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Abstract

The transverse vibration of a beam excited axially by a harmonic mo-
tion transmitted through intermittent elastic contact is experimentally
studied. The beam’s configuration is clamped-(clamped-guided). It is
shown that this vibration is in the fundamental transverse mode of the
beam, and can occur when the frequency of the excitation is four or six
times the frequency of the fundamental transverse mode. The energy
transfer between the excitation source and the beam occurs only when
the beam is in certain spatial configurations. This constitutes an argu-
mental phenomenon. Experimental results are given and compared to
models.

Keywords— nonlinear dynamics; argumental oscillator; beam transverse vi-
bration; axial excitation; spatial modulation; Van der Pol representation.
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1 Introduction.

The so-called argumental oscillator is a mechanical system which has a sta-
ble motion consisting of a periodic motion at a frequency next to its natural
frequency when submitted to an external force whose frequency is close to a mul-
tiple of said natural frequency. One necessary condition for the phenomenon
to arise is that the external force be dependent on the space coordinate of the
oscillator. An oscillator exhibiting such characteristics has been described in
1928 [1]; this oscillator was a pendulum fitted with a steel sphere at the tip
of the rod, submitted to a harmonic magnetic field spatially localized at the
bottom of the sphere’s course.

The word “argumental” was forged in 1973 [10], where a pendulum is sub-
mitted to an electric field spatially localized at the bottom of the pendulum’s
course.

Further developments were carried out [8, 9], particularly the “multiple res-
onance” and the “quantum effect”. The multiple resonance is a phenomenon
in which a number of oscillators, each having its own resonance frequency, sub-
mitted to a unique common excitation frequency, can oscillate simultaneously.
This is possible if each oscillator has an actual frequency which is a sub-multiple
of the excitation frequency, and if the interaction zone between each oscillator
and the excitation source is spatially localized. The quantum effect is when an
oscillator can oscillate at a number of stable amplitudes whose frequencies are
sub-multiples of a fixed excitation frequency. This is possible if the oscillator’s
actual frequency depends on its amplitude, which is the case for a classical pen-
dulum, and if the excitation source is spatially localized.

Argumental oscillations have also been observed and described in balloon-
borne magnetometer measurements [12] and in an electrical circuit [7]. A few
examples of argumental oscillators, consisting of six variations of a pendulum
excited by magnetic forces, have been modeled and experimented [6]. A sta-
bility criterion in symbolic form and an approximate analytic solution for an
argumental oscillator have been given [5]. Capture probabilities by an attractor
in an argumental oscillator have been given in symbolic form [4].

As for the beams receiving axial excitation, a cantilever beam submitted to
a harmonic force through its base and to a pulsating axial force through its tip,
and carrying a payload at its tip, has been studied in [11].

A typical second-order ordinary differential equation for a one-degree-of-
freedom argumental oscillator is:

ẍ+ 2βω0ẋ+ ω2
0x = g1(x) + g2(x)cos(ωexct), (1)

where x is the space coordinate, β is the damping ratio, ω0 is the natural angular
velocity of the oscillator, g1 and g2 are functions of x, and ωexc is the angular
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velocity of the excitation.

The classical averaging calculus makes the hypothesis that the solution has
the form x(t) = a(t)sin(ρ ω0t + ϕ(t)), where a(t) and ϕ(t) are slowly-varying
functions of time, “slowly” being with respect to the excitation’s signal. This

yields the following system, if ρ is chosen so that n =
ωexc

ρω0
is an even integer:

ȧ =
A(aA)

4ρ
Sn(a) sin(nϕ) − βa

ϕ̇ =
G(a, aA)

ρa
+
A(aA)

4ρa
Dn(a) cos(nϕ) − ρ2 − 1

2ρ
,

(2)

with A(aA) representing the excitation amplitude aA, Sn and Dn being two
functions of a, G being a function of a and the excitation amplitude aA.

