multi-site and species calibra-
tion (Downes et al. 2010).

2.2.2 FEA progeny trial

Eighty-eight native forest OP seed lots and 94 Stockdale seed
orchard seed lots were planted at Banalbo in northern NSW
(FEA) in 5 completely replicated blocks of 3 tree plots per seed
lot, with 147 seed lots in common with Blackwood. HT was
assessed at 20months (2 years), and DBH at 32 (3 years) and 64
(5 years) months for all plants, and BA calculated from DBH.

2.2.3 Uruguay progeny trials

Two trials (U143 and U144) were established in Uruguay with
50 Stockdale seed orchard seed lots (32 in common with
Blackwood and 40 with FEA) and 2 seed orchard commercial
seed lots in 6 completely replicated blocks of 6 tree plots. Data
from unrelated seed lots also planted in this trial were not in-
cluded in this study. HT and DBH were assessed at 24 months
(2 years after planting) and BA calculated from DBH.

2.3 Statistical methods

2.3.1 Linear model

A multivariate linear mixed model was developed and imple-
mented for the analysis of the progeny trial data. For m indi-
viduals assessed for w attributes (where the kth attribute was a

unique trait-by-age-by-trial combination, i.e. w ¼ ∑
l¼t

l¼1
wl,

where t was the number of trials and wl was the number of
attributes assessed at the lth trial), the linear mixed model used
to estimate parameters for the random and residual effects, test
the significance and estimate means of fixed effects and pre-
dict values for seed lot effects/values (gi) was

y ¼ Xbþ Zuþ r

where y was a vector of observations, b was vector of
unknown fixed effects, X was the design matrix for
fixed effects, u was a vector of unknown random ef-
fects, Z was the design matrix for random effects and r
was a vector of unknown residual effects, and

var yð Þ ¼ ZGZT þ R

where G was the variance-covariance among genetic
and non-genetic random effects and R was the
variance-covariance among residual effects. As planting
row-by-planting space coordinates for each trial were
available, global, systematic and local stationary spatial

trends were modelled after Gilmour et al. (1997).
Fixed effects included the general mean for each at-

tribute, linear regressions on planting row and planting
space, and seed lot origin for attributes assessed at
Blackwood and FEA (i.e. native forest, Stockdale seed
orchard or bulk production area). Random effects in-
cluded seed lot effects by attribute and independent
block, plot within block (for the FEA, U143 and
U144 progeny trials), planting row and planting space
for each attribute. The covariance structure of genetic
effects by attribute was modelled as an unstructured
variance-correlation structure for models that included
less than 4 attributes and as a factor-analytic structure
(Hardner et al. 2010; Smith et al. 2001; Thompson
et al. 2003) of order f for models that included greater
than 3 attributes.

The variance-covariance matrix of residual effects (R) was
modelled as an anisotropic stationary separable first-order
autoregressive correlation structure in the two spatial dimen-
sions (planting row and space) with an independent residual
(nugget) (Gilmour et al. 1997):

R ¼ RS þ RI

where RS was the variance-covariance among spatially
dependent residual effects and RI was the variance-
covariance among spatially independent residual effects.
In general, RS was block diagonal, and with each block,
the correlated residuals for the rth section, RS , r. The
general structure of RS , r was

RS;r ¼ Εr CRow;r ρRow;r
� �

⊗CSp;r ρSp;r
� �h i

where Εr was the covariance matrix of the spatially
dependent residuals among the kr attributes in the rth

section, and CRow , r(ρRow , r) was the first-order
autoregressive correlation matrix (with common correla-
tion ρRow , r among attributes) in the planting row dimen-
sion for the rth section, with CSp , r(ρSp , r) for the plant-
ing space dimension. Different structures of RS are pos-
sible. For example, each section may be defined by
each unique attribute so that spatially dependent
residuals among attributes within the lth trial were inde-
pendent and Εr was defined as a single variance com-
ponent. Alternatively, each section may correspond to
more than one attribute at a trial, in which case the
same spatial processes were assumed for all these attri-
butes. The variance-covariance of spatially independent
effects, RI, was modelled with similar structures with
ρRow , r and ρSp , r constrained to 0. Where appropriate,
both ΕS , r and ΕI , r were modelled as structured
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covariance matrices using either an unstructured
variance-correlat ion matrix or a factor-analytic
parameterisation.

