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Abstract

The aim of this work is to model short crack growth under fretting fatigue loading conditions
by considering a criterion based on linear elastic fracture mechanics quantities, but which also
accounts for the first non-singular terms of the asymptotic expansion, namely the T-stresses. The
Modes I and II Stress Intensity Factors and the T-stresses were computed by the Finite Element
Method under plane strain hypothesis. To assess the model fretting fatigue tests were carried out
using two cylindrical fretting pads, which were loaded against a flat dogbone tensile test piece,
both made of a Ti-6Al-4V titanium alloy. The model was capable to correctly estimate short crack
arrest and to find the threshold fretting conditions separating failure from infinite life (here defined
by tests which reached one million cycles). An optimization technique was implemented to the
numerical model so that it could also estimate crack path.

Keywords: fretting-fatigue, T-stress, short crack, multiaxial, Ti-6Al-4V

1. Introduction

Fretting-fatigue appears when mechanical assemblies experience relative motion at contact
interfaces under the action of an excitation force or vibration. Experimental evidence has shown
that the conjoint action of fretting and fatigue may produce strength reduction factors varying
from 2 up to 10 [1].

Fretting failure of components such as splines and the dovetail fixing between blade and disc
in fans of aeroengines [2] and riveted skins of the aircraft fuselage [3] have become a major design
concern.

The aim of this work is to evaluate a T -stress based criterion [4][5] to model short crack growth
under fretting fatigue conditions. The loads involved in fretting fatigue generate a time varying
non-proportional multiaxial stress field under the contact [6], which decays very fast from the
surface to the interior of the component [7]. Therefore, non-local approaches, developed initially
for predicting the fatigue endurance of notched specimens, have been applied by different authors
to the fretting fatigue problem [6, 8–10]. Here, to model short crack growth under such challenge
loading conditions we consider a criterion based on linear elastic fracture mechanics quantities
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[11] and that accounts for the first non-singular terms of the asymptotic expansion, namely the
T -stress.

The criterion is constructed as a generalized von Mises yield criterion and states that below
the threshold value (a critical distortional elastic energy for the crack tip region) the crack should
remain arrested. An elastic domain is thus defined which is function of the SIF and the T -
stress. Within such model the mode I threshold stress intensity factor is not constant. It tends
asymptotically towards the long crack threshold for long cracks and to zero for short cracks. The
threshold value is also function of the stress biaxiality ratio, which is consistent with experiments
from McEvily et al. [12].

The method was applied to the problem of fretting fatigue and shows that the high values of
the T -stress encountered in this problem contribute to crack tip plasticity of short crack and may
promote short crack growth. Fretting fatigue tests on Ti-6Al-4V have been carried out to evaluate
the accuracy of the proposed methodology.

2. Experimental results

2.1. Fretting fatigue apparatus and specimen

Fretting fatigue tests were carried out using two cylindrical fretting pads, which were loaded
against a flat dogbone tensile test piece. The pads used in the experimental and numerical work
have a radius of 20mm, and a cross section of 13mm × 15mm, being 13mm the out of plane
thickness. The tests were performed for a Ti-6Al-4V titanium alloy. Specimens and pads were
supplied and manufactured by Snecma from a fan disc of an aeroengine. Table 1 contains a list
of static and fatigue material properties for this alloy, which are relevant for the analysis in this
work, viz. Young’s Modulus, E, Poisson’s ratio, ν, fully reversed fatigue limits under push-pull and
torsion, σfR=−1

and τfR=−1
. These data were collected from the literature [13]. For the threshold

value of the mode I SIF, ∆KthR=−1
, data were found to vary between from 4.5MPa.m1/2 [9] to

6.5MPa.m1/2 [14]. Therefore, a mean value in this range was adopted for this study.
Before testing, pads and specimen were chemically degreased and, to assure the alignment of

the contact between the cylindrical pads and the flat specimen was correct across the width of the
specimen, a Pressure Measuring Film (Fuji Prescale Film - Medium Pressure - Mono Sheet Type)
was selected. Fig.1 depicts a photograph of a pair of pads together with impressions made on the
pressure sensitive paper after a correct alignment was performed.