In this paper, the transverse vibration of a beam excited axially by a har-
monic motion transmitted through intermittent elastic contact is experimentally
studied. The beam’s configuration is clamped-(clamped-guided) (see Fig. 1). It
has been shown [3] that this system obeys an argumental equation, and that
two models can be devised:

� A discontinuous “natural model”, deduced directly from simple physical
laws and the arrangement of the constituting components: beam, spring,
and points M and A, leading to numerical simulations.

� A continuous “smooth model”, approximation to the natural model, al-
lowing a solution using the averaging method [5].

Using experimental results, a comparison is made in this paper with the nu-
merical simulations on the natural model and with the solution provided by the
smooth model, using the averaging method. In [2], a few symbolic properties of
this system are given.

2 System configuration.

The schematic system configuration is as shown in Fig. 1. A beam is repre-
sented, with its left end S and right end M, in a clamped-(clamped-guided)
configuration. At the point M’s side, the clamp is carried out by way of a mass-
less trolley. Point M is intermittently pushed to the left by a plate C, which is
linked to a point A via a massless spring. F = F i, where i is the unit vector
along the abscissae axis, is the force intermittently applied by plate C to the
beam’s right end at M. F is negative when the beam is in compression. In the
figure, point A moves horizontally with a harmonic motion, in such a manner
that the contact between plate C and point M be intermittent when the beam
and point A are vibrating. When the beam is in resting (i.e. rectilinear) posi-
tion and point A is in center position, the force applied to point M is denoted
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by F0.

Figure 1: System configuration. x is the horizontal abscissa, v is the transverse
displacement, t is the time, and F is the force applied by plate C to the beam
at point M. Point M moves freely horizontally, but is clamped vertically. There
is no rotation at S and M.

Notations:

� ωexc is the angular frequency of the excitation source at point A,

� F0 is the force F when the beam is at rest and point A is at rest in central
position,

� FB is the beam’s critical buckling force,

� ω0 is the beam’s natural angular frequency when point A is at rest in its

central position, with ω2
0 = a1

(π
L

)2 FB + F0

µS
, where a1 = 1 in the hinged-

(hinged-guided) case, and a1 = 4/3 in the clamped-(clamped-clamped)
case, µ =mass per volume unit of the beam, S = section of the beam,

� n is an even integer roughly equal to
ωexc

ω0
,

� ρ is a parameter, generally close to 1, chosen so as to have
ωexc

ρω0
= n,

� k is the spring’s stiffness,

� L is the beam’s length,

� a L is the amplitude of the beam’s motion (a is adimensioned),
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� aS L is the amplitude of the beam’s stationary-motion (aS is adimen-
sioned),

� aA L is the amplitude of the excitation at point A (aA is adimensioned),

� ρ00 is defined as ρ

√
FB

FB + F0
,

� β is the experimentally-measured beam’s damping ratio,

� A is a function of aA characterizing the excitation amplitude,

� Sn and Dn are two functions of a characterizing the spectral components
of the interaction between the BUT and the external excitation,

� G is a function of a and aA characterizing the spatial localization of the
interaction between the BUT and the external excitation.

3 Experimental setup.

Define n the frequency ratio of the excitation frequency to the beam’s transverse
motion frequency. In this section, the experimental setup which has been used
to test the cases n = 4 and n = 6 is presented, along with its calibration
procedure.