Parameters of the random and residual models were esti-
mated using average information approaches implemented in
the statistical software ASReml (Gilmour et al. 2009). Initial
single-attribute (i.e. single trait, single trial) univariate analy-
ses were undertaken to check the assumption of normal dis-
tribution of residuals and identify significant sources of non-
genetic variation for inclusion in multi-attribute analyses. For
nested models with common fixed effects, significance of ran-
dom effects were tested using the likelihood ratio test (Wilks
1938) and adjustedwhere the estimated parameters were at the
boundary of the estimation space (Stram and Lee 1994).
Akaike information criterion (Akaike 1974) (AIC) was used
to more generally compare the goodness-of-fit among models
with common fixed effects. Significance of fixed effects was
tested using Wald tests (Kenward and Roger 1997). Standard
errors of variances and correlations estimated as functions of
factor-analytic parameters in the analysis were obtained using
the variance-covariance of model parameters and a first-order
approximation of a Taylor series expansion (Kendall et al.
1987; White 2016). Best linear unbiased estimates (BLUEs)
of fixed effects and best linear unbiased predictions (BLUPs)
of random effects (seed lot values) were produced following
Henderson’s (1975) mixed model equations using estimated
G and R.

2.3.2 Analysis of genetic architecture

Individual seed lot repeatability for the kth attribute was esti-
mated as

H ̂
2

k ¼
σ ̂2
SL;k

σ ̂2
SL;k þ σ ̂2

RI ;k

where σ ̂2SL;k was the estimated variance among seed lots and

σ ̂2RI ;k was the estimated variance of the spatially independent

residuals. Individual narrow-sense heritability of the kth attri-
bute was estimated as

ĥ
2

k ¼
σ̂A;k
2

σ̂A;k
2 þ σ̂

R#
I ;k
2

where σ̂2
A;k was the estimated additive genetic variance and

σ̂2
R#
I ;k

was the estimated variance of the spatially independent

residuals from a genetic model that assumed 0.3 selfing rate

(Griffin and Cotterill 1988).
Classical repeatability of seed lot predictions for the kth

attribute was estimated as

H ̂2

SL;k
¼ σ ̂

SL;k
2

σ ̂
SL;k
2 þ σ̂RI ;k

2

,
nk

0
@

1
A

where nk was the average number of individuals with
observations for the kth attribute. Generalised repeat-
ability (Cullis et al. 2006; Piepho and Mohring 2007)
of seed lot predictions for the kth attribute was esti-
mated as

Ĥ
2*

SL;k
¼ 1−

σ�ΔSL;k
2

2� σ ̂
SL;k
2

where σ ̂2ΔSL;k was the mean variance of the difference of

seed lot predictions, estimated from the prediction error
variance matrix (PEV). Generalised repeatabilities of
seed lot predictions were estimated using the estimated
seed lot variance from the full multi-attribute analysis
and corresponding PEV for (i) only seed lots for the
attribute (pH2*

SL;k ) or (ii) all seed lots (aH2*
SL;k ). In

addition, generalised repeatabilities of seed lot pre-
dictions were estimated using the variances and PEV
from a univariate analyses of each attribute (uH2*

SL;k )

with the same fixed and random factors as in the mul-
tivariate analysis. Standard errors of individual seed lot
repeatability, individual narrow-sense heritability and
classical seed lot repeatability were estimated using a
first-order approximation of the Taylor expansion as de-
scribed above. Standard errors for generalised repeatability
estimates were not estimated, as these parameters are derived
from a function of model parameters and the variance-
covariance matrix of predicted effects, for which the method of
estimating standard errors has not yet been defined.

2.3.3 Response to selection

To evaluate the response to selection of seed lots based
on breeding values of parent predicted from own per-
formance in the Stockdale seed orchard, simple correla-
tion coefficients were estimated between these predicted
breeding values and seed lot values predicted from the
analysis of the progeny trials.