Tests were carried out using a fretting apparatus which can be considered as an enhanced
version of a device initially proposed by Nowell [15]. This apparatus is well detailed by Martins
et al. [16] and only an overview of it is provided here. The apparatus is attached to a servo-hydraulic
fatigue test frame and works as a spring that reacts to the motion of the pads, which are pressed
by a static force against the dog bone fatigue specimen. This motion arises when the specimen is
subjected to a cyclic bulk load and then experiences a deformation that the pads do not. Due to
the interfacial friction and to the fact that the pads are attached to the apparatus/spring, material
points in the pads contact surface are not allowed to displace together with their counterparts in
the specimen surface. The reaction of the spring results in the cyclic tangential load, which is
hence proportional and iso-frequency to the bulk load. Fig.2 depicts a photo of a test showing the
apparatus, a zoom of the specimen/pads mounted in it and a scheme of the contact configuration.
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2.2. Load configuration and test results.

A schematic diagram of the loading cycle applied to the fretting configuration is depicted in
Fig.2d. After the specimen was mounted on the servo-hydraulic machine, the first step in the
loading program was to apply the mean bulk load, so that the load ratio was set to 0. The fretting
pads were then clamped by a constant normal contact load per unit thickness, P . The pads used
here has a radius of R = 20mm. This procedure means that the mean load/stress provokes no
disturbance on the contact setting. The sinusoidal (fatigue) bulk load, B, was finally applied in
small steps until the prescribed value for each test. The gradual increase of the bulk load and its
frequency is necessary to avoid the pads sliding at the beginning of the test when the coefficient
of friction, f , is still very low. Therefore, as the shear load is proportional to the bulk load, its
increase in steps will allow the slip zones to grow smoothly together with f .

To obtain the coefficient of friction, f , under the partial slip regime, subsidiary tests were
carried out using the methodology presented by Nowell and Hills [17, 18]. The predictions for the
slip zone friction coefficient, were between 0.45 and 0.55. A value of 0.5 was used in the analysis.

The aim of these tests was to find the threshold fretting conditions separating failure from
infinite life (here defined by tests which reached 106 cycles). To achieve this, the pick pressure,
p0, was fixed for all tests at 700MPa (as P and the pad radius are constants), and an initially
high fatigue load was decreased from test to test until the run out condition was achieved. Test
frequency was fixed to 10Hz. Here, it should be remarked that the fretting apparatus and the
position of the pads along the specimen (the shear load depends not only of B and of the stiffness
of the apparatus, but also on the length of the specimen above the contact line [16]) were defined
so that the ratio between the bulk and the tangential force B/Q was set to be around 10. Fig.3
contains the experimental points in a σB/p0 x Q/fP diagram. Notice that the threshold loading
is somewhere between 0.121 < σB/p0 < 0.129 and 0.48 < Q/fP < 0.53. Also worth of notice is
the fact that for each of these limiting values of this σB/p0 range, at least three tests were carried
to evaluate the repeatability of such conditions.

Further, in this case, the readers can observe that for the same σB/p0 these tests have slightly
different values for Q/fP . This is mainly due to the fact that it is not possible to guarantee from
test to test that the pads will be placed at the same position along the specimen length and this
will interfere in the measured value of the shear load. Table 2 reports the salient parameters for
the tests carried out and the registered lives.

As follows, one will assume that the threshold condition between complete fracture of the
specimen and run out is obtained by setting Q/fP = 0.51, σB/p0 = 0.125.

2.3. Post failure investigation.

From fracture surface observations under a spectrum electron microscopy (SEM), the crack
initiation and growth mechanisms for the fretting fatigue conditions here imposed were investi-
gated. Figure 4a shows an example of the damage caused on the specimen surface by the fretting
mechanism, which is typical from the partial slip regime. It is clear there are two slip/fretted zones
around a preserved/stick zone. Crack initiation invariably started inside of the fretting damage
zones (slip zones) from any of the two sides of the specimen. Further, multiple cracks initiation
usually occurred within one of these slip zones somewhere close to the trailing edge of the contact,
as illustrated in Figs 4b and 4c. Initially, these cracks grew for a very short distance in a plane
nearly perpendicular to the axial main fatigue load direction and then perpendicular to it, until
they formed one crack front (see Figs 4c and 4d). The inclination of the crack initiation plane
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was quantified by using a keyence microscope (Fig.4d). The crack plane usually formed an angle
with the specimen surface, which varied between 100◦ and 115◦. The transition to a mode I crack
growth occurred after the crack reached a size varying between 40µm and 100µm.
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Table 1: Ti-6Al-4V properties used for the analysis.

Young Modulus ν ∆KthR=−1
σfR=−1

τfR=−1

119.4GPa 0.29 5.5MPa.m1/2 583MPa 411MPa

Figure 1: Set of pads with their respected prints on the pressure sensitive paper.

Table 2: Test parameters and results.