3.1 Description.

To implement the arrangement shown in Fig. 1, a “beam under test” (BUT) is
placed at the left-hand of the experimental setup, while the spring and point
A of Fig. 1 are embodied by a second beam, called “control beam”, which is
excited transversally by a shaker (see Fig. 2). The point A of Fig. 1 is embodied
by the junction point between the control beam and the shaker’s rod, while the
spring of Fig. 1 is embodied by the control beam. Thus, the elasticity of the
spring is embodied by the bending elasticity of the control beam. Although the
bending elasticity of the control beam is not strictly constant, the experiments
and calibrations show that it can be considered constant over the displacement
range of the shaker for the experiments which were carried out. Both beams
are made of aluminum. The boundary conditions of the BUT are: clamped at
the left end and clamped-guided at the right end, where the translational joint
is achieved by means of two thin spring steel strips (0,4 mm thickness), as seen
in Fig. 3, in a parallelogram configuration allowing the translation of the beam
attached to them. As for the control beam, the left end is a clamped-guided
joint and the right end is a decentered revolute joint. The decentered revolute
joint consists of a cylinder, the circumference of which the end of the beam is
attached to, and of two bearings, as illustrated in Fig. 4. To minimize the ro-
tation at the left end of the control beam, due to its small length, the distance
between the strips is increased, compared to the configuration of the right end
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of the BUT (see Fig. 3).
In order to limit the occurrence of high-frequency modes of the BUT, its first
resonance frequency is lowered by addition of local masses. Stiffeners are added
to isolate the first mode by pushing aside the higher modes. The same proce-
dure is done on the control beam. A steel ball is machined and glued on the
edge of the BUT so as to provide a punctual (sphere-plane) contact between the
two beams. To adjust the intermittent contact of the two beams, allowing the
occurrence of the researched phenomenon, a steel spring strip (thickness of 0,1
to 0,3 mm) can be added, if necessary, between the ball and the control beam
(see Fig. 3).
The measurements are carried out by two laser displacement sensors (Keyence
IL-030, around 1µm resolution, time step of 0,33 ms): one near the left end
of the BUT to measure its deflection (see Fig. 5), and the other one, located
near the center of the control beam and in front of the shaker, to measure the
deflection of the control beam. The shaker (Modalshop model 2004E), driven
by a power amplifier (B&K 2719), is used to transversally excite the control
beam. The connection between the shaker and the beam is made by way of a
centered revolute joint (see Fig. 6).
As the position of point A of Fig. 1 must be precisely commanded, the shaker’s
position is controlled by a feedback loop. The global synoptic diagram is in
Fig. 7. A CompactRIO controller (NI 9076) with two CompactDAQ modules
(NI 9234 for the measurements acquisition and NI 9263 for the excitation signal
generation) is used to carry out the active control of the shaker. Except for the
feedback-control part of this diagram, the system’s principle and logic imple-
mentation is the same as described in [6].

A

B
B

D

E

G
C

F

Figure 2: Experiment’s global view. A: clamped joint, B: position sensor, C:
beam under test (BUT), D: spring steel strips region (detailed in Fig. 3), E:
shaker, F: control beam, G: decentered revolute joint.

Remark. In this paper, the experiments are made with two beams so arranged
that the head of the control beam has a motion frequency the same as the control
beam’s transverse motion, because the control beam’s position at rest is offset
from the rectilinear position (see Fig. 8).
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A

B

C D

Figure 3: Contact point’s environment. A: spring steel strips of the beam
under test (BUT), B: steel ball at the contact point between the two beams, C:
contact-adjustment spring steel strip, D: spring steel strips of the control beam.

A

B

Figure 4: Control beam’s pivot joint. A: control beam, B: decentered revolute
joint.

3.2 Spectral-purity monitoring.

To ensure that the shaker does not introduce signals into the beam under test
(BUT) which induce a classical resonance of the BUT, the spectral contents
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A

C

B

Figure 5: BUT’s deflection measurement. A: clamped joint, B: BUT, C: position
sensor.

A

B

C

Figure 6: Shaker. A: nylon rod and nuts, B: axis of the revolute joint, C: control
beam’s position sensor.

of the motion of point A must be monitored. As only the first mode of the
BUT is considered in this paper, the classical beam resonance of said first mode
arises when point A’s frequency is twice the BUT’s resonant frequency f0. So,
measurements of the amplitudes of point A’s motion and the corresponding
transverse motion of the BUT have been carried out at an excitation frequency
of 2f0. Moreover, the frequency f0 has been investigated too. The results are in
Table 1. Point A’s peak-to-peak amplitude (in mm) versus the shaker’s peak-
to-peak amplitude (in mm) is obtained from the data in Fig. 9, which yield a
slope of 0.04mm/mm. One must then divide by 2 to obtain the classical am-
plitude from the peak-to-peak amplitude. The BUT’s adimensioned amplitude
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Figure 7: Global synoptic diagram.

Figure 8: Offset position of the control beam at rest.