Multivariate and spatial trend models in E. dunnii 1039



Following Brawner et al. (2012), values for total cellulose
mass per tree (TC, kg) of the ith seed lot at the lth trial were
predicted as

g ̂TCl;i
¼ 0:1

1

3
gB̂Al;i

� g ̂HTl;i

� �
� gB̂Di

� g ̂PY i

100
� gĈCi

100

where gB̂Al;i
was the predicted mean of the ith seed lot for BA

(cm2/tree) at the lth trial; g ̂HTl;i
was the predicted mean of the ith

seed lot forHT (m/tree) at lth trial; g ̂BDi
was the predictedmean of

basic density (kg/m3) of the ith seed lot; g ̂PY i
was the predicted

mean of pulp yield (%kg/kg) of the ith seed lot at 5 years and g ̂CCi

was the predicted mean of cellulose content (%kg/kg) of the ith

seed lot at 5 years. Predicted seed lotmeanswere estimated as the
sum of the estimated attribute mean and the predicted seed lot
values. For attributes transformed prior to analysis, predicted
seed lot means were back-transformed prior to prediction of
TC. Correlations of seed lot effects among trials for DB, PY
and CC were assumed to be 1. Seed lot values for TC were
predicted at 5 years for Blackwood and at age 2 years for the
Uruguay trials. Predictions for individual attributes and TC at
Uruguay were averaged by seed lot across the two trials.
Predictions for performance at the FEA trial location were ex-
cluded due to poor productivity (see results).

The difference between the seed lots from native for-
est or the Stockdale seed-orchard were estimated as the
average of predicted seed lot means for each seed lot
origin plus the effect of the origin, where significant.
Averages were also predicted for the top 50 %, 25 %
and 12.5 % of Stockdale seed lots based on TC.
Difference in TC between origins was not tested as
back-transformed predicted seed lot means were used.

3 Results

3.1 Implementation of multivariate mixed model analysis
of progeny trials

Residuals from the initial univariate single attribute analyses
of progeny trial data were normally distributed, except for BA
at 5 years at FEA (log transformed) and 2 years at U144
(square root) and HT at 5 years at Blackwood (squared) and
2 years at the U143 (square root). Single attribute models that
included either heterogeneous seed lot or residual variances
among origins were not significantly (p = 0.05) different from
homogeneous models, expect for BA at 5 years at Blackwood
where the estimated variation among the Stockdale seed lots
was 0.

The most parsimonious multivariate mixed model
(MVMM) of 15 attributes across four progeny trials
employed a second-order factor analytic structure (i.e.
FA2) for the variance-covariance of seed lot effects.
Heterogeneous seed lot variances among origins for
BA at 5 years Blackwood were not included to avoid
over-parameterisation. An FA2 structure was also used
to model the covariance among spatially independent
residuals for the eight attributes at Blackwood.
Unstructured covariance matrices were applied at the
other trials. Spatially dependent residuals for attri-
butes at Blackwood were modelled as independent
(Table 3). However, the model that included an un-
structured variance-covariance among spatially depen-
den t r e s i dua l s w i t h common row and space
autoregressive correlations at the FEA and Uruguay
trials was more parsimonious (lower AIC) than the
model that allowed independent spatial processes.

3.2 Parameter estimates from most parsimonious model

Spatial effects were detected for most growth traits (BA and
HT) (Table 3). Significant spatial effects were not detected for
wood quality traits except PP. Where significant, variance of
spatially dependent residual was 8–40 % of that for spatially
independent (nugget) residual. Autocorrelation of residuals
was high (0.73–0.98) and was stronger along planting rows
[ar1(Sp)] than among planting rows [ar1(Row)].

Estimated individual seed lot repeatability (H2) were rela-
tively very low (<0.05) for BA at FEA and DN (0.02) and PY
(0.05) at Blackwood, low (0.07–0.14) for all other growth
attributes and PP and CC at Blackwood and moderate (0.23)
for basic density (BD) at Blackwood (Table 4). Estimates of

individual narrow-sense heritability (h2, assuming a selfing
rate of 0.3) varied from 0.17 to 0.25.

Correlation of seed lot values for growth (BA and
HT) within and across trials was greater than 0.85, ex-
cept for HT at FEA with other attributes (Table 5).
Wood density attributes (BD and PP) were also highly
correlated (−0.98), as were PY and CC (0.93), although
correlations with DN were moderate (0.60, −0.44). Seed
lot correlations among growth (BA and HT) and wood
density (BD and PP) were lower (−0.46 < r2SL < 0.29),

although correlations with DN were stronger (−0.99 < r2SL <
−0.60). Seed lot values for PY and CC were moderately
correlated with growth (0.50 < r2SL < 0.72) and wood density
(PP and BD).

