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Integral Equation Modeling of Doubly Periodic
Structures With an Efficient PMCHWT Formulation

Samuel Nosal, Paul Soudais, and Jean-Jacques Greffet

Abstract—A surface integral equation modeling is described for
complex doubly periodic structures. To avoid long computations of
the slowly convergent pseudoperiodic Green’s function, fictitious
surfaces between translated unit cells are set in order to bound
regions of the structure within the symmetry cell and use the free-
space Green’s function. The integral operators on top and bottom
surfaces are computed with an algorithm originally used for planar
frequency-selective surfaces. This approach uses a unique periodic
PMCHWT formulation in all the regions, with two different kinds
of Green’s function. The method and its advantages are illustrated
by two cases in the near-IR domain and in the radar domain. A
frequency selective structure is studied, that shows a large flat-top
bandwidth under oblique incidence and TM polarization.

Index Terms—Boundary integral equations (BIE), frequency se-
lective surfaces (FSS), hybrid method, metamaterials, method of
moments (MoM), periodic Green’s function.

I. INTRODUCTION

D OUBLY-PERIODIC (or biperiodic) structures can be
used to design frequency selective radomes or antenna

substrates. At IR or optical wavelengths, they can be used as
antireflective coatings or filters. These structures are examples
of metamaterials and photonic crystals. As devices built on
these structures are getting more and more complex, there is a
need for versatile numerical methods for the scattering from
complex biperiodic structures with short computation times.

Purposefully, we present here a method based on surface in-
tegral equations (SIE), which is able to handle biperiodic struc-
tures with a finite thickness made up of an arbitrary configura-
tion of perfectly conducting (PEC) and homogeneous isotropic
dielectric regions.

Numerical methods have been developed for decades to
model the diffraction by periodic structures, but they strike a
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compromise between applications to specific geometries (e.g.
layered planar structures), accuracy and computation time.

Among them, the SIE-based methods take a large place: the
method of moments for planar FSS [1]–[3] has been proven a
fast and accurate method. It is limited to FSS made of infinitely
thin metallic or resistive patches, whose shapes can be described
on a regular grid. Two extensions for stacked FSS separated
by dielectric layers can be used. The scattering problem can
be handled by a S-matrix cascading technique [1] or layered
Green’s functions [4].

If the symmetry cell is made of regions of 3D arbitrary shape,
one can use volume methods with periodic boundary conditions
(PBC) based on finite difference time domain (FDTD) method
[5] or finite element (FE) methods (e.g. [6] and [7]). But the
number of unknowns for volume formulations will usually be
much higher than for surface formulations.

Another group of methods is based on pseudoperiodic SIE.
They involve the pseudoperiodic Green’s function, which is a
very slowly convergent double series. Several techniques to ac-
celerate the convergence of this series have been studied, some
of them have been recently compared in [8].

A pseudoperiodic SIE method was proposed in [9]. A
pseudoperiodic PMCHWT (from Poggio, Miller, Chang, Har-
rington, Wu and Tsai) formulation was used in all the regions.
The large computational cost of the Green’s function for doubly
periodic problems was alleviated by a tabulation of both the
pseudoperiodic Green’s function and its gradient.

In order to reduce the number of evaluations of the pseu-
doperiodic Green’s function, hybrid methods were suggested:
by “hybrid method”, we designate a method that solves dif-
ferently the outer region (often vacuum) and the inner region
(the doubly periodic structure). In [10], the outer infinite regions
are treated with SIE using the pseudoperiodic Green’s function,
while the inner bounded regions in the biperiodic structure are
treated with a FE method. These methods are often referred to as
hybrid finite element-boundary integral (FE-BI) methods. Their
main problem is that the (volume) FE method requires the cre-
ation of many degrees of freedom.

A hybrid method using two different SIE formulations was
developed in [11]. The internal regions of the structure were
bounded with fictitious surfaces, and then the free-space Green’s
function was used inside the structure. This resulted in a tremen-
dous reduction in the assembly time, usually offsetting by far the
extra-solution time due to the extra-unknowns on the fictitious
surfaces. The outside problem was formulated with a MoM de-
rived from the MoM for planar FSS of [1]–[3].

In this paper, we present a hybrid method that uses only one
integral formulation, but both the pseudoperiodic Green’s func-
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tion and the free-space Green’s function by using fictitious sur-
faces to bound the inner regions of a unit cell.

