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Résumé :  
 

La simulation des opérations marines, en particulier des opérations de remontée ou de 
descente de colis, nécessite l’utilisation d’une théorie de dynamique multicorps pour les différents 
corps mis en jeu (bateau, câble et colis), d’une théorie hydrodynamique consistante et d’une 
modélisation des câbles. Ce papier présente une nouvelle approche pour simuler ce type d’opération 
basée sur le couplage entre une théorie multicorps et une théorie hydrodynamique. 

La théorie multicorps utilise un formalisme issu de la robotique et un algorithme de 
dynamique directe adapté aux arbres cinématiques pour résoudre les équations de Newton-Euler. La 
modélisation des câbles suit le même procédé. La flexion et la torsion dans le câble ne sont pas prises 
en compte. Cette approche multicorps est comparée à  la théorie câble dite « lumped mass ». 

Les efforts hydrodynamiques sont calculés en supposant un fluide parfait et en faisant une 
hypothèse de type « weak-scatterer ». Cette hypothèse suppose que la composante perturbée du 
potentiel de vitesse du fluide est petite devant sa composante incidente et que les conditions limites de 
surface libre sont linéarisées par rapport à l’élévation de la surface libre incidente. Cet outil est 
couplé au solveur mécanique. Cette nouvelle stratégie de couplage est présentée dans ce papier. 

 
Abstract:  
 

The simulation of marine operations, in particular of lifting or lowering operations, requires 
the modeling of the whole system (ship, cable and payload) along with a theory of multibody 
dynamics, an appropriate hydrodynamic theory and cable’s modeling. This paper presents a new 
approach to achieve this type of simulation based on a coupling between a multibody theory and a 
hydrodynamic one. 
 The multibody theory uses a robotics formalism and a direct dynamic algorithm based on 
recursive techniques for kinematic trees to solve the Newton-Euler equations. The cable modeling is 
based on the same multibody approach. There is neither bending nor torsion effect. This model is 
compared to the classical lumped mass theory. 
 Hydrodynamic loads are computed using a weakly nonlinear potential flow solver based on 
the weak-scatterer hypothesis. This approximation assumes the perturbation component of the fluid 
velocity potential is small compared to the incident one and the free surface boundary conditions are 
linearized with respect to the incident wave elevation. This solver is coupled with the mechanical one 
in order to perform the simulation.  This new strategy to manage the coupling is presented in this 
paper. 
Keywords: marine operations, coupling, weak-scatterer, multibody, cable 
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1 Introduction 
 
With the development of the offshore wind industry, the simulation of the marine operations for the 
installation of wind turbines is required. This paper focuses on the operations of lowering and lifting 
of a payload. DNV published some norms in this field [1]. They are based on a simplified approach of 
the problem (characteristic quantities, regular design wave). Regarding the theory used in the 
commercial tools as Orcaflex [2] or Deeplines [3] for the modeling of the operations of lowering or 
lifting, they use a linear potential flow solver which assumes small amplitude motions of both the ship 
and the payload and cannot solve the unsteady hydrodynamic loads. But their multibody and cable 
solvers are consistent. On the other side, Hannan [4] developed a model based on a fully nonlinear 
potential flow solver but without an appropriate multibody or cable solver. The study presented in this 
paper wishes to have the best for the both approaches: an appropriate multibody/cable solver and a 
consistent hydrodynamic solver. To reach this objective, a weakly nonlinear potential flow solver is 
coupled with a multibody mechanical solver. Doing so, the long term goal is to quantify the interest of 
using this hydrodynamic solver in this kind of marine operation. 
 

2 Multibody theory 
 
The multibody offshore numerical tool used in this paper is InWave [5] developed by Innosea and 
Ecole Centrale de Nantes. It performs time domain simulations of kinematic trees in using a direct 
dynamics algorithm to solve the Newton-Euler equations. A kinematic tree is a set of interconnected 
bodies where each body has only one ancestor and potentially several successors. The base body (the 
only one without ancestor) of the multibody system is floating in six degrees of freedom (dof). 
Between a body (except the base) and its ancestor, there is a joint, revolute or prismatic, granting for a 
single degree of freedom. This multibody approach uses relative coordinates and is parameterized 
using the modified Denavit-Hartenberg parameters [6]. 