3.3 Repeatability of seed lot predictions

Classical estimates of the repeatability of seed lot predictions

(H2
SL, Table 5) were highest for HT and BA at the Uruguay
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trials (U143 and U144) but low for NIR assessed attributes
(i.e. DN, PYand CC). Generalised seed lot prediction repeat-

ability estimated from individual attribute analyses (uH2*
SL;k )

were correlated (0.74) with H2
SL. Generalised seed lot

prediction repeatability estimated from the multi-attribute
analysis was consistently greater than the H2

SL and uH2*
SL;k .

This was true for both generalised repeatability considering
only those individuals for which the attribute was assessed

Table 3 Estimated variance components for random effects (B block, P
plot within block, SL seed lot, RI variance of spatially independent
residuals, RS variance of spatially dependent residuals), first-order auto-
correlation coefficients (ar1(Row) spatially dependent residuals along
Row, ar1(Sp) spatially dependent residuals perpendicular to Row) for

15 trial-by-trait-by-age attributes (BA basal area, HT stem height, PP
pilodyn penetration, BD wood basic density determined by volumetric
method,DNwood density determined by NIR, PYpulp value determined
by NIR, CC cellulose content determined by NIR,)

Trial Trait Age B B/P SL RI RS ar1(Row) ar1(Sp)

BW BA 3 13 88 (15.4) 1000 (30.7) 208 (36.0) 0.82 (0.036) 0.94 (0.013)
BW BA 5 67 486 (82.3) 4304 (143.2)
BW HTa 5 116 39.4 (8.93) 248.9 (14.81) 32.3 (9.38) 0.93 (0.032)
BW PP 3 0.00 0.38 (0.068) 2.80 (0.101) 0.25 (0.087) 0.86 (0.073) 0.96 (0.021)
BW BD 5 3 277 (55.7) 916 (55.6)
BW DN 5 29 20 (11.7) 885 (51.1)
BW PY 5 0.55 0.34 (0.124) 5.95 (0.331)
BW CC 5 0.06 0.33 (0.095) 3.53 (0.202)
FEA HT 2 0.007 0.040 (0.0071) 0.496 (0.0169) 0.214 (0.0579) 0.85 (0.038) 0.98 (0.007)
FEA BAb 3 0.3 3.0 (0.78) 76.9 (2.56) 23.8 (6.00) 0.85 (0.038) 0.98 (0.007)
FEA BA 5 0.005 0.030 (0.0068) 0.514 (0.0177) 0.063 (0.0195) 0.85 (0.038) 0.98 (0.007)
U143 BA 2 1 10 (2.9) 139 (5.8) 44 (8.4) 0.80 (0.041) 0.96 (0.011)
U143 HTc 2 0.0004 0.00274 (0.000836) 0.0373 (0.00164) 0.0221 (0.00391) 0.80 (0.041) 0.96 (0.011)
U144 BAc 2 0.00 0.15 (0.039) 1.72 (0.071) 0.36 (0.092) 0.73 (0.053) 0.98 (0.005)
U144 HT 2 0.010 0.070 (0.0194) 0.766 (0.0327) 0.290 (0.0629) 0.73 (0.053) 0.98 (0.005)

Standard errors shown in parentheses
a Square transformed
b Log transformed
c Square root transformed

Table 4 Estimates of individual seed lot repeatability (H2), narrow-
sense heritability assuming a selfing rate of 0.3 (h2), classical
repeatability of seed lot predictions (H2

SL ) and generalised seed lot
prediction repeatability using prediction error variance matrix (PEV)
from single attribute analysis (uH2*

SL;k ); PEV from multi-attribute
analysis considering only seed lots for which attributes were assessed

(pH2*
SL ) and PEV from multi-attribute analysis considering all seed lots

(aH2*
SL ) for 15 trial-by-trait-by-age attributes (BA Basal Area, HT stem

height, PP pilodyn penetration, BD wood basic density determined by
volumetric method, DN wood density determined by NIR, PYpulp value
determined by NIR, CC cellulose content determined by NIR,). Also
shown is the average number of observations per seed lot (nk)