(in mm/m) is obtained by dividing the BUT’s amplitude (in mm) by L, where
L is the length of the BUT. The values of the shaker’s spectrum components
are in arbitrary unit of power.

It can be seen that if the shaker’s unwanted power spectrum components
corresponding to the frequencies f0 and 2 f0 are kept under 3.5 10−5, then
the corresponding unwanted BUT amplitudes are kept under 0.063mm/m =
0.063 10−3. The hypothesis is herein made, that the order of magnitude of the
BUT’s response due to these unwanted components at f0 and 2 f0 is still valid
when these components are mixed with high-amplitude components at 4 f0 or
6 f0 during the experiments.
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Table 1: Amplitude of the BUT’s transverse motion in response to axial exci-
tations at f0 and 2f0, for various amplitudes of point A, f0 being the BUT’s
resonant frequency.

Shaker’s and Shaker’s Point A’s Beam’s Shaker’s Power
point A’s pk-pk amplitude amplitude spectrum
frequency amplitude (mm) (mm/m) component

(mm)

f0 0.62 0.012 1.2 20 10−3

f0 0.38 0.0076 0.99 8.3 10−3

f0 0.19 0.0037 0.28 1.8 10−3

f0 0.024 0.00048 0.039 1.9 10−5

f0 0.012 0.00024 0.024 1.8 10−6

2 f0 0.57 0.011 1.4 5.1 10−3

2 f0 0.19 0.0038 0.47 5.6 10−3

2 f0 0.09 0.0018 0.19 1.3 10−3

2 f0 0.015 0.0003 0.063 3.5 10−5

2 f0 0.005 0.0001 0.009 3.9 10−6

3.3 Calibration for the case n = 4.

Due to the very small displacements at the contact point between the BUT and
the control beam, the position of the tip of the control beam has to be derived
from its transverse displacement, and therefore a calibration has to be made.
First, the static position of point A is measured as a function of the shaker’s
static position, given by a position sensor. To do this, the resonant frequency
of the BUT is measured for various thicknesses of spring steel strips inserted
between the two beams; by comparing the frequencies, it is possible to establish
reference points and to determine, step by step, the points of Fig. 9. Then, by
measuring the resonant frequency under various static positions of the shaker,
an empirical relation between the static position of point A and the static axial
force F0 can be established. The results are given in Fig. 10. Then, by taking
the numerical derivative of F0 with respect to xA, the local value of the stiffness
k is obtained. The results are given in Fig. 11. Finally, the value of the stiffness
k retained for the experiment is obtained using a value of k obtained in the
region corresponding to the mean value of xA of this figure. The value retained
for k is k = 200 kN/m.
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Figure 9: Point A’s peak-to-peak amplitude against shaker’s peak-to-peak am-
plitude for the case n = 4, with contact adjustment carried out by adding a
0.1mm spring steel strip in the experiments. Measured points are represented
as diamonds.

Figure 10: Static axial force F0 against point A’s static position for the case
n = 4, with contact adjustment carried out by adding a 0.1mm spring steel
strip in the experiments. Measured points are represented as diamonds.
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Figure 11: Stiffness k against point A’s static position for the case n = 4, and
trend curve in the region of interest (solid line), with contact adjustment carried
out by adding a 0.1mm spring steel strip in the experiments. Measured points
are represented as diamonds.
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3.4 Calibration for the case n = 6.

For the case n = 6, it was necessary to add a stiffener on the control beam to
avoid a mode between point C and the shaker head. So the value of k changed,
as well as the relationship between the shaker’s position and xA. The value
retained for k is now k = 130 kN/m. The calibration procedure is the same as
for the case n = 4.

Figure 12: Point A’s static position against shaker’s static position for the case
n = 6, with contact adjustment carried out by adding a 0.1mm spring steel
strip in the experiments. Measured points are represented as circles.
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Figure 13: Static axial force F0 against point A’s static position for the case
n = 6, with contact adjustment carried out by adding a 0.1mm spring steel
strip in the experiments. Measured points are represented as circles.