 

Figure ͳ: Kinematic tree ȋblue = bodies, red = jointsȌ 

 
The Lagrangian formulation of the Newton-Euler equations to solve is: 

 ቀ𝟔×𝜞 ቁ = 𝑯( 𝑽ሶ  𝒒ሷ ) +  (1) 

Where 𝜞 is the vector of the torques (or forces) around (or along) the revolute (or prismatic) joints, 𝑯 = (𝑯 𝑯𝑯 𝑯)  the generalized inertia matrix,  = ()  the vector of the inertia and external 

forces, 𝑽ሶ    is the acceleration of the floating base expressed in its own frame and 𝒒ሷ  the articular 
acceleration of each joint. By definition, a direct dynamics algorithm means 𝚪,  and 𝑯 are known 
whereas 𝑽ሶ    and 𝒒ሷ  are unknown. 

2



23ème Congrès Français de Mécanique                              Lille, 28 Août au 1er Septembre 2017 
 

The size of the system is the number of joints plus the dof of the base. The state vector is: 
ࢅ  = [𝜼ࢀ 𝝂ࢀ 𝒒ࢀ 𝒒ሶ  (2)  ்[ࢀ

Where 𝜼 is the position of the base in the inertial frame, 𝝂 is the velocity of the base with respect to 
the inertial frame and expressed in the frame of the base, 𝒒 is the vector of the articular positions and 𝒒ሶ  is the vector of the articular velocities. 
 
Rongère [7] presented a first approach to simulate the offshore structures and solve the equation (1). 
The algorithm presented in [7] was similar to the Articulated Body Algorithm of Featherstone [8]. The 
inversion of the matrix 𝑯 was not required. An extension of this work was made by Rongère [9] to 
take into account the hydrodynamic interactions in using the Composite Rigid Body Algorithm [8]. 
This modification involves the inversion of 𝑯  and is more suitable to deal with the linear 
hydrodynamic added mass coefficients. The following notations come from [7]. 
 
The first main step of this latter algorithm is the computation of the following kinematic and dynamic 
quantities for each body ݆:  

 Transformation matrices ࢀ  ; 
 Velocities in the body frames; 
 Coriolis accelerations ࢽ  ; 
 External loads and centrifugal effects ࢼ  . 

 
The motion equation of the system made of the body ݆ and all its successors (which therefore has no 
successor) is: 

 𝑭   =    𝑽ሶ  +  ࢼ    (3) 
Where    and ࢼ   are the generalized mass matrix and the generalized load vector of the composite 
body ݆. 𝑭   is the internal force and moment across the joint ݆, connecting the body ݆ and its unique 
ancestor. 𝑽ሶ   is the acceleration of the body ݆ expressed in its frame. 
The aim of the second main step is the computation for each body of 𝒄   and ࢼ𝒄  : 

 

  =    + ∑  ࢀ ்     / ሺሻ=ࢀ  

 ࢼ =  ࢼ  + ∑  ࢀ ் [     ࢽ  +  ࢼ  ] / ሺሻ=  
(4) 

 
Finally, the last step is to build of the matrix 𝑯 and the vector . The vector 𝜞 depends on the type of 
the internal loads which are required in the multibody system. 
 