Trial Trait Age H2 h2 nk
H2

SL uH2*
SL;k pH2*

SL aH2*
SL

BW BA 3 0.08 (0.013) 0.20 (0.034) 13.9 0.55 (0.045) 0.58 0.72 0.69
BW BA 5 0.10 (0.016) 0.25 (0.040) 7.1 0.45 (0.043) 0.52 0.72 0.68
BW HTa 5 0.14 (0.029) 0.34 (0.072) 4.5 0.42 (0.059) 0.38 0.69 0.66
BW PP 3 0.12 (0.019) 0.30 (0.049) 11.0 0.60 (0.044) 0.59 0.74 0.63
BW BD 5 0.23 (0.039) 0.58 (0.098) 3.9 0.54 (0.055) 0.48 0.75 0.64
BW DN 5 0.02 (0.013) 0.06 (0.032) 3.5 0.07 (0.040) 0.26 0.73 0.69
BW PY 5 0.05 (0.019) 0.14 (0.048) 3.5 0.17 (0.052) 0.43 0.72 0.64
BW CC 5 0.09 (0.024) 0.21 (0.059) 3.5 0.25 (0.056) 0.44 0.68 0.61
FEA HT 2 0.07 (0.013) 0.19 (0.032) 12.0 0.49 (0.046) 0.51 0.64 0.60
FEA BA 3 0.04 (0.010) 0.09 (0.024) 11.8 0.32 (0.057) 0.38 0.69 0.69
FEA BAb 5 0.05 (0.012) 0.14 (0.030) 10.7 0.38 (0.055) 0.35 0.69 0.69
U143 BA 2 0.07 (0.018) 0.17 (0.045) 31.8 0.70 (0.061) 0.46 0.84 0.69
U143 HTc 2 0.07 (0.020) 0.17 (0.049) 32.0 0.70 (0.065) 0.51 0.79 0.61
U144 BAc 2 0.08 (0.020) 0.20 (0.049) 29.7 0.72 (0.053) 0.58 0.85 0.69
U144 HT 2 0.08 (0.022) 0.21 (0.054) 29.8 0.73 (0.055) 0.52 0.83 0.68

Standard errors are shown in parentheses.
a Square transformed
b Log transformed
c Square root transformed
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(pH2*
SL ) or considering all individuals (aH2*

SL ). Estimates of

pH2*
SL were larger and more variable than aH2*

SL estimates.

3.4 Response to selection

The correlation between breeding values for BA and
BD (Fig. 1) across all individuals in Stockdale seed
orchard was near zero (−0.09) but was moderately neg-
ative (−0.62) for the subset of individuals selected
as sources of seed lots for the progeny trials was
considered (Fig. 1). Breeding values for BA for individ-
uals at Stockdale were only weakly correlated with seed
lot values for BA predicted from the progeny trials for
OP families collected from the same individuals (0.2,
Table 6), as were breeding values for BD at Stockdale
with seed lot values for BD, DN and PP at Blackwood
(−0.16 to 0.17). Selection of all the Stockdale seed lots
evaluated in progeny trials increased TC by 12–13 %,
relative to native seed lots, which was primarily due to
an increase in BA (Table 7). While gain in TC in-
creased with selection intensity, there was little gain in
wood-quality attributes.

4 Discussion

4.1 Implementation of multivariate, spatial modelling
methods

The comprehensive multivariate modelling approach de-
veloped in this study is one of the few in any agricul-
tural crop literature to combine a structured variance-
covariance at treatment level, with structured variance-
covariance matrices at the spatially dependent and inde-
pendent residual levels in a single-step analysis. While
the most parsimonious model included independent
spatial process among attributes at the Blackwood trial,
this model included common auto-regressive processes
and a structured variance-covariance matrix of spatially
dependent residuals among attributes at the FEA and
U144 trials. This is likely because only growth
attributes at a young age were assessed at these
latter trials, compared to the more comprehensive as-
sessment undertaken at Blackwood. In separate studies,
both Smith et al. (2007) and De Faveri et al. (2015)
assumed a common process for spatially dependent re-
siduals when modelling a single trait at a single trial
over repeated years, whereas others (Ivkovic et al.
2015) adjusted raw data for spatial trends detected in
single trial analyses, prior to combining data into a
multi-environment model.T
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4.2 Spatial effects

Detection of spatial variation for growth attributes in this
study is consistent with results published for forest genetic
field trials (Dutkowski et al. 2006). While this study re-
ports slightly larger autocorrelation along planting rows,
Dutkowski et al. (2006) reports mostly isotropic variation.
Not surprisingly, we found no evidence of competition
(i.e. negative autocorrelation, Dutkowski et al. (2006)), as
most of the attributes in this study were assessed prior to
age 4 after which strong competition appears to develop
(Hardner and Potts 1997). The absence of significant spa-
tial variation in most wood quality attributes reported here
may be due to the true absence of these effects for these
attributes (although no literature for these traits in euca-
lypts was found) or because these attributes were only
assessed on a subset of material at Blackwood, as others
(Dutkowski et al. 2006) report spatial variation is more
commonly detected in larger trials.