Figure 14: Stiffness k against point A’s static position for the case n = 6,
and trend curve (solid line), with contact adjustment carried out by adding a
0.1mm spring steel strip in the experiments. Measured points are represented
as diamonds.
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4 Experimental results.

In this section, the experimental results are presented in Van der Pol plots, along
with other detailed data about the motion and spectral purity. Those Van der
Pol plots are polar plots with a as modulus and ϕ as argument, with reference
to Equ. (2). The damping ratio β has been determined experimentally.

4.1 Frequency ratio: n = 4

Fig. 15 shows the experimental Van der Pol curves obtained with a frequency
ratio n = 4. Fig. 16 shows the detail of one curve from Fig. 15. This curve
lasted for 40s.

Figure 15: Experimental Van der Pol curves for n=4. The adimensioned am-
plitude is in mm/m. Parameters are: n = 4, FB = 51N , F0 = −5.0N , f00 =
6.615Hz, β = 2.4 10−3, L = 0.95m, k = 200 10−3N/m, fexc = 25.849813Hz,
ρ00 = 0.976939. The high number of decimal positions is to allow one to repro-
duce numerical results.
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Figure 16: Detail of one curve from Fig. 15. There is one dot embedded on the
curve every two periods of the beam’s motion.

As can be seen in Fig. 17 (c) and (d), the point A’s power spectrum compo-
nents relative to the frequencies f0 and 2 f0 are kept respectively under 1.5 10−6

and 2 10−5.
Fig. 18 gives numerical simulation results and experimental results relative

to stationary regimes. Referring to [2,3], results of the numerical simulations on
the averaged system (with smooth model) are given. The smooth model yields
a curve with a crescent-shaped top part and a V-shaped bottom part, curve
whose right part constitutes the stable stationary regimes, and the left part
the unstable ones. Parameter values for the smooth model are the same as for
Fig. 15, except F0 = −6.4N . Other experimental results are also represented,
with the same parameters as for Fig. 15 and various values of the excitation
aA. It can be seen that the experimental data are in good agreement with the
smooth model in the whole region where experimental data are available. The
“Model upper validity limit” as defined in [3] is outside the figure, which means
that the smooth model is valid on the whole figure.

Fig. 19 shows that, for n = 4, and given the high sensitivity of the results
against parameter values, the smooth model and the natural model are in good
agreement with each other. It can be noticed that the skewed form of the
V-shaped part of the stationary-solutions curve in the experimental data is
better modeled by the natural model than by the smooth model, as can be seen
in Fig. 19. This is due to a specific approximation in the smooth model, as
explained in [3]. In conclusion, for n = 4, the experimental data are in good
agreement with both the natural and the experimental models.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 17: Details of the thread of Fig. 16: BUT frequency (BF) (a), point A’s
mean position (b), point A’s amplitude (c), and point A’s spectral components
at: 1 x BF (d), 2 x BF (e), 4 x BF (f), 6 x BF (g), 8 x BF (h).
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Figure 18: Stationary regimes, aA (point A’s amplitude) against aS (stationary
motion’s amplitude) for n = 4. Comparison between smooth model and exper-
imental results. The smooth model is represented as a solid line. The dashed
line and the dotted line are the β-curve and the G-curve as described in [3]. The
experimental results of Fig. 15 are represented as a solid square (stable point)
and a hollow square (unstable point). Other stationary experimental points:
unstable points (circles) and stable points (solid circles). The parameters are
those of Fig. 15, except F0 = −6.4N .
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Figure 19: Stationary condition, aA (point A’s amplitude) against aS (station-
ary motion’s amplitude). Comparison between natural model (with second-
order equation), represented as diamonds, and smooth model (with averaged
system), represented as a solid line. The G-curve is the dotted line, while the
β-curve is the dashed line. Parameters are those of Fig. 18. For the smooth
model, stable and unstable stationary solutions are represented as an infinity of
points belonging to solid lines, while for the natural model, a discrete series of
stable (solid diamonds) and unstable (hollow diamonds) stationary points are
represented.
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4.2 Frequency ratio: n = 6

Fig. 20 shows the experimental Van der Pol curves obtained with a frequency
ratio n = 6. Fig. 21 shows the detail of one curve from Fig. 20. This curve
lasted for 60s.