The generalized inertia matrix 𝑯 is defined by: 

 

𝑯 =   ሺ𝑯ሻ݈ܿ  =  ࢀ ்    𝒂   ݂ݎ ݇ ∈ [|ͳ, ݊|] 𝑯 = 𝑯் (ሺ𝑯ሻ݈ܿ)ݓݎ   = 𝒂  ்     ࢀ ் 𝒂    ݂ݎ ሺ݆, ݇ሻ ∈ [|ͳ, ݊|]ଶ ܿݑݏℎ 𝑎ݏ ݇ ≥ ݆ (5) 

 
And the vector  is defined by: 

  =  ࢼ +∑  ࢀ ்(  ࢼ +     ࢽ )
=ଵ  (6) 
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ሻሺݓݎ = 𝒂  ் ቌ   ∑  ࢀ  ࢽ 
= +  ࢼ |𝒒ሷ =𝑛×1ቍ ݆ ݎ݂  ∈ [|ͳ, ݊|] 

 
Where ݊ is the number of joints and 𝒂   the axis of the joint ݆ expressed in the body ݆’s frame. 
Finally the acceleration can be computed by the inversion of the matrix 𝑯 and the state vector time-
stepped in using a RK4 scheme.  
 

3 Cable modeling using a multibody theory 
 
In an operation of lifting or lowering, a cable is necessary. Several cable libraries are available 
(Map++ [10], MoorDyn [11], etc.). It is easier to use InWave in order to simulate cables rather than 
using an external program which would not be well adapted to the multibody formalism presented in 
2. Consequently we want to compare the cable modeling obtained with a multibody approach to a 
classically cable theory in order to validate this approach. Masciola [12] did a survey of the different 
time-domain cable theories which are commonly used: lumped mass model (low and high order), 
finite-element model and finite-difference model. In another paper, Masciola [13] presented the quasi-
static theory. A simple but consistent cable model to compare with is to use a low-order lumped mass 
theory. Indeed firstly the quasi-static theory neglects the dynamical effects and secondly in a 
lowering/lifting operation the cable stays mainly vertical so the effect of bending and torsion effects 
are not predominant. 
The details of the low order lumped mass model can be found in [14] and [15]. 
 
In the low order lumped mass model, a cable is discretized into massless points. Each point has three 
degree of freedom. To match this description, the multibody theory requires three bodies (of which 
two are massless) to ensure the three degrees of freedom. Thus three joints are used: two revolutes and 
one prismatic. Internal loads are also present in the lumped mass model with axial tension and axial 
damping. For a cable element ݆, the components of the vector 𝜞 of the internal loads become: 
 

 

Γଷ−ଶ = Ͳ Γଷ−ଵ = Ͳ  

Γଷ = ݑ𝐿ܣܧ−} ଷݍ) + 𝐿ݑ) − ݑ𝐿ܣܥ ,ሶଷݍ |ଷݍ| ≥ 𝐿ܣܥ−ݑ𝐿ݑ ,ሶଷݍ |ଷݍ| < 𝐿ݑ  
(7) 

 
Where Γଷ−ଶ  is the internal load of the first revolute joint, Γଷ−ଵof the second one and Γଷ  of the 
prismatic joint. 𝐿ݑ is the unstretched length, ܧ the Young modulus, ܣ the area of the section, ܥ the 
damping coefficient, ݍଷ the size of the cable element and ݍሶଷ the axial velocity. It is assumed there is 
no compression which explained the condition on ݍଷ. 
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The two approaches (multibody and low-order lumped mass) are used to model a cable of three 
elements.  
The following table summarizes the cable characteristics of the test case. 
 

Linear density ሺ݇݃.݉−ଵሻ 100 
Diameter ሺ݉ሻ 0.0332 

Young modulus ሺ𝑃𝑎ሻ 7.75e7 
Damping coefficient ሺ𝑁.  ଵሻ 1e5−݉.ݏ

Unstretched length ሺ݉ሻ 10 
Position of the upper node ሺ݉ሻ (0.0 ; 0.0 ; 20) 

Position of lower node ሺ݉ሻ (-2.0 ; 0.0 ; 10) 

Table ͳ: Cable characteristics 

 
The time step is 0.001 s and the duration of the simulation is 10 s. 
 
The figure 2 presents the length of the third cable element for the two models. 

 

Figure ʹ: Length of the third cable element in using a low order lumped mass theory ȋredȌ and InWave ȋbleuȌ 

 
Hence the two approaches give the same results, but not with the same CPU time. A lumped mass 
model has only one loop over the cable elements whereas the multibody theory has three loops over 
the multibody system. Moreover, three bodies are necessary to model a cable element. Consequently 
the multibody approach is more time-consuming than the low-order lumped mass model. A way to 
speed up the multibody approach is to walk along the number of cable elements instead of the number 
of bodies. The multibody equations previously presented have to be solved three at a time.  
 
Equation (4), (5) and (6) become: 
 

 
ଷሺ−ଵሻ ଷሺ−ଵሻ = ଷሺ−ଵሻ  ଷሺ−ଵሻ + ଷ ࢀ ଷሺ−ଵሻ் ଷ ଷ ଷሺ−ଵሻ ଷࢀ ଷሺ−ଵሻ ଷሺ−ଵሻࢼ   = ଷሺ−ଵሻ ଷሺ−ଵሻࢼ + ଷ ࢀ ଷሺ−ଵሻ் [ ଷ  ଷ ( ଷܶ−ଶ ଷ ଷ−ଶ ଷ−ଶࢽ + ଷ−ଵ ଷࢀ ଷ−ଵ ଷ−ଵࢽ + ଷ ଷࢽ ) + ଷ ଷࢼ ] (8) 

 𝑯 =    (9) 
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ሺ𝑯ଵଶሻ[ଷ−ଶ,ଷ−ଵ,ଷ]݈ܿ  = ଷ ࢀ ் ଷ  ଷ ݇ ݎ݂ ࡼ ∈ [|ͳ, 𝑁௧௦|] 𝑯 = 𝑯் [ଷ−ଶ,ଷ−ଵ,ଷ]ݓݎ   ቀ݈ܿ[ଷ−ଶ,ଷ−ଵ,ଷ]ሺ𝑯ሻቁ = ்ࡼ ଷ  ଷ ଷ ࢀ ଷ் ࡼ ,ሺ݆ ݎ݂   ݇ሻ ∈ [|ͳ, 𝑁௧௦|]ଶ ܿݑݏℎ 𝑎ݏ ݇ ≥ ݆ 

 

 

 =  ࢼ +∑  ࢀ ்ሺ  ࢼ +     ࢽ ሻ
=ଵ  

ሻሺ[ଷ−ଶ,ଷ−ଵ,ଷ]ݓݎ = ்ࡼ ቌ ଷ  ଷ ∑ ଷ ଷࢀ ሺ ଷ−ଶ ଷࢀ ଷ−ଶ ଷ−ଶࢽ + ଷ−ଵ ଷࢀ ଷ−ଵ ଷ−ଵࢽ + ଷ ଷࢽ ሻ
= + ଷ ଷࢼ ቍ ݆ ݎ݂  ∈ [|ͳ, 𝑁௧௦|] (10) 

Where ࡼ is a 6 × 3 matrix: ࡼ = ( ଷ−ଶ ଷࢀ 𝒂 ଷ−ଶ ଷ−ଶ ଷ−ଵ ଷࢀ 𝒂 ଷ−ଵ ଷ−ଵ 𝒂 ଷ ଷ) 
 
In using this method with the last test case the CPU time was reduced of around 60%. This result is 
logical because the number of bodies was divided by three. 
 

4 Lowering or lifting a payload 
 
In the last section, the unstretched length of each cable element was kept constant during the 
simulation. In case of lowering or lifting a payload, the length of the cable becomes variable. This 
effect has to be incorporated. Following [16] and [17], a method to do so is to modify the unstretched 
length of the first cable element: 

 𝐿ݑଵ௧ = 𝐿ݑଵ௧−ௗ௧ + .ݒ  (11)  ݐ݀
Where  𝐿ݑଵ௧  is the unstretched length of the first cable element at time ݒ ,ݐ is the constant lowering 
velocity, positive for a lowering operation, negative for a lifting operation and ݀ݐ is the time step. 
 