Test σB/p0 Q/fP Nb cycles

1 0.114 0.464 1000000

2 0.142 0.566 358681

3 0.128 0.503 593547

4 0.125 0.512 1000000

5 0.128 0.536 509677

6 0.121 0.492 1000000

7 0.128 0.529 775445

8 0.121 0.500 1000000

9 0.136 0.553 645763

10 0.121 0.489 1000000
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B

Time

B
Q

IN PHASE & B/Q~10

P

(d)(c)

Figure 2: a) photo of the apparatus b) zoom of specimen/pad contact c) scheme of contact configuration [16], d)
diagram of the loading cycle.
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0.55

0.60

0.50

0.45

0.40

0.11 0.115 0.12 0.125 0.13 0.135 0.14 0.145

Figure 3: Experimental result, determination of the limit broke/last 106.
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Figure 4: SEM photos tests of Table 2 a) A typical fretting-fatigue mark on a unbroken specimen (test 1) b) Unbroken
specimen at 106 cycles with presence of multiple crack initiation (test 4) c) fracture surface of a crack which initiates
close to the trailing edge of the contact (test 3) d) Crack inclination study using a confocal optical microscope (test
5, initial angle of 110◦).
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3. T-stress

The Williams solution [19] describes the stress state at any material point ahead the crack tip
for an isotropic elastic material. It can be expressed as:

σij(r, θ) = A1r
−1/2f1

ij(θ) +A2f
2
ij(θ) +A3r

1/2f3
ij(θ) + ... (1)

where r and θ are polar coordinates centred at the crack tip. Functions fnij can be normalised
so that A1 is defined as the stress intensity factor, K, and A2 represents a uniform, non-singular
stress, T . At the crack tip and within a region whose size is of the same order of the size of the
plastic zone, the third and higher order terms are still negligible but not K and T . As a matter
of fact, for such small region a two parameter formulation (K-T) has been shown to describe the
fracture process better than the K based approach for several cracked geometries [20, 21].

To clarify the significance of the T -stresses, let us consider a media subjected to a biaxial stress
tensor S∞. Let now consider that a small crack with a length 2a is inserted in that media, lying
in the plane normal to y and with its straight front directed by z. In linear elastic conditions,
the solution of this problem can be obtained by superposition (Fig.5). At the crack tip, the mode
I exact solution corresponds to an equibiaxial plane strain loading case. Within a boundary of
approximately the size of plastic zone, the T -stress component is then superimposed to the mode
I plane strain solution to restore the non-equibiaxial remote loading condition. Expressions of
the T -stresses for various crack geometries and non-uniform loading cases can be found in the
literature [22][23], or can be determined from FE computations using fracture mechanics routines.
The contribution of the T -stress to the crack tip stress and strain fields is usually neglected because
long cracks are considered. However, it becomes non-negligible when short cracks are considered.

4. Generalized von Mises yield criterion

4.1. Assumptions

The criterion used in this paper is a generalized von Mises yield criterion for the crack tip
region proposed by Thieulot-Laure et al. [4] and later modified by de De Moura Pinho et al. [5].
The material is assumed to contain small cracks.

The criterion is based on the assumption that fatigue cracks propagate if cyclic plastic strain
is experienced at crack tip. The criterion is thus expressed as a threshold for plastic yield for a
region of material located within a distance δ to the crack tip and per unit of length of the crack
front. This radius δ is a length scale parameter to be identified from experiments.

The yield criterion for the crack tip region is obtained as follows. The material is assumed to
obey the von Mises yield criterion at the local scale. The von Mises criterion is a critical distortional
elastic energy density criterion. In order to calculate the distortional elastic energy density within
the crack tip region [4],[24],[5], the stress, strain, and displacement fields at crack tip from LEFM
are used. In addition, since it is aimed at using this criterion for small cracks, higher-order terms
(T-stresses) in the asymptotic LEFM development are also considered.

9
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Biaxial stress tensor

Figure 5: Illustration of the significance of the T -stress components in plane strain.
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4.2. Expression of the criterion.