As can be seen in Fig. 22 (c) and (d), the shaker’s components relative to

Figure 20: Experimental Van der Pol curves for n=6. The adimensioned am-
plitude is in mm/m. Parameter values are: n = 6, β = 2.4 10−3, FB = 51N ,
F0 = −5.0N , L = 0.95m, k = 130 kN/m, f00 = 6.615Hz, fexc = 39.500711Hz,
ρ00 = 0.9952308.

the frequencies f0 and 2 f0 are kept respectively under 3.5 10−5 and 1.6 10−5.
Fig. 23 gives numerical simulation results and experimental results relative to
stationary regimes. Referring to [2, 3], results of the numerical simulations on
the averaged system (with smooth model) and results of numerical simulations
on the second-order equation (using the natural model) are given. The smooth
model yields a crescent-shaped curve whose right part is the stable regimes, and
the left part the unstable regimes. Parameter values for natural and smooth
model are the same as for Fig. 20, except F0 = −7.2N . Experimental results
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Figure 21: Detail of one curve from Fig. 20. There is one dot embedded on the
curve every two periods of the beam’s motion.

relative to Fig. 20 are also represented, along with other experimental results
representing stable stationary regimes for the same parameters as for Fig. 20
and various values of the excitation aA. In this last case (asterisk on Fig. 23),
only stable stationary regimes are represented, because there were not enough
experimental data to correctly identify the position of the unstable stationary
representative points.

It can be seen that the agreement between experimental data and natural
model is good, but that it is only fair between experimental data and smooth
model. This is in all likelihood due to the approximations built into the smooth
model and to the proximity to the vanishing of the argumental phenomenon for
the parameters of Fig. 23. Indeed, the smooth model can be expected to be less
performing when the truncated sinusoids used in [3] are about to vanish, due to
the method employed to build the smooth model. However, given the sensitivity
of the system to its parameters, the presence of the experimental data in the
vicinity to the smooth model stationary-solutions curve can be considered a fair
result.

22



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 22: Details of the thread of Fig. 21: BUT frequency (BF) (a), point A’s
mean position (b), point A’s amplitude (c), and point A’s spectral components
at: 1 x BF (d), 2 x BF (e), 4 x BF (f), 6 x BF (g), 8 x BF (h).
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Figure 23: Stationary regimes, aA (point A’s amplitude) against aS (stationary
motion’s amplitude) for n = 6. Comparison between models and experimental
results. The smooth model is represented as a solid line. The dashed line and
the dotted line are the β-curve and the G-curve as described in [3]. The natural
model is represented as solid diamonds (stable points) and hollow diamonds
(unstable points). The experimental results of Fig. 20 are represented as a solid
square (stable point) and a hollow square (unstable point). Other experimental
results (stable points only) are represented as asterisks.
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5 Conclusion.

Experiments have been carried out with two beams placed head-to-head. The
beam under test (BUT) was in a clamped-(clamped-guided) configuration. The
second beam was controlled so as to provide an elastic intermittent contact with
the BUT. It has been experimentally shown that a beam under test submitted
to a harmonic axial excitation through an intermittent elastic contact can enter
a stationary regime where its transverse vibration has a frequency which is the
beam’s fundamental frequency, and equal to a sub-multiple (other than one) of
half the frequency of the axial excitation. The axial excitation was four or six
times the fundamental frequency of the beam. These conditions constitute an
argumental phenomenon.

In the case n = 4, the experimental data are in good agreement with both
the natural and the smooth models. In the case n = 6, the experimental data
are in good agreement with the natural model, and in fair agreement with the
smooth model.

The experiments described herein have been carried out to the power limit
of the shaker. To explore greater values of n, a more powerful shaker should
be used. Also, lower values of the damping ratio could be employed. Finally, a
more efficient device to convert the high-amplitude, low-force of the shaker into
a low-amplitude, high-force excitation could be considered.
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