This has an impact on the internal loads of the first cable element: 
 

 Γଷ = {  
  − ଵ௧ݑ𝐿ܣܧ ሺݍଷ + 𝐿ݑଵ௧ሻ − ଵ௧ݑ𝐿ܣܥ ሺݍሶଷ + ,ሻݒ |ଷݍ| ≥ 𝐿ݑଵ௧− ଵ௧ݑ𝐿ܣܥ ሺݍሶଷ + ,ሻݒ |ଷݍ| < 𝐿ݑଵ௧  (12) 

 
During an operation of lowering, respectively lifting, when the length of the first element is too long, 
respectively too short, this first element is divided into two new elements, respectively the first 
element is merged with the second one. That involves adding, respectively deleting, one element in the 
cable. The criterion on the length of the first cable element is: 
 

 𝐿ݑଵ = 𝛼. 𝐿(13)  ݑ 
 
A value of 1.5 is chosen for 𝛼 in case of lowering operations, 0.5 for the lifting operations. 
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5 Weak-scatterer theory and coupling with the multibody 

theory 

In case of a lowering or lifting operation, a payload goes through the free surface. Thus the submerged 

part of the payload is deeply modified and some unsteady effects due to the hydrodynamic interaction 

between the ship and the payload appear. These phenomena prevent the use of a classical 1
st
 order 

linear potential flow solver, this method being limited to the hypothesis of small amplitude motions. 

Regarding the second order linear potential flow approximation, the second order terms are taken into 

account but the free surface boundary equations stay written on 𝑧 = Ͳ. The small amplitude motion 

hypothesis has still to be valid.  

Letournel [18] has developed a potential flow solver based on the weak-scatterer hypothesis for 

submerged bodies. Doing so, the velocity potential and the free surface elevation are splitted into two 

parts the incident and the scattered (perturbation) components: 𝜙 = 𝜙ௗ௧ + 𝜙௧௨௧𝜂 = 𝜂ௗ௧ + 𝜂௧௨௧ (14)

The weak-scatterer hypothesis assumes the perturbation part is small compared to the incident one. 𝜙ௗ௧ ≪ 𝜙௧௨௧𝜂ௗ௧ ≪ 𝜂௧௨௧ (15)

The free surface boundary conditions are linearized on the incident wave elevation. There is no 

condition on the amplitude of the motion of the floater, while the body condition is written on its exact 

position (Body exact approximation). This numerical tool has been extended to piercing bodies by 

Chauvigné [19].

Dividing

Figure ͵: Sketch of the addition of a new cable element
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As explained in [18] and [19], in case of a free body motion, the time-differentiation of the velocity 
potential is unknown. This quantity is computed from a second boundary value problem (BVP) in 
using the implicit condition method. The second BVP is constituted of three equations: 

 The integral equation (Laplace equation on the velocity potential); 
 The body condition (slip condition on the surface of the body); 
 The motion equation. 

 
To simulate a marine operation, the mechanical solver and the hydrodynamic solver has to be coupled. 
Different coupling strategies are available. Jonkman [20] and Yvin [21] listed the important families 
of coupling strategies.  

 

Figure Ͷ: Different coupling methods 

 
Monolithic approach is present when the code is made of one piece, with only one single equation 
representing the system, one time integrator and one spatial mesh. Otherwise, when the system can be 
decomposed into several subsystems with input-output relationship, it is a partitioned approach. A 
tight coupling is obtained when only one equation of motion represents all the subsystems (coupling 
equation). A loose coupling is present when each subprogram has its own time-stepper. 
The mechanical solver and the hydrodynamic solver presented above are independent so a monolithic 
approach cannot be chosen. Contrary to a loose coupling, with a tight coupling, all quantities are time-
stepped synchronously. This fact ensures the robustness and the accuracy of the coupling strategy and 
therefore larger time steps can be used. Thus a tight coupling is selected. 

 

Figure ͷ: Tight partitioned approach for the coupling of the weak-scatterer code with InWave 
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In coupling the weak scatterer code with the multibody solver (represented by the equation (1)), 
modifications appear on both the body condition and the motion equation of the second BVP. The 
coupling equation will be exposed in case of a single floater considered as the base of the multibody 
system. 
 
The hydrodynamic force 𝑭  𝑊ௌ𝐶  in the inertial frame is obtained by discretization of the Bernoulli 
equation: 

 𝑭  𝑊ௌ𝐶 =  ࢀ 𝝓௧ሺܤሻ + ℎ ࢀ   (16) 
Where 𝝓௧ሺܤሻ is the time-differentiation of the velocity potential on the body surface,  ࢀ  and ࢀℎ   
represent the other discretized terms of the Bernoulli equation. 
In the multibody motion equation is written in the frame of each body, consequently equation (16) has 
to be written in the frame of the base. 

 𝑭  𝑊ௌ𝐶 = (  ࡾ ××  ࡾ ) 𝑭  𝑊ௌ𝐶 (17) 

Where ࡾ   is the rotation matrix between the inertial frame and the base frame. 
Finally the Newton’s second law for the multibody system is: 
 

 ቀ𝟔×𝜞 ቁ = (𝑯 𝑯𝑯 𝑯) ( 𝑽ሶ  𝐪ሷ ) + () − ቆ 𝑭  𝑊ௌ𝐶࢙࢚ࡶ×ቇ (18) 

The body condition is: 
 𝝓௧ሺܤሻ = .ࡷ 𝜼ሷ  + ′ࡽ   (19) 

Where 𝝓௧ሺܤሻ is the normal derivative of 𝝓௧ሺܤሻ, 𝜼ሷ  is the acceleration of the base in the inertial 
frame, ࡷ and ࡽ′  are the discretized terms of the body condition. 
 
According to the equation (1), it is necessary to express 𝜼ሷ  in function of 𝑽ሶ   . As explained in [7] 
there is: 

 𝜼ሶ  =  ࡶ 𝝂  (20) 
With ࡶ   the transformation matrix between 𝜼ሶ  and 𝝂. 
So the time-differentiation of this relation becomes: 

 𝜼ሷ  =  ࡶ ሶ 𝝂 +  ࡶ 𝝂ሶ   (21) 
From [5] there is also: 

 𝝂ሶ = 𝑽ሶ   − (ܵሺ 𝝎ሻ   ×࢜ )  (22) 

Where S is the vector product matrix such as ܵሺ࢛ሻ࢜ = ࢛ × 𝝎  ,࢜  and ࢜   are the angular and linear 
velocities of the body in the frame of the body. 
 
Hence: 

 𝝓௧ሺܤሻ = .ࡷ  ࡶ 𝑽ሶ   + .ࡷ [  ࡶ ሶ 𝜈 −  ࡶ (ܵሺ 𝝎ሻ   ×ݒ )] + ′ࡽ   (23) 

 
The integral equation is unchanged: 

:ሺࡿ  , .ሻܵܨ 𝝓௧ሺܵܨሻ − :ሺࡰ , ሻܤሻ𝝓௧ሺܤ − :ሺࡰ , ሻݐݔܧሻ𝝓௧ሺݐݔܧ + :ሺࡿ , ሻܤሻ𝝓௧ሺܤ = :ሺࡰ , ሻܵܨሻ𝝓௧ሺܵܨ − :ሺࡿ ,  ሻ (24)ݐݔܧሻ𝝓௧ሺݐݔܧ
 
Where ܵܥ and ܦܥ are the matrices of the influence coefficients. ܤ ,ܵܨ and ݐݔܧ represents the part of 
the influence coefficient or 𝝓௧ or 𝝓௧ dedicated to the free surface, the floater and the tank. 
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The final system or coupling equation is ࢄ =  :with 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
With 𝑁 the total number of nodes in the mesh, 𝑁𝑥௧ the number of nodes for the tank and 𝑁𝐹ௌ the 
number of nodes for the free surface. 
 
This coupling equation would stay the same in case of a fully non-linear potential flow solver. 
 