In plain strain condition, the asymptotic development [19] at the crack tip of the displacement
field u including the T -stress is as follows.

ux =
KI

2µ

√
r

2π cos
θ

2
(κ− cos θ) +

T

8µ
(κ+ 1)r cos θ

+
KII

2µ

√
r

2π sin
θ

2
(κ+ 2 + cos θ)

uy =
KI

2µ

√
r

2π sin
θ

2
(κ− cos θ)− T

8µ
(3− κ)r sin θ

−KII

2µ

√
r

2π cos
θ

2
(κ+ 2 + cos θ)

uz = 0

(2)

where 2µ = E/(1 + ν) and κ = 3 − 4ν. Using cylindrical coordinate system, the strain tensor ε
is derived from the displacement field u, and the stress tensor σ is obtained by the Hooke’s law.
The distortional elastic energy density w(r, θ) at each point (r, θ) is then obtained:

w(r, θ) =
1

2
Tr(σ′ · ε′) (3)

where σ′ and ε′ are the deviatoric parts of the stress and strain tensors. The distortional elastic
energy density is then integrated over a domain within a distance δ to the crack tip, to get the
distortional energy per unit of length of the crack front U(KI ,KII):

U(KI ,KII , T ) =

δ∫
0

π∫
−π

w(r, θ)rdθdr (4)

The yield criterion is finally expressed as follows:

U(KI ,KII , T ) = UC (5)

Where UC is a critical distortional elastic energy per unit of length of the crack front, which is
determined with the additional assumption that crack growth stems from crack tip plasticity. In
such a case, the threshold stress intensity factor for long cracks can be used to determine a yield
threshold KIY so that:

UC = U(KI = KIY ,KII = 0, T = 0) (6)

A few mathematical simplifications of eq. 5 allow expressing this criterion as follows:
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f =

(
KI

KIY

)2

+

(
KII

KIIY

)2

+

(
T

TY

)2

+ f1
KI

KIY

T

TY
− 1 = 0 (7)

The analytic formulation of the other coefficients are reported in Table 3.

4.3. Identification of the parameters

This yield criterion requires three material parameters, KIY , ν and δ. In a first time, the mode
I threshold stress intensity factor for long cracks can be used to determine a yield threshold KIY

Eq. 8.

KIY = ∆KthR−1
/2 (8)

As the Poisson’s ratio ν is known, remain the identification of the parameter δ in the non-
propagation criterion.

Let us consider, for instance, a through thickness crack lying in the plane (x, z) and subjected
to remote uniaxial loads which amplitudes are S∞yy , the expressions of mode I SIF and T -stress are
the following:

KI = S∞yy
√

Πa

T = −S∞yy
(9)

Under uniaxial loading conditions, for instance, the threshold for crack propagation can be easily
calculated as a function of the crack length using Eqs. 9 and 7. Its evolution can be plotted in a
Kitagawa-Takahashi type diagram for various values of the dimension δ of the integration domain.
Fig.6 illustrates an example of growth threshold using two values of δ.

The criterion predicts that the yield threshold is increasing with the crack length up to the
saturation value KIY . The saturation rate increases with the value of δ.

Then if we have access to a Kitagawa-Takahashi type diagram from experimental test [25][26][27],
the dimension δ can be identified as illustrated in Fig.6.

De Moura Pinho et al. [5] used another method to identify the parameter δ for the same Ti64
alloy used in the experimental campaign here. This method required the fatigue limits in alternated
tension (σf ) and in alternated torsion (τf ) to identify an equivalent flaw size (b0) and the parameter
δ. They showed that the value of (δ/b0) is a function of the ratio between σf and τf . The value of
δ = 1µm considered for the following analysis was collected from De Moura Pinho et al. [5].

4.4. Representation of the criterion.

In Fig.7, by way of illustration, the criterion is plotted in a KI − T −KII diagram. According
to Eq. 7, the yield criterion is an ellipsoid in this diagram. Inside the ellipse, the material within
the crack tip region behaves essentially elastically and the crack is assumed to remain arrested.
Loading paths corresponding to two crack lengths were plotted for a Griffiths crack (2D plane
strain) subjected to a uniaxial tensile stress (i.e. KI = S∞yy

√
Πa and T = −S∞yy). When the loading

path meets the yield surface, crack tip plasticity and hence crack propagation is expected to occur.
The frontier marked by open squares corresponds therefore to the evolution of the threshold stress
intensity factor with the crack length. Various loading paths including multi-axial non-proportional

12
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x

y
z

Figure 6: Case of a through thickness crack in an infinite media. Schematic evolution of the non propagation thresh-
old, as calculated using the criterion, versus the crack length, for various values of δ. Illustration of δ identification
using experimental test.
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cases can be considered. If the loading path remains inside the elastic domain, the crack should
remain arrested.

In addition, if crack growth stems from crack tip plasticity, we may assume that the crack
growth rate could be roughly estimated using f . Hence, we can define a index using the function
f .