The key point of the method, as presented in Section II, is the
use of an adapted PMCHWT formulation [12], which is often
used for general purpose codes dealing with several dielectric or
conducting regions and impedance conditions: for 2D and 3D
scatterers [13], for bodies of revolution [14], for large scatterers
[15]. This formulation requires the computation of contributions
from the entire boundary of regions neighboring the symmetry
cell and we will show how to recover these terms in an easy way.
To the best of our knowledge, it is the first time that a pseudope-
riodic formulation is presented, that uses a unique PMCHWT
formulation for all the regions, including regions bounded by
fictitious surfaces with PBC.

Another important point is that the PMCHWT contribution
from the top and bottom unbounded regions are efficiently com-
puted thanks to a method derived from a Method of Moments
(MoM) specific to planar frequency selective surfaces (FSS).
This is achieved by using triangular RWG functions on part of
the mesh and rooftop basis functions on top and bottom surfaces,
as presented in Section III. Note that in [11], the top planar sur-
face was meshed with isosceles rectangle triangles and a linear
combination of the triangular basis functions had to be made to
obtain rooftop basis functions on the top surface.

The use of these techniques makes it possible to obtain a nu-
merical method, whose computational time is similar to that of
a case where the symmetry cell would be computed as an iso-
lated object (i.e. a non-periodic 3D case with similar number of
unknowns), as illustrated by the validation cases in Section IV.

II. PSEUDOPERIODIC PMCHWT FORMULATION

A. Description of the Pseudoperiodic Problem

1) Biperiodic Scattering Structure: A biperiodic diffractive
structure consists of a unit cell which is repeated over two di-
rections of periodicity, given by the vectors and

, as schematized on Fig. 1. Note than in this work,
and could be made non orthogonal without any modi-

fication except in Section III-B. where the algorithm for planar
FSS should be used in its skewed lattice version [1]. The unit
cell is composed of an arbitrary number of homogeneous ma-
terial regions with complex permittivity and permittivity or
PEC regions. The array is of finite thickness and is placed be-
tween two semi-infinite regions, generally air or PEC.

2) Scattering Problem: An incident plane wave
impinges on the biperiodic scattering structure.

The time-harmonic dependence is taken as . At a given
frequency, the incident field is completely defined by the
components of its normalized wave vector along the x and y
axes ( and , from which is deduced),
its polarization (TE or TM), the region where its source is
located (top or bottom) and its amplitude, where ,

being the speed of light in the region where the source is
located.

Due to the pseudoperiodicity of the incident field, the biperi-
odicity of the scattering structure and the linearity of Maxwell’s
equations, the scattered field is pseudoperiodic: it is only nec-
essary to find its values on the symmetry cell. The values of the

Fig. 1. Definition of the reference unit cell, which is repeated according to the
translation vectors and . Note that only the left and bottom boundaries
with the translated cells belong to the reference unit cell (0,0).

field in any other cell can be calculated using the following re-
lation

(1)

where is the phase coefficient,
being the incident wave vector. Pseudoperiodic boundary con-
ditions on opposite faces of the symmetry cell are a consequence
of (1).

B. PMCHWT Formulation for 3D Problems

1) Electric and Magnetic Field Integral equations (EFIE and

MFIE): For the sake of simplicity, we give here the outline
of the formulation in the case where there are only two ho-
mogeneous dielectric regions, separated by a closed surface S.
The extension to an arbitrary number of regions can be easily
achieved. Following J.-M. Jin’s notation [14], we can write in
each region both the electric field integral equation (EFIE)

(2)
and the magnetic field integral equation (MFIE)

(3)
where , ,

(4)

(5)

and being the relative impedance of the di-
electric region .
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In these equations, is the free-space Green’s func-
tion in the region (=1 or 2) and the incident fields
only exist in the region where their source is located. They are
uniformly zero in the other region.

2) PMCHWT Formulation: The PMCHWT formulation is
used for the scattering by composite dielectric objects. On the
boundary S separating two dielectric regions (e.g. and ),
the EFIE (2) and MFIE (3) from each region are summed to
give the PMCHWT, using the fact that tangential fields are con-
tinuous across S: and .
Hence, the equations that are to be solved are

(6)

(7)

The associated variational formulