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Acoustic characterization of a nonlinear vibroacoustic
absorber at low frequencies and high sound levels

A. Chauvin, M. Monteil, S. Bellizzi, R. Côte∗, Ph. Herzog, M. Pachebat

Aix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, FRANCE

Abstract

A nonlinear vibroacoustic absorber (Nonlinear Energy Sink: NES), involving a clamped
thin membrane made in Latex, is assessed in the acoustic domain. This NES is here
considered as an one-port acoustic system, analyzed at low frequencies and for increasing
excitation levels. This dynamic and frequency range requires a suitable experimental
technique, which is presented first. It involves a specific impedance tube able to deal
with samples of sufficient size, and reaching high sound levels with a guaranteed linear
response thank’s to a specific acoustic source. The identification method presented here
requires a single pressure measurement, and is calibrated from a set of known acoustic
loads. The NES reflection coefficient is then estimated at increasing source levels, showing
its strong level dependency. This is presented as a mean to understand energy dissipation.
The results of the experimental tests are first compared to a nonlinear viscoelastic model
of the membrane absorber. In a second step, a family of Helmholtz resonator is identified
from the measurements, allowing a parametric description of the NES behavior over a
wide range of levels.

Keywords: Passive Absorber, Acoustic Impedance Measurement, Impedance Tube,
High Level, Low Frequency

1. Introduction

Nonlinear vibroacoustic absorbers are passive devices dedicated to noise reduction at
low frequencies. Such devices consist in a thin structure submitted to large deformations,
which exhibits non linear resonances used to absorb sound energy. Such a structure is a
thin viscoelastic membrane in [1], whereas in [2] the diaphram of a loudspeaker without
motor assembly is used. This kind of device takes advantage of a phenomenon called
“Targeted Energy Transfer” or “Energy Pumping”, due to the coupling of the nonlinear
resonance of the absorber with the acoustic field that has to be reduced. It is described
in detail in [3] in terms of resonance capture and nonlinear modes showing an irreversible
energy transfer from the acoustic medium toward the absorber, the energy being thus
dissipated within the absorber. In the literature, such a device is often designated as
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a “Nonlinear Energy Sink” (NES). Nonlinear vibroacoustic absorbers have shown their
ability to reduce sound especially at low frequencies range and high enough sound field
levels. They may thus overcome some limitations of classical devices such as porous
materials, Helmholtz resonators, perforated plates [1, 2, 4, 5, 6].

In these early papers, the nonlinear behavior of the vibroacoustic absorbers was mod-
elled, using nonlinear plate equations of the Von-Kármán type for the thin structure,
coupled with the acoustic medium through an impedance boundary condition. In addi-
tion to these models, experiments were based on vibration measurements focused on the
mechanical NES behavior. Conversely, the present paper focuses on the NES considered
as an acoustic device with desirable absorbing properties. Dealing with low frequencies,
it uses an approach common to the characterization of other kinds of absorbers, i.e. a
cylindrical tube connecting a sound source to the NES. At the considered frequencies,
plane waves may safely be assumed into the tube, so the NES may be considered as a
single port acoustic device.

A review about linear impedance measurements can be found in [7]. The most
employed method is the Two Microphone Method (TMM). It was initially developed
by Seybert and Ross [8] and expanded by Chung and Blaser using transfer functions
[9, 10]. Abom and Boden [11] later reviewed different implementations of this method,
the most usual being standardized as ISO 10354-2. Basically, it involves two microphones
placed between the sample and the source, their relative calibration requiring them to
be switched. The microphones spacing must be adapted to the targeted frequency band,
which becomes problematic when dealing with wide frequency ranges. An improvement
of the calibration method, using three loads, was later proposed by Gibiat and Laloë [12].
Recently, Boonen et al. [13] proposed a method to deal with high impedance magnitudes
over a wide frequency range : the calibration is then again performed by measuring
several different acoustic loads instead of switching the microphones.

In our study, the absorber is essentially nonlinear and its absorbing properties have
to be dug out at low frequencies, under controlled high excitation levels. No standard
equipment is available to deal with this need, so we built an impedance tube (thereafter
named “Short Kundt’s Tube”, i.e. SKT) able to reach very high levels at low frequencies
(typically several hundreds of Pascals between 10 and 200 Hz). The measurement of the
acoustic characteristics of the absorber device are obtained through an original method
inspired from the indirect source characterization methods proposed in [14, 15, 16]. A
single microphone is needed, as the source is first characterized using different known
acoustic loads. An “equivalent impedance” and the apparent reflection coefficient of the
NES are then deduced from this single pressure measurement.

The SKT is named “short” because it is shorter than should be a Kundt’s tube
according to ISO 10354-2. A single microphone method can use a tube as short as
possible with respect to the plane waves approximation. Such a short device is easy
to move and occupies a small area. With this setup we expect to reduce errors due to
thermal gradient and instabilities along the tube, and we expect to reject the source
resonances above the measurement range, as shown in this article.

The structure of this paper is as follows. Section 2 presents the experimental set-up
and the identification method allowing to estimate the reflection coefficient of a device
under study (DUT). Section 3 applies this method to the estimation of the reflection
coefficient of a sample nonlinear absorber, and its measurements are then compared to
an analytic model previously published (Section 3.3) and to a set of equivalent resonators
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(Section 3.4).
In this paper, all quantities, unless otherwise stated, will be considered in the fre-

quency domain, assuming a e+jωt temporal dependence.

2. Measurement method

Figure 1: Scheme of (a) the experimental set-up and (b) the equivalent electroacoustic circuit of the
one-microphone identification method.

2.1. Basic principle

Fig. 1(a) presents the acoustical scheme of the set-up. It is made of a sound source
(controlled by a voltage U) and a sample (or DUT), connected through a tubular section
of minimal length (hence the name “Short” Kundt’s Tube). The source must be linear
over the full dynamic range, and therefore features several driver units (only two are
shown in Fig. 1(a)). The left hand side of the tube is closed next to the source, and
the DUT is mounted on the right hand side. A high pressure microphone is positioned
on the axis of the tube, in the measurement plane separating the source from the DUT
which is taken as the origin for the x-axis.

The DUT is characterized by an equivalent impedance ZT, which is defined as the
ratio of the fundamental components of the spectra of the pressure and the volume
velocity, both considered over the tube section in the measurement plane. Plane waves
are assumed along the cylindrical part of the system, at sufficient distances from the
source and the DUT: the measurement plane is distant at least of the magnitude of one
tube diameter from the loudspeaker connectors, and one membrane diameter from the
sample membrane. Tests were made with a 0.8 m long extension of the tube between the
DUT and the microphone, and no significant difference was noticed between the results.
The local pressure P measured by the microphone is thus considered as a good estimate
of the pressure averaged over the measurement section. The local volume velocity is
not measured, but is indirectly obtained through the setup calibration. When the DUT
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is nonlinear, ZT corresponds to a linear approximation of the relationship between the
pressure and volume velocity. In this case, ZT is an indicator depending on the DUT,
obviously, and depending also of the conditions of the experiment (i.e. U and the source
frequency content).

The source is considered as linear and time-invariant, so it can be represented us-
ing the Norton equivalence by the electro-acoustic scheme shown in Fig. 1(b). It is
characterized by its impedance ZS and its volume velocity Qa. Equivalently, it may be
characterized by Zs and the transfer function Hae between the acoustic volume velocity
Qa and the control voltage U , defined as Qa = Hae U . The equivalent impedance Z
loading the volume velocity source is therefore :

Z =
ZTZs

ZT + Zs
. (1)

Considering the transfer function Hm between the control voltage U of the source
and the acoustic pressure P at the microphone, Eq. (1) reduces to :

Hm =

(
1

Zs
+

1

ZT

)−1
Hae (2)

and the impedance ZT and the reflection coefficient RT of the DUT can be expressed
as :

ZT =
HmZs

HaeZs −Hm
and RT =

HmZs − Zc(ZsHae −Hm)

HmZs + Zc(ZsHae −Hm)
(3)

where Zc = ρc/S is the specific acoustic impedance of air, ρ is the density of air and c
the sound wave velocity.

Thus, the determination of the impedance ZT (and the reflection coefficient RT) of
the DUT only requires transfer function Hm measurement and the prior knowledge of the
source characteristics Hae and Zs. This will be discussed in the following two sections.

Note that ZT and RT are defined at the microphone axial position but they can be
deduced at the location of the load thanks to the impedance translation theorem between
two axial positions x1 and x2 in the tube, recalled hereafter :(

P (x2)
Q(x2)

)
=

(
cos(k(x1 − x2)) Zcj sin(k(x1 − x2))

Z−1c j sin(k(x1 − x2)) cos(k(x1 − x2))

)(
P (x1)
Q(x1)

)
(4)

where k = ω/c is the wavenumber.
Combining the source characteristics Hae and Zs and the load impedance ZT, it is

therefore possible to estimate the transfer function between control voltage U and the
acoustic pressure at a new axial position xn as :

Hn
m =

Zn
s Z

n
T

Zn
s + Zn

T

Hn
ae (5)

where

Zn
T =

cos(−kxn) + j sin(−kxn)Zc/ZT

j sin(−kxn)/Zc + cos(−kxn)/ZT
, Zn

s =
cos(kxn)Zs + jZc sin(kxn)

cos(kxn) + j sin(kxn)Zs/Zc
, (6)
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Hn
ae = (cos(kxn) + jZc sin(kxn)Zn−1

s )Hae. (7)

Transformation (5) will be used for the comparison with mechanical models of the NES
in Section 3.