4.3 Comparison of genetic architecture with published
estimates

Our estimates of individual narrow-sense heritability for
early age growth and basic density, and seed lot corre-
lations among these traits, are similar in magnitude to
other estimates for volume and density for E. dunnii
(Arnold et al. 2004; Luo et al. 2012) and other eucalypt
species (Costa e Silva et al. 2009; Hamilton and Potts
2008; Hung et al. 2015; Kien et al. 2009a; Kien et al.
2009b; Raymond 2002; Wei and Borralho 1999). Lower
heritability of the growth attributes at FEA may be a
consequence of the poorer productivity of this trial.

This is the first report of genetic parameters for wood
quality traits for E. dunnii. However, while our higher
estimate for basic density compared to pilodyn penetra-
tion agrees with studies in other similar eucalypt spe-
cies, our heritablity estimates for wood density, pulp
yield and cellulose content assessed by NIR are lower.
This lower heritability is possibly a consequence of low
accuracy of estimation due to small number of individ-
ual assessed for these traits. Our results of high age-age
correlation for basal area, and moderate correlation
among growth traits, are consistent with other studies.
However, high seed lot correlation among trials for
growth traits observed here contrasts with significant
G × E reported for E. dunnii in China (Arnold et al.
2004) but is consistent with studies in other eucalypt
species. Clearly, the extent of G × E is dependent on
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Fig. 1 Plot of predicted breeding
values for basal area (BA, cm2) by
basic density (BD, kg/m3) of
individuals in Stockdale seed
orchard selected (black circle) and
unselected (white circle) for
establishment of progeny trials

Table 6 Correlation between predicted breeding value for basal area
(BAS,14) and basic density (BD S,14) of individuals at Stockdale seed
orchard predicted from own data, and seed lot values of OP families
collected from these individuals for similar traits predicted from
progeny trials

Trait Trial Years BAS,14 BDS,14

BA Blackwood 3 0.20 −0.10
BA Blackwood 5 0.20 −0.09
BA FEA 3 0.20 −0.11
BA FEA 5 0.20 −0.11
BA U143 2 0.20 −0.11
BA U144 2 0.20 −0.09
BD Blackwood 5 −0.09 0.17

PP Blackwood 3 0.06 −0.16
DN Blackwood 5 −0.21 0.15

Multivariate and spatial trend models in E. dunnii 1043



the environments examined. Published estimates for ge-
netic correlations among growth and wood quality traits
also vary in other species, suggesting further studies are
required. The low correlation between basic density and
wood density assessed by NIR reported here may be
due to the low heritability of NIR wood density.

4.4 Repeatability of seed lot predictions

The higher classical seed lot prediction repeatability
estimates for growth at the Uruguay trials is due to
higher level of replication at these trials. Similarly,
the low repeatability estimates for NIR wood quality
traits are a consequence of the very low individual
seed lot repeatability and the small number of replica-
tions. Although the number of replicates assessed for
basic density was similar to that for the NIR attributes,
the moderate estimate for repeatability of seed lot pre-
dictions for basic density is due to the higher individ-
ual repeatability of this attribute.

The correlation between classically estimated seed lot pre-
diction repeatability and generalised seed lot prediction re-
peatability estimated from the individual attribute analyses is
expected as they are equal for completely balanced data
(Cullis et al. 2006). However, for unbalanced designs (as
here), a covariance is induced between predictions which will
inflate the variance of the difference between predictions. This
does not appear to be accounted for in some other studies (e.g.
Oakey et al. 2006; Welham et al. 2010).