Index =

∫
t∈T

(
df>0

dt

)
>0

dt

∣∣∣∣∣∣
KI>0

(10)

Indeed, it is assumed here that uniquely the segment of the cycle where the crack is open can
generate plasticity at the tip of the crack. Then, during each fatigue cycle, different phases may
appear. During a loading step, f is first negative (elasticity) then becomes positive above the yield
threshold (plasticity occurs). Then, at unloading, f is positive but df is negative.

The effective part of the loading cycle is thus the integration of df over the fatigue cycle,
considering only the time steps during which plasticity is promoted i.e. the time steps during
which both f and df are positive.

In addition, if crack growth stems from crack tip plasticity, we may assume that the crack
growth rate could be roughly estimated using this index [28][29].

da = α〈d〈f〉〉γ = α(Index)γ (11)

with, for this material, α = 9.10−10 and γ = 1 [28].
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Table 3: Coefficients in Eq. 7 calculated for a Poissons ratio ν = 0.29.

KIIY TY f1

KIY

√
7−16ν+16ν2

19−16ν+16ν2
KIY√

2Πδ
1
2

√
7−16ν+16ν2

1−ν+ν2
32(1−10ν+10ν2)

15Π
√

(1−ν+ν2)(7−16ν+6ν2)

0.48KIY
0.43KIY√

δ
−0.419

Figure 7: Criterion in Eq. 7 identified for the Ti-6Al-4V titanium alloy plotted in a KI − T − KII diagram for
δ = 1µm, for a Griffiths crack in traction, in plane strain condition. The solid lines indicate the loading paths
obtained for different crack lengths when Sxx = 0.
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5. Application to fretting

In this section, the T-stress based criterion will be applied to the fretting fatigue configuration
considered in our tests. The linear elastic fracture mechanics quantities (KI , KII and T -stress)
were calculated using the finite element method (FEM). Details of the FEM model are provided
below (Sec.5.1). Two different possibilities for crack growth modeling were evaluated. In the first
case, Sec.5.2, the crack path is constrained and assumed to be perpendicular to the axial fatigue
load direction. Later, Sec.5.3, a more flexible modeling is experienced, where the T-stress based
criterion not only evaluates the crack advance risk but also defines its path.

5.1. FEM modeling of the fretting-fatigue

This fretting-fatigue configuration is modeled with finite elements using the commercial software
ABAQUS. The model is 2D and use linear quadratic plane strain elements. Only one contact
between the pad and the specimen is modeled. Symmetric boundary conditions are defined on the
middle axis of the specimen. The general boundary conditions and the load applied are illustrated
in Fig.8.

The element size away from the contact interface is 500µm, and in the contact zone the refined
mesh required 8µm elements. Another structured refinement is used at the tip of the crack in
order to have good estimation of the linear elastic fracture mechanics quantities after few contours
integral evaluation [30].

In this modeling, the same interaction property has been used to describe the contact pad/specimen
and the contact between crack faces. Contact properties are:

• Normal behaviour: hard contact using Lagrange constraint enforcement method,

• Tangential behaviour: penalty friction formulation.

This choice will be discussed in the last section of the article.

5.2. Straight crack.

As a first application of this criterion to fretting fatigue, let us consider a crack initiating at
the trailing edge of the contact. This crack is assumed to grow perpendicular to the axial fatigue
load direction. The configuration adopted is the same defined in the Sec.2: pad radius 20mm,
Q/fP = 0.51 and σB/p0 = 0.125. In this condition the stick/slip zone size ratio gives c/a = 0.7.
The time varying stress intensity factors and T-stress were computed for different crack sizes. As
a example, the stabilized time history of KI , KII and T for a crack length b = 5µm is reported in
Fig 9. It can be seen that, for this straight crack, the mode I is logically dominant (KI >> KII).

Figure 10 shows the time history of the linear elastic fracture mechanics quantities for the
35µm crack and the yielding surface defined by the function f . In this case, the curve of the
history exceeds the yielding surface, crack growth is then expected.

Fig.11 illustrates the influence of the T -stress on the criterion. Each point in this graph repre-
sents the relative value of the terms containing the T -stress on the criterion (eq.7), for a specific
crack size. It seems clear from such figure that the influence of the T -stress is high for small cracks.
For instance, for a 5µm crack, the terms containing the T stress account for approximately 30% of
the index, and of course, when the crack grows, his effect vanishes progressively.

Fig.12 shows the index 〈d〈f〉〉 for different vertical crack sizes b at different points under the
slip zone. According to this plot, at the trailing edge of the contact (x/a = −1), a 10µm defect is

16



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

necessary to generate plasticity at the tip of the vertical crack and hence to propagate this short
defect under these loading conditions. For the other three cracks, the minimum size necessary for
the crack to grow (observe a positive index) is even higher. To sum up, when a vertical crack is
assumed, the loads involved in this study would require the existence of cracks larger than 10µm
if they were to propagate . Moreover, post failure investigation of the fretting specimens has
revealed inclined cracks, which vary between 100◦ and 115◦. In the following, the effect of the
crack orientation on the growth prediction will be examined.

5.3. Inclined crack.

5.3.1. Path research algorithm.

In the present work, the analysis has been extended with a research of the crack angle maxi-
mizing the criterion of eq.10. The initiation point of the crack is however still assumed to be at
the edge of the contact.

A Python script allows the automatic creation of an Abaqus model, including a crack, and a
post-treatment of the results. The algorithm may be described as follows.

At the first step, a set of models are generated. Each of these models include a short crack
with same size but with a different orientation. Using the time history of the linear elastic fracture
mechanics quantities obtained from computation, the index (Eq.10) is computed for each orienta-
tions. An adaptive multi-step search algorithm detailed by Norberg and Olsson [31] and illustrated
in Fig.13 is used to identify the orientation maximizing the index, and limit at a minimum the
number of model evaluated. If the maximum found is positive, it is assumed that the crack will
grow, and its direction will be the direction tested which maximized the index.

The process is then repeated for a given number of increments, or stopped if the index becomes
negative for all acceptable orientations. The Fig.14 illustrates the first two steps of the procedure.

5.3.2. Results.

This methodology has been applied to the relevant loading configurations observed experimen-
tally (Sec.2):

• Case 1 Q/fP = 0.55 and σB/p0 = 0.136: Specimen brake before 106 cycles,

• Case 2 Q/fP = 0.49 and σB/p0 = 0.121: Specimen survived at 106 cycles but crack arrest
was observed,

• Case 3 Q/fP = 0.45 and σB/p0 = 0.110: Specimen survived at 106 cycles and not crack no
crack initiation was observed,

At the first increment, the orientation of a 5µm crack is analysed. Then the crack size increment
in increased to 20µm, this size increment allow a good agreement between crack path accuracy and
processing time. Note that the crack is still assumed to initiate at the trailing edge of the contact.

As a first observation of the results, Fig.14 presents the results of the angular distribution of
the index at the first two increments for Case 2 loading configuration. As observed in the first part
of this section, the index was null when the 5µm crack is vertical (Angle= 90◦), however, two peaks
with positive values of the index are observed for inclined cracks at 45◦ and 140◦. Those two peaks
present different maximum, indeed, the crack oriented towards the contact zone (140◦) induces a
highest index. At the second increment, the crack path direction remained roughly the same. It
can be noted that the crack orientation estimation is not far from the actual crack path. The time
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history of the linear elastic fracture mechanics quantities are illustrated for this orientation of the
5µm crack in Fig.15, the red part of the curve corresponds to the creation of plasticity at the tip
of the crack.

Figures 16 presents the results of the simulation of the three loading cases. In Fig.17, the paths
predicted for the loading cases 2 and 3 are presented. An example of crack profile observed at the
middle section of the specimen is also given.

For the case 3, the index computed at the first step for all orientations was null. It means
that a initial defect of 5µm is not expected to grow with this loading. When the second loading
case is considered, the model predicts a short crack grow at 140◦. Then the crack path predicted
progressively turns to mode I, which was expected. When the crack reaches a size of 140µm, crack
arrest is predicted.

Indeed, the blue curve in Fig.16 shows a value of the index which increased until 0.8 and then
decreased until 0. This profile is typical from the competition between crack length and stress
gradient in fretting problem.

When the third loading case is considered, the crack profile predicted is very similar, but no
crack arrest is observed. When the crack reaches a size of 200µm, the decrease of the state of stress
is not sufficient and the crack will continue its growth until failure.

After a certain distance, the crack propagation direction computed remains almost constant
to the value 45◦. This result disagrees with the experiential observations, where long cracks show
a propagation in mode I governed by the bulk load. Figure 18 represents the history of KI , KII

and T in a 3D graph. The red surface represents the threshold of the elastic zone defined by the
function f = 0. With such history, the index corresponds to the maximum value of the function f
during the cycle. The iso-f surfaces in blue confirm the preference for the inclined crack.

Now, attention can be directed to the loading ratio observed at the tip of the crack for those
two orientations. For that, the interpenetration of crack faces is allowed. The ratio KImin/KImax

and KIImin/KIImax are given in the Tab.4. The loading ratio at the tip of the crack is significantly
different from one orientation to the other. This may explain why the orientation predicted for
long crack propagation is so far from the orientation expected.

5.4. Comparative assessment.

In order to carry out a comparative analysis, a type of Kitagawa-Takahashi short crack method-
ology previously tried by other authors [18, 35, 34] is now considered. A straight crack initiating
at the trailing edge of the contact was assumed. To compute the ∆KI the distributed dislocation
technique was used [38, 39]. The method requires the computation of the stress field along the
imaginary line of the crack. In this case, a closed form solution was adopted following the well
known procedure described in [36] that combines the Hertz/Mindlin solutions for the calculation
of the tractions and the Muskhelishvilli potentials to workout the stress history at each subsurface
material point.

∆KI computations as a function of the crack length are given in Fig.19 for the previous loading
configurations. They are compared with the Kitagawa-Takahashi and the El Haddad threshold
lines. For all loading configurations, a decrease of the SIF range is observed after 50µm. This
is caused by the severe stress gradient under the contact and was also observed in the T-based
analysis presented previously. For the first loading case (σB/p0 = 0.136Q/fP = 0.55), the straight
crack at the trailing edge of the contact is expected to grow. Under the second loading case
(σB/p0 = 0.121Q/fP = 0.49) this analysis fails to predict the crack arrest observed experimentally.
In the third case considered, the ∆K1 curve meets the Kitagawa-Takahashi threshold in the short
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crack regime, then short crack arrest is estimated (b = 4.8µm). Now, if the El Haddad threshold
is considered, crack arrest is expected for crack of 150µm long.
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Figure 8: Illustration of the FEM modeling.

Figure 9: Stress intensity factor and T-stress evolutions during fretting-fatigue cycling at 5µm below the surface.

Table 4: Loading ratio at the tip of two crack considered at the 20th increment.

Orientation KImin/KImax KIImin/KIImax

90◦ −0.98 0.06

45◦ −0.55 −0.93
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Figure 10: Time history of the linear elastic fracture mechanics quantities for the 35µm crack initiating at the trailing
edge of the contact.
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Figure 11: Relative influence of the T -stress in the criterion defined by the eq.7, for diferent crack size, using the
intergral parameter delta = 1µm.
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Figure 12: Evolution of the index with length b for vertical cracks initiating from different points under the slip zone.
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Figure 13: Schematic of the search algorithm used for finding the maximum value of f . Two refinement steps take
place in the intervals where the extreme value may occur. [31]

Figure 14: Illustration of the two first increments analyses.
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creation of plasticity

Figure 15: History of the linear elastic fracture mechanics quantities for a 5µm crack, inclined at 135◦.
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Figure 16: Index computed using the path reshearch algorithm.
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Figure 17: Crack path predicted for the relevant loading configurations. In red, an example of profile of the crack
surface, here obtained for test 7 at the middle of the contact width.
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Figure 18: 3D representation of the orientation 45◦ and 90◦ analysed after 20 increments (crack size 400µm).
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Figure 19: ∆KI calculated for 3 fretting-fatigue loading configurations and K − T and El Haddad diagram showing
the threshold for crack propagation.
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6. Discussions and conclusions.

A preliminary experimental study was performed to investigate high cycle failure induced by
elastic fretting fatigue cylinder/plane contact for a fixed contact pressure and a range of fatigue
stress and fretting load (Q/B fixed). The threshold loading conditions separating infinite live (106

cycles) from failure was identified. Arrested cracks were found in some of the unbroken specimens.
A novel approach to the prediction of fatigue based on the use of a T -stress based criterion was

described. A method to identify the parameters δ and KIY of this model was presented. These
parameters were nevertheless calibrated for this work based on data collected from the literature
[5][9].

This generalized Von Mises yield criterion was applied to fretting fatigue prediction, and dif-
ferent new representations of the criterion were introduced. It was showed that if a vertical crack
path was assumed, short crack propagation was not observed in any case under the trailing edge of
the contact, while experimentally, the more severe case leads to the failure of the specimen. This
vertical crack assumption was replaced and a path research algorithm developed to predict crack
growth. This method based on a maximization of the criterion proved successful in capturing the
effect of the stress gradient and was able to correctly estimate short crack arrest and also early
growth direction.

On the other hand, one should observe that LEFM requires small scale yielding (SSY) condi-
tions ahead of the crack tip since the stress intensity factor, which characterizes the stress field
in such region and is the key factor within the LEFM framework, was obtained from an elastic
formulation. When SSY conditions prevail, crack growth can be described in terms of Paris law.
For short cracks various researchers have found an anomalous behavior when their growth is de-
scribed in terms of ∆K. For such small cracks, accelerations and retardations in crack speed have
been observed for low values of ∆K in the da/dN vs ∆K diagram. Further, crack growth rates
have been reported to be higher than the ones observed for long cracks in terms of the same ∆K
and ∆Kth is not a material constant but varies with crack size. In fretting fatigue, engineering
approaches, based on LEFM concepts, have been proposed in order to establish a short crack ar-
rest methodology. In these methods the growth of the crack can be described with the mode I
SIF range or with an effective stress intensity range, which is a combination of the mode I and
mode II SIFs [34, 37]. In those works the anomalous short crack behaviour has been captured by
considering that the SIF range threshold is not a material constant but depends on crack size until
a critical length (e.g., El Haddad’s parameter). In the present model, it is not necessary to define
a fictitious crack size do describe such anomalous behavior. The variation of the threshold for ∆K
within the short crack regime can be captured by taking into account the influence of the T-stress.
Moreover, the computation of the critical distortional elastic energy generates mix mode depen-
dence implicitly. The description of the criterion based on the concept of a two parameter (K and
T ) allows the description of the stress/strain field in a region larger than the K dominated zone.
This is essential to deal with the small crack problem where the K dominated zone is extremely
reduced. Nevertheless, it should be kept in mind that, as the other K based short crack approaches
available, the model proposed here has to be seen as an engineering solution as it is not clear that
SSY are attended. However, the successful estimates of short crack arrest obtained here seems to
show somehow that the model is capable to capture the underlying physics of the phenomenon.

For larger crack sizes, the application of the proposed methodology have shown a unexpected
comportment. Indeed, when the crack reaches a size around 140µm, the crack path predicted turns
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to a direction out side the contact zone, which is not in accordance with the actual path, where
crack directions are usually observed to be perpendicular to the axial main fatigue load direction
(mode I dominant). Indeed, the maximum of the criterion is observed in a plane inclined at 45◦,
which reflects a mode II dominance.

This failure of the proposed model to estimate long crack propagation may come from the
formulation the criterion itself, or/and from assumptions used to simplify the numerical modeling.
It is well known that the threshold stress intensity factor depends of the loading ratio [14]. Indeed,
when plasticity occurs, if the plastic zone is confined, residual stresses arise in the vicinity of
the crack front. These constraints produce a shielding effect [32], which is superimposed on the
applied load. This phenomenon, also called displacement of the elastic domain, is not included
in the current formulation of the criterion. A enhanced version of the criterion would include the
shift of the center of the elasticity domain KX = (KX

I ,K
X
II), so that Eq.7 could be re-written as

Eq.12.

f =

(
KI −KX

I

KIY

)2

+

(
KII −KX

II

KIIY

)2

+

(
T

TY

)2

+ f1
KI −KX

I

KIY

T

TY
− 1 = 0 (12)

This effect was studied by Fremy [33], and gave good results for long cracks, however its application
to the short crack regime and a correction for the T-stress terms have not been tried yet. Since
the load ratio changes at the crack tip depending on the crack growth orientation (Tab.4), it seems
reasonable to expect that a enhanced estimate of crack path can be obtained by including the
displacement of the elastic domain in the proposed model.

Another likely reason of the prediction failure for long crack is the modeling of the crack
closure. In the current finite elements modeling, the fracture roughness is not considered; the
crack is modeled as a number of straight planes with a Coulomb interaction between them. In this
case, the tangential stress between fracture faces is proportional to the pressure between the crack
faces and sliding may occur. However it is well known that crack roughness limits considerably
the shear stress transmitted to the crack tip when crack closure happens. Hence, the real mode II
stress intensity factor KII (seen at the tip of the crack) may be considerably smaller than the one
computed here. This drop of KII , which is proportional to the crack length, is sometimes used to
explain the transition between the different stages of the crack growth. Indeed, crack initiation is
generally mode II dominant, however after a certain length of the crack, the shear resistance of
crack faces is such that propagation will be directed by the mode I. In fretting fatigue, the constant
pressure of the pad tends to close the crack during a non-negligible period of the cycle, even for
small positive values of the bulk fatigue load. The non consideration of the roughness induced
crack closure may as well explains the unexpected propagation in mode II of long cracks in this
proposition.
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