2.2. Setup calibration

The setup calibration consists in determining the quantities Hae and Zs, from mea-
surements of known acoustic loads. In such a case, Eq. (2) becomes :

Hm =
ZsZT

Zs + ZT
Hae. (8)

The measurementsHm1
andHm2

obtained respectively from two different (but known)
loads ZT1

and ZT2
are thus theoretically sufficient to determine the source parameters

Hae and Zs as :

Hae =
Hm1

Hm2
(ZT1

− ZT2
)

ZT1ZT2(Hm1 −Hm2)
and Zs =

ZT1
ZT2

(Hm1
−Hm2

)

Hm2ZT1 −Hm1ZT2

. (9)

Since the transfer functions Hm1 and Hm2 are obtained using the same microphone, Zs

(given by Eq. (9)) does not depend on the microphone calibration. The same property
applies to the determination of ZT (given by Eq. (3)). Hence with this approach the
microphone calibration is not needed.

A simple sensitivity study of Eqs. (9) brings some observations. For frequencies where
Hae = 0, Zs = 0 or Hm = 0, the load impedance cannot be estimated. Moreover, as
pointed out by Bodén et al. [17], if ZT1 and ZT2 are close to each other, the error on Zs

prevents a reliable calibration. Conversely, when Zs is of the same order of magnitude
as the load impedance ZT, the error in the estimation of Hae is smaller.

In order to avoid errors and improve the results, an over-determination of the cal-
ibration data is therefore desirable. It can be performed by combining more than two
known loads, a technique which is briefly summarized in Appendix A.

2.3. Setup consistency

A very basic assumption behind the proposed method is that the source is assumed
linear and time-invariant. Its specific electroacoustic design ensures that it may deliver
a high volume velocity, required at low frequencies, while keeping a sufficient margin
compared to the maximal displacement specified by the loudspeakers manufacturer. Care
has also been taken in order to minimize parasitic nonlinear behaviors related to high
local acoustic over-pressures, rapid air flows around edges, leakages, etc. Last, the electric
powers required during the NES measurements are significantly smaller than the thermal
limits specified for the voice-coil heating of loudspeakers, thus reducing the risk of thermal
compression during the measurements. A brief description of the source design is given
in Appendix B.

Beyond these basic design steps, the source linearity has been checked thoroughly
by increasing the RMS level when measuring linear acoustic loads. No significant dis-
crepancy has been found between measurements at different levels, strenghtening the hy-
pothesis of a linear setup. A set of calibration loads has been designed, and used within
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a minimization process in order to determine a suitable number of loads for calibration.
This led to using six reference loads (see Appendix C) spanning a wide impedance range.
The full description of these technical aspects is beyond the scope of the present paper,
and only cited here to back up the measurement results presented in this paper.

It should be noted that the above-mentionned calibration process is started before ev-
ery measurements series, as small discrepancies have been detected between calibrations
performed at several days intervals. The loudspeaker behavior impacts the calibration
data. Such high-power devices do not have the same stability over time than measure-
ment sensors. Frequent calibrations are therefore mandatory to maintain a sufficient
measurement accuracy. This time consuming and as such a limitation of our approach.

3. Nonlinear vibroacoustic absorber behavior

3.1. Description of the vibroacoustic absorber

The nonlinear vibroacoustic absorber considered in this study (hereafter named NES)
has been described in detail by Bellet et al. [1, 4]. It consists in a thin viscoelastic circular
membrane (see Fig. 2(a)) clamped by a sliding system, allowing to apply a constant in-
plane pre-stress to the membrane. When the membrane is subjected to a large acoustic
pressure, its flexural displacement can be several orders of magnitude larger than the
membrane thickness, resulting in a nonlinear behavior. This NES is mounted at the end
of the source as illustrated by Fig. 2(b). The measurements presented below were made
using a membrane made of latex, with a diameter equal to 0.06 m and a thickness equal
to 1.8 10−4 m.

(a) (b)

Figure 2: (a) Front view of the NES (sliding system and membrane). (b) NES mounted on the source
(with a sight of the sliding system).
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3.2. Acoustic characterization of the NES

The acoustic characterization of the NES was carried out using [10, 200] Hz band-
limited white noise with a control voltage U . A multi-channel analyzer/recorder (OROS
OR38) including a signal generator was used with a sampling frequency of 3200 Hz. The
estimations of the transfer function Hm were obtained with a ∆f = 0.5 Hz frequency
resolution corresponding to 2 sec time length segments and 50 averages. Seven excita-
tion levels were considered starting from URMS = 0.01 V to 11.68 V, resulting in acoustic
pressures between 2 · 10−2 Pa and 350 Pa at the microphone position (see Fig.3). We
chose white noise excitation because it allows fast measurements and because it is rep-
resentative of some NES application environments (e.g. room noise absorption). The
NES is nonlinear, some transient state may be several orders of magnitude longer than
the period of the excitation and exhibit hysteresis (e.g. SMR[3]), so a frequency stepped
excitation may take a long time, and a chirped excitation may give results difficult to
understand. Note that these measurements on a nonlinear DUT are not a priori repre-
sentative of other excitation schemes. Nevertheless, our hypothesis is that this excitation
and an analysis based on transfer functions should give a relevant characterization of a
NES. It would be interesting in a future work to further study the temporal dynamics of
the NES response.

Figure 3: Measured NES transfer function Hm for several excitation levels: modulus(up) and phase
(down). (a) Low excitation level (linear behavior) ; (b) High excitation level (nonlinear behavior).

7



Figure 3 shows modulus and phases of the transfer function Hm measured at the
seven RMS values of the control voltage U .

At low excitation levels, URMS = 0.01 V and 0.02 V, the system shows a linear
behavior as observed in Fig. 3(a). The transfer function exhibits a minimum near 30 Hz.
This minimum of pressure within the tube corresponds to a maximum of the membrane
motion characterizing the linear resonance frequency of the NES (at low excitation levels).
A nonlinear behavior appears when increasing the excitation level, see Fig. 3(b). The
resonance frequency is shifted toward higher frequencies with a broadening resonance
dip. This is characteristic of a system hardening with level.

For each excitation level, the acoustic impedance ZT, Eq. (3), and the corresponding
reflection coefficient RT, Eq. (3), can be deduced from the measured transfer function
Hm and the estimated source characteristics Hae and Zs (calibration process). The
calibration process was carried out before the measurement series of the NES and using
the six reference loads (see Appendix C). The results are reported Fig. 4 showing a smooth
and flat behavior of Hae and Zs over the considered frequency range. The source is linear
without obvious resonances over the frequency range of the study. As a consequence, Hae

and Zs curves should be continuous and smooth. On the actual measurements, each point
of these quantities has been estimated independently of the others, and the smoothness
of the actual curves is an indication about the quality of the measurements. The flatness
of the curves can be viewed as a property of the source. It means that the response of the
system has no sharp differences along the frequency range, that resonances of the source
do not screen DUT characteristics, or in other words that the sensitivity to measurement
errors is similar along the frequency range.

Figure 5(a) shows modulus and phases of ZT for the five excitation levels considered
in Fig. 3(b). A similar nonlinear behavior as the transfer function Hm is observed for ZT.
The reflection coefficient RT (modulus and phases) is shown by Fig. 5(b). It allows to
assess the amount of energy removed out of the system by the termination, compared to
the case of a total energy reflection |RT|2 = 1. Here, the energy is extracted by the NES
over a frequency range widening with the increase of the excitation level. It is important
to note that only a part of extracted energy is dissipated (absorbed) by the NES while
another part is radiated by the outward face of the membrane or converted to different
frequencies [5].

The maximum of extraction of energy (|RT| ≈ 0.05) is observed for URMS = 5.84 V
at a frequency f ' 80 Hz. Considering these observations, up to 90% energy can be
extracted by the NES near its resonance frequency. Further increase of URMS however
tends to slightly reduce the energy extracted by the NES.

3.3. Comparison with a viscoelastic model

The measurements resulting from the behavior of the NES are now compared to re-
sults from the viscoelastic model proposed by Bellet et al. [1]. The nonlinear equation
of motion of the membrane (NES) is thus obtained considering the membrane as a thin
elastic structure with geometric nonlinearities. The transverse displacement of the mem-
brane is described using a one degree of freedom Rayleigh-Ritz reduction with a single
parabolic deflection shape function. The nonlinear equation of motion takes the following
form :

mmeüme + k1[(
f1me

f0me

)2ume + ηu̇me] + k3(u3me + 2ηu2meu̇me) =
Sme

2
pme(t) (10)
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Figure 4: Estimated source parameters Hae and Zs using the six reference loads (see Appendix C).
Modulus (top) and phase (bottom).