6 Numerical results 
 
6.1 Coupling verification on a WEC test case 
 
This coupling is applied to simulate the motion of a wave energy converter (WEC) of type CETO. It is 
a sphere of radius 3.5 m, the position of the center of gravity is 7 m below the free surface and the 
water depth is 20 m. The mass of the sphere is its displacement. The power take-off is made of a 
spring-damper system. The stiffness of the spring is 302478.6 N.m-1, the unstretched length is 13 m 
and the damping coefficient is 50 000 kg.s-1. The sphere can only move in heave. The incident wave is 
a regular wave of amplitude 1.25 m and wave frequency 1.0 rad.s-1. 

 

Figure : Sketch of a CETO system 
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Figure : Mesh of the tank, the free surface and the sphere. 

 

 

Figure ͺ: Comparison of the heave motion for the WSC code and the coupling InWave-WSC 

 
The figure 9 shows the responses of the coupling, between InWave and the weak-scatterer, and the 
weak-scatterer code only are the same. 
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6.2 Academic test case: a floater, a cable and a payload 
 
This coupling is now applied on an academic test case with a floater, a cable and a payload. A floating 
cylinder of radius 0.2 m and length 1 m only moves in surge and is linked to the center of the tank by a 
spring of stiffness 1990 N.m-1. The mass of the cylinder is 64.4 kg. A crane is fixed to this floater 
with, at the other extremity, a cable made of 3 elements. The Young modulus is 77.5e6 Pa, the 
damping coefficient is 100 Pa.s, the cable linear density is 2 kg.m-1, and the unstretched length of each 
element is 0.5 m. At the extremity of the cable free to move, an extra mass of 5 kg is added (payload). 
Thus the total mass of the system is 74.5 kg. At t = 0 s the cable is vertical at the equilibrium. This 
equilibrium was obtained in using the multibody solver presented in 3. 
 

Element Size (m) 
1 (crane) 0.50073 

2 0.50058 
3 (payload) 0.50044 

Table ʹ: Size of each cable element at t = Ͳ s 

  
A regular wave of amplitude 0.05 m and wave frequency 3.14 rad.s-1 is generated. 
 

  

Figure ͻ: Mesh of the tank, the free surface, the floater and the cable 
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Figure ͳͲ: Surge motion of the cylinder 

 
 

 

Figure ͳͳ: Rotation of the first cable element with respect to the crane ȋtopȌ and length of the third element 
ȋbottomȌ 
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Figure ͳʹ: Mesh at t = ʹͲ.Ͷ s 

 
Thus, the hydrodynamic loads on the floater are propagated from the cylinder to the cable and the 
payload and generate their motion. In return, the presence of the cable and the payload modifies the 
motion of the cylinder. 
 

 

Figure ͳ͵: Motion of the cylinder only ȋredȌ and the cylinder + the cable + the payload ȋblueȌ 
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On the figure 13, the surge motion of the whole system (cylinder, cable and the payload) is plotted 
with the motion of the cylinder only with the same total mass (74.5 kg). Thus the presence of the cable 
and the payload decreases the amplitude of the motion of the cylinder. The frequency of the response 
stays the same in the both cases. 
 

7 Conclusion 
 
In this paper, a new approach for the numerical simulation of the lifting and lowering operations was 
presented. It is based on the development and the adaptation of the Composite Rigid Body Algorithm 
for the mechanical solver and on a potential flow hypothesis with a weak-scatterer approximation for 
the hydrodynamic solver. The cable is simulated with the multibody solver. Attention is paid to the 
cable formalism to reduce the number of iterations and thus computation time. Finally the two solvers 
are coupled with a tight coupling strategy. A test case with a CETO wave energy converter has proved 
the validity of the coupling equation presented. An academic test case of a marine operation with a 
floater, a cable and a payload has been done. 
This coupling needs to be deeply validated and extended to the cases where the floater is not at the 
root of the multibody system and when there are several floaters. The interest of the weak-scatterer 
approach has to be quantified in comparison to the numerical tools using a classical linear potential 
flow solver. 
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