The higher generalised repeatability of seed lot predictions
from the multivariate combined attribute analysis, compared
to those from single-attribute analyses demonstrates the

improvement in prediction accuracy from a multivariate ap-
proach due to incorporation of correlated information and im-
proved data structure through the residual covariance (Sales
and Hill 1976; Thompson andMeyer 1986). The greatest gain
in accuracy is expected when the genetic and residual corre-
lations are opposite in sign and when the repeatability of the
correlated attribute is greater than that of target attribute
(Thompson and Meyer 1986). However, this assumes genetic
parameters are known without error. Here, the standard errors
of most estimates are small relative to the estimate and our
estimates are in general agreement with the published
literature.

The higher generalised repeatability when only seed lots for
which the attribute was assessed were included, compared to
generalised repeatability estimated using the PEV for all seed
lots, is as expected. Effects for attributes for which these seed
lots have not been directly assessed are predicted from correlat-
ed information, and the error variance of these predictions will
be greater than those for predictions of attributes for seed lots
that were assessed directly. For unbalanced designs, generalised
repeatability estimated considering all selection candidates may
be the most appropriate measure to assess response to selection
(but see Cullis et al. 2006; Welham et al. 2010).

4.5 Response to selection

The high correlation of seed lot means for total cellulose
among trials is clearly a consequence of the high environmen-
tal correlation of growth attributes and the assumed high (i.e.
1) correlation among locations of seed lot effects for wood
quality attributes, as no information was available to estimate
this parameter. However, this assumption needs further eval-
uation as Luo et al. (2012) report significant G × E for wood
density for E. dunnii across China, and studies in other euca-
lypt species (Brawner et al. 2012; Hung et al. 2015; Osorio
et al. 2003) have reported genetic correlations among trials
between 0.63 and 0.88 for this trait and 0.74 and 0.97 for kraft
pulp yield. High age-age correlation of seed lot values for
growth attributes suggests elite seed lots for total cellulose at
2 years in the Uruguay trials will also be elite at 5 years. A
near-zero seed lot correlation between basic density and
growth attributes explains the lack of response in wood den-
sity from selection on cellulose as no correlated information is
available to predict density for seed lots only assessed for
growth. Response to selection for total cellulose is likely to
be improved if basic density, or the highly correlated attribute
pilodyn penetration, was assessed across trials.

The low correlation between breeding values of individuals at
Stockdale predicted based on their own information and deploy-
ment values of seed lots collected from these individuals may be
due to: (i) difference in age at which the Stockdale seed orchard
and progeny trials were assessed; (ii) differences in site condi-
tions—although growth at Stockdale, Blackwood and Uruguay

Table 7 Percent gain in 12 attributes (6 traits × 2 locations-by-ages) for
different selection intensities of Stockdale seed orchard seed lots (SDs)
compared to the average of unselected native forest seed lots (NF)

Trial Trait Unit Age NF SD

100 % 50 % 25 % 12.5 %

BW BA cm2 5 185.6 9 % 15 % 19 % 20 %

BW HT m 5 9.1 2 % 4 % 5 % 6 %

BW BD kg/m3 5 456.9 −1 % 0 % 0 % 1 %

BW PY %kg/kg 5 43.8 1 % 1 % 2 % 2 %

BW CC %kg/kg 5 37.7 1 % 1 % 2 % 2 %

BW TC kg 5 4.3 12 % 22 % 29 % 33 %

U BA cm2 2 24.8 9 % 16 % 19 % 22 %

U HT m 2 5.2 3 % 6 % 7 % 8 %

U BD kg/m3 2 456.9 −1 % 0 % 0 % 0 %

U PY %kg/kg 2 43.8 1 % 1 % 2 % 2 %

U CC %kg/kg 2 37.7 1 % 1 % 2 % 2 %

U TC kg 2 0.33 13 % 24 % 31 % 36 %
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were typical; (iii) the inadequacy of additive genetic models to
incorporate confounding effects on family performance of vari-
able outcrossing rates; or (iv) mortality and competition remov-
ing inbred individuals from the later age Stockdale population.
Our results highlight the importance of backward testing seed
orchard families to increase the accuracy for deployment in
plantations.

5 Conclusion

Multivariate linear mixed model approaches with spatial model-
ling can be successfully developed and implemented to combine
unbalanced data for multiple traits, from multiple trials, with
repeated measures and local spatial variation modelling to im-
prove prediction accuracy. Results from this approach supports
selection of elite candidateswith substantial gain in total cellulose
achievable, and identified opportunities to achieve further gain.
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