where ume denotes the (instantaneaous) displacement of the center of the membrane, pme

denotes the resulting acoustic pressure in the vicinity of the membrane inside the tube
and the dot represents time-differentiation. The coefficient 1/2 in the right hand side of
Eq. (10) results from the parabolic form used in the Rayleigh-Ritz reduction [1]. The
model parameters are given by :

k1 =
2πEh3me

3(1− ν2)R2
me

, k3 =
1

2

8πEmehme

3(1− ν2)R2
me

(11)

mme =
ρmehmeSme +ma

3
, f0me =

1

2π

√
1.0154π4Eh2me

12(1− ν2)ρmeR4
me

(12)

where ρme is the density, ν the Poisson’s coefficient and E the Young’s modulus of
the membrane made in latex, hme is its thickness, Rme its radius and Sme its surface.
The coefficients k1 and k3 respectively stand for the linear and nonlinear stiffnesses. As
justified by Bellet et al. [1], a 1/2 coefficient was included in the expression of k3. A mass
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Figure 5: Identified acoustic characteristics of the NES for the excitation levels used in Fig. 3(b):
(a) Impedance (ZT) and (b) associated reflection coefficient (RT). Modulus (top) and phase (bottom).

term ma has also been added to account for the mass of the air column resulting from
the waveguide effect of the sliding system. Here f0me represents the resonance frequency
of the membrane alone (without pre-stress) and f1me is related to the pre-stress applied
to the membrane. When no pre-stress is considered, f1me = f0me .

For a given excitation level, the acoustic impedance of the NES (close to the mem-
brane) may be defined as :

Zme =
Ŝpmeqme

Ŝqmeqme

(13)

where Ŝqmeqme (respectively Ŝpmeqme) denotes the power spectral density (respectively
cross spectral density) function of the volume velocity qme (respectively between the
acoustic pressure pme and the volume velocity qme). The volume velocity qme is obtained
from the velocity of the membrane u̇me as qme = Sme

2 u̇me. This definition is in accordance
with the impedance quantity considered in Section 2.1.

The NES behavior being nonlinear, comparing model results to measured data re-
quires to use temporal investigation of the nonlinear model. Provided that we use a time
trajectory of the acoustic pressure pme which respects similar characteristics as in ex-
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perimental configuration, Eq. (10) can be numerically solved. The resulting trajectories
are sufficient to estimate the NES impedance Eq. (13) via classical spectral estimation
method.

As a gaussian white noise was fed to the source during the measurements, the modulus
of the measured transfer function Hm (given Fig. 3) is sufficient to characterize the
frequency content of the acoustic pressure in the vicinity of the membrane. Hm being
defined at the microphone position, Eq. 5 is used to estimated the transfer function, Hn

m,
between the control voltage U and the acoustic pressure at the position xn = xm + 0.02
(xm has been corrected of the thickness of the sliding system) corresponding to pme.

We then used the procedure described in [18] to generate time trajectories with a
power spectral density function defined by |Hn

m|2 on the frequency range [10, 200] Hz and
zero outside. These trajectories, corrected by the corresponding excitation level URMS,
were used as time trajectories of pme. Eq. (10) was then solved numerically using the
Newmark method.

The following values of the parameters were chosen corresponding to the experimental
set up: ρme = 980 kg.m−3, ν = 0.49, E = 12.105 Pa, hme = 1.8.10−4 m, Rme = 0.03 m
and ma = 2.97 10−4 kg. Two parameters f1me(≥ f0me) and η(> 0) were adjusted as
f1me = 40 Hz and η = 8.10−4 - corresponding to moderate pre-tension (as f0me = 3.8 Hz)
and light damping.

The resulting impedance functions Zme brought back to the microphone position are
plotted in Fig. 6 and Fig. 7 for the five excitation levels and compared to the corre-
sponding ones identified experimentally by the proposed method. Also reported are the
associated reflection coefficients. The viscoelastic model leads to a very good approx-
imation of the measured data, except at the lowest amplitude (0.03 V) for which the
impedance curve in Fig. 6 presents an anti-resonance peak close to 150 Hz which does
not fit well with the experimental data. This might come from a coupling between the
NES and the source setup, which would apparently shift the anti-resonance peak towards
low frequencies. For all other excitation levels, the viscoelastic model seems quite ade-
quate to reproduce the acoustic behavior of the NES. It describes correctly the shift of
the resonance frequencies (hardening) and the spectral broadening which occurs around
the resonance frequencies when the excitation level increases as estimated through the
impedances and associated reflection coefficients.

3.4. The NES as a family of Helmholtz resonators

The impedances plotted in Fig. 6 have a shape suggesting that the system behaves
like a resonant one degree of freedom system in the frequency range studied, however
with level dependent parameters. An attempt is thus made to identify these parameter
values expressed in quantities that permit comparisons with Helmholtz resonators, which
are often used for sound control in this frequency range. At each excitation level, the
behavior of the NES is then approximated by the impedance ZH of a linear Helmholtz
resonator :

ZH = jωMa +
1

jωCa
+Ra (14)

which is transformed at the microphone position as (Eq. (4)) :

Zth
H =

ZH + jZc tan(kxm)

j(ZH/Zc) tan(kxm) + 1
(15)
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Figure 6: Viscoelastic model : Impedance (ZT) identified from the measurement method (thick lines)
and resulting from the viscoelastic model (lines and circle markers) for the excitation levels used in
Fig. 3(b). Modulus (top) and phase (bottom).

where Ma is the acoustic mass, Ca is the acoustic compliance, Ra is the acoustic re-
sistance. These parameters are then estimated from the measured data by solving the
following minimization problem :

min
(Ma,Ca,Ra)∈R3

+

F∑
l=1

|Rth
H (ωl)−RT(ωl)|2 (16)

where Rth
H is the reflection coefficient deduced from the Helmholtz model Eq. (15), RT

is the estimated reflection coefficient (Eq. 3) and ωl = 2πfl, with fl the frequency of the
experiment number l.

This minimization problem has been solved for each excitation level using Matlab c©
unconstrained nonlinear optimization solver “fminsearch”. The results are reported in
Table 1. The efficiency of the optimization process can be observed on Figure 8, where
are compared Rth

H and RT and on Figure 9, where are compared the corresponding Zth
H

and ZT.

The parametric Helmholtz model leads to a very good approximation of the measured
12



20 40 60 80 100 120 140 160 180 200

f [Hz]

0

0.2

0.4

0.6

0.8

1

|R
m

|

U
rms

=0.03V

U
rms

=0.73V

U
rms

=2.92V

U
rms

=5.84V

U
rms

=11.68V

20 40 60 80 100 120 140 160 180 200

f [Hz]

-5 /2

-2

-3 /2

-

- /2

0

/2

ar
g(

R
m

) 
[r

ad
]

Figure 7: Viscoelastic model : Reflection coefficient (RT) identified from the measurement method (thick
lines) and resulting from the viscoelastic model (lines and circle markers) for the excitation levels used
in Fig. 3(b). Modulus (top) and phase (bottom).

data, except at the lowest amplitude as mentioned earlier.
Looking to Table 1, the acoustic mass Ma is not much affected by the change of

excitation level (values between 114 and 135 kg m−4), compared to the large variations
exhibited by the compliance Ca (180%) and the resistance Ra (55%). This is coherent
for linear resonators, because the acoustic mass Ma of the Helmholtz model can be
related to a physical mass mme described by the viscoelastic model by the relationship
Ma = 4mme/S

2
m. The parameters used for the simulations in section 3.3 correspond to

Ma = 133. kg m−4, which is close to its values in Table 1.
The compliance Ca and the resistance Ra are however much more level dependent.

URMS [V] 0.03 0.70 1.5 2.9 4.4 5.8 7.3 8.8 10.2 11.7
Ma 135 127 128 128 129 126 123 118 116 114
Ca[×10−7] 1.83 1.11 0.74 0.46 0.39 0.28 0.24 0.22 0.20 0.18
Ra[×104] 0.16 0.57 0.93 1.42 1.82 2.23 2.49 2.70 2.89 2.96

Table 1: Estimated Helmholtz resonator parameters: Ma, Ca, Ra as a function of URMS.
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Figure 8: Helmholtz model: Reflection coefficient (RT) identified from the measurement method (thick
lines) and resulting from the Helmholtz model (lines and circle markers) for the excitation levels used in
Fig. 3(b) . Modulus (top) and phase (bottom).

Their variations with respect to URMS can be analyzed considering the evolution of the
resonance frequency and the quality factor defined as, respectively :

fH =
1

2π
√
Ma × Ca

and QH =

√
Ma/Ca

Ra
. (17)

Variations of fH are plotted in Figure 10(a) and illustrate the hardening behavior
of the NES mentioned previously. This hardening is not linear as it would be for an
uncoupled purely cubic resonator excited at its resonance frequency. Figure 10(b) shows
that the apparent quality factor is rather small, around 3 and is relatively constant after
a sharp decrease at low excitation levels, until about 3 V. The NES quality factors
estimated here are realistic for actual Helmholtz resonators [19], although NES and
Helmholtz resonators differ in their action. It means that Helmholtz resonators could
be built with such quality factors. A small quality factor indicates a high dissipation,
interpreted here as large extraction of energy from the system by several mechanisms:
thermal dissipation in the viscoelastic membrane, acoustic radiation, and conversion to
other frequencies than the excitation frequency [5].

Energy extraction can be seen more clearly on Fig.10(c) where the ratio E of extracted
14
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Figure 9: Helmholtz model: Impedance (ZT) identified from the measurement method (thick lines) and
resulting from the Helmholtz model (lines and circle markers) for the excitation levels used in Fig. 3(b)
. Modulus (top) and phase (bottom).

energy over the frequency range of the source is defined by :

E = (fF − f1)−1
∫ fF

f1

(1− |RT(2πf)|2)df . (18)

is plotted, with f1 = 10 Hz and fF = 200 Hz.
At low levels the energy extraction E is quite small because the NES behaves like

a linear Helmholtz resonator: it is efficient only close to its resonant frequency, with
low damping. At higher levels E however reaches 0.35, meaning that more than one
third of the total incoming energy (spread over a wide frequency range) is extracted by
the NES. It should however be noted that most of the energy extracted at these high
levels corresponds to frequencies over 150 Hz, part of which might be converted toward
frequencies outside the analysis band. The shape and magnitude of the three curves
Figure 10(c) are close. The Helmholtz model agrees best with the measurements in the
upper half of the excitation level. The worse agreement between measurements and the
viscoelastic model may come from the fact that it does not include the acoustic source in
the model or that the effective NES stiffness doesn’t fit well with the viscoelastic model.
It illustrates the relevance of the Helmholtz model for the NES characterization.
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Figure 10: Helmholtz model fitting: Evolution of (a) the resonance frequency and (b) the quality factor
(Eq. (17))versus excitation level. (c) Extracted energy E (Eq. (18)) versus excitation level obtained
from the measured reflection coefficient (dot markers), the viscoelastic model (square markers) and the
Helmholtz model(circle markers).

This study shows that the NES may be described as a parametric Helmholtz resonator
which parameters can be estimated with realistic values depending on the excitation
level. It may prove useful for nonlinear absorber design, since the resonance frequency
and attenuation as a function of sound level are key parameters[1]. In the framework of
linearisation procedure [20], the amplitude level of the NES response could be also used
as a parametric variable. This will be considered in future work.

4. Conclusions

The acoustic properties of a nonlinear vibroacoustic absorber have been investigated
at low frequencies and high sound levels.

A measurement system based on impedance tube with a linear response up to 300 Pa
in the [10, 200] Hz frequency range has been built. It was tested and used with a band-
limited white source signal. In addition a multi-load technique has been developed to
extract an apparent acoustic reflection coefficient. The method only requires a single
microphone after a source characterization using a set of known loads.

The apparent reflection coefficient of the nonlinear vibroacoustic absorber was mea-
sured for increasing excitation levels. The results confirm a nonlinear behavior of the
absorber. It is able to remove up to 90% of the incoming acoustic wave, around a fre-
quency which is dependent on the source level. Unlike linear systems a fraction of the
energy removed is probably converted into sound at frequencies above the excitation
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frequency band, in addition to the usual thermal dissipation mechanism. This frequency
conversion has not been investigated yet, and is the focus of ongoing work.

A nonlinear viscoelastic model previously published was found adequate to describe
the nonlinear characteristics of the NES measured here, based on a simple latex mem-
brane. From the same acoustic measurements, a family of equivalent Helmholtz res-
onators with level-dependent parameters was identified. At each excitation level, the
corresponding model captures most of the action of the nonlinear absorber with realistic
parameter values: the identified mass is almost constant with the excitation level and
close to the value used in the nonlinear viscoelastic model.

This study showed the good efficiency of the method and setup proposed for high
level, low frequency measurements of non-linear loads such as the one considered here.
It paves the way for future works about other NES devices.
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Appendix A

In this appendix, the principle of the method used to estimate the source character-
istics Hae and Zs from N(≥ 2) known loads is briefly summarized.

Following Desmons [15], a least square method is developed. The target of the min-
imization is the reflexion coefficient RT because it is the quantity of interest for the
characterization of the energy extracted by NES. For this purpose, the following cost
function is used :

Jc =

N∑
n=1

(
|Rth

Tn
−RTn

|2

|Rth
Tn
|2

)
(19)

where Rth
Tn

is the theoretical reflection coefficient deduced from the impedance model of
the known load number n and RTn

is the reflection coefficient deduced from Eq. (3) with
the measured transfer function Hmn . The dependency of RTn with respect to Hae and
Zs appears from Eq. (3).

Separating the characteristics of the source into real and imaginary parts :

Hae = HR
ae + jHI

ae and Zs = ZR
s + jZI

s , (20)

the optimum values of Hae and Zs are obtained solving the minimization problem ex-
pressed as :

min
(HR

ae,H
I
ae,Z

R
s ,ZI

s)∈R4

Jc. (21)

This non-quadratic minimization problem is solved for each frequency with Matlab c©
unconstrained nonlinear optimization solver “fminsearch” (based on the Nelder-Mead
simplex algorithm). At the smaller frequency, the starting point of the algorithm is
obtained from Eqs. (9). The frequencies are then considered in increasing order, with a
starting point defined by the optimum obtained at the previous frequency.
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Appendix B

In this appendix, a brief description of the source design is given.

(a) (b)

Figure 11: (a) Picture of the source. (b) Scheme showing the four loudspeakers

A particular source (Fig. 11) was designed for the low frequency range (typically 50
to 200 Hz), in order to expose the DUT to high pressure levels. Attention was paid to
the linearity and the smooth frequency response of the source. It is composed of four
loudspeakers (type Beyma 10LW30/N, diam 0.25 m) connected perpendicularly at the
mid length of a tube with length 0.71 m and diameter Dt = 0.175 m. The rear face of
each loudspeaker is enclosed in a 37 ` air-tight box. The front side of each loudspeaker
is connected to the tube by smooth 3D-printed horns with initial diameter 0.25 m and
final diameter 0.1 m. The four loudspeakers are connected at the same abscissa (see
Fig. 11(b)), and contribute equally to the volume velocity of the source. The two ends
of the source tube can be fitted by a lid or by any load. For the present study, the left
side of the source is closed by an air-tight PVC disc. Only the right part is changed and
the microphone is localized 0.035 m away from the DUT (resulting in xm = 0.035 m).
The air-tightness of the source is critical and has been carefully checked.

Appendix C

In this appendix, the calibration process is presented. Seven known loads are used
(given Table 2). They are made of PVC tubes having the same diameter as the source
tube, with a first side end open (for the connection with the source) and the second side
end depending on the load number. The second side end can be open, or closed, or ter-
minated by a drilled lid. They are described by means of their theoretical impedances at
x = L+xm. Theoretical impedances are set to zero for a closed tube, and for an unflanged
open tube, we adopt the classical approximation ([21] Eq. (12.133)) recalled Table 2. For
the last load, number 7, terminated by a drilled lid, we express the theoretical impedance
at the microphone position as:

Z7 = Zrad + Zcor , (22)
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where Zrad is approximated by a flanged plane piston of radius R7 ([21] Eq. (12.126)),
as:

Zrad = Zc

(
1

2
(kR7)2 + j

8

3π
kR7

)
(23)

and Zcor is an impedance correction including two inertial terms as:

Zcor = jk
ρc

πR2
7

[
e7 +R7(

8

3π
− 0.3525πα+ 0.0643πα2)

]
. (24)

The first term corresponds to the acoustic mass of the fluid within the cylindrical aperture
of the termination, of thickness e7. The second term ([21] Eq. (7.163)) corresponds to
the discontinuity in cross section between the aperture and the tube, with α = R7/Rt .

The first six known loads, named reference loads, are employed to estimate Zs and
Hae as described in Appendix A and one, number 7, is a test load.

Load Length End Impedance
number L (m) at x = L+ xm

1 0 open Z1 = Zc

(
1
4 (kDt

2 )2 + j0.6133kDt
2

)
2 0 PVC plug Z2 = 0
3 0.314 wood plug Z3 = 0
4 0.403 PVC plug Z4 = 0

5 0.8 open Z5 = Zc

(
1
4 (kDt

2 )2 + j0.6133kDt
2

)
6 0.8 PVC plug Z6 = 0
7 0.314 wood plug with centered

hole radius R7 = 0.03 m Z7

and thickness e7 = 0.02 m

Table 2: Characteristics of the known loads.

Using Eq. (4), the reference load impedance at the microphone location x = 0 is
obtained for the known loads. Using Hae and Zs fitted to the the six reference loads
measurements, we measure the reflection coefficient RT of the test load.

In our experiments, the worst error on RT among all the test frequencies is below 5%.
We checked that any of the reference load relative error is below this value. We consider
this worst error to be representative of the uncertainty of the measurements.

References

[1] R. Bellet, B. Cochelin, P. Herzog, P.-O. Mattei, Experimental study of targeted enrgy transfer from
an acoustic system to a nonlinear membrane absorber, Journal of Sound and Vibration 329 (14)
(2010) 2768–2791.

[2] R. Mariani, S. Bellizzi, B. Cochelin, P. Herzog, P.-O. Mattei, Toward an adjustable nonlinear low
frequency acoustic absorber, Journal of Sound and Vibration 330 (22) (2011) 5245–5258.

[3] A. F. Vakakis, O. V. Gendelman, L. A. Bergman, D. M. McFarland, G. Kerschen, Y. S. Lee,
Nonlinear targeted energy transfer in mechanical and structural systems, Vol. 156, Springer Science
& Business Media, 2008.

19
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[16] H. Bodèn, On multi-load methods for determination of the source data of acoustic one-port sources,
Journal of Sound and Vibration 180 (5) (1995) 725–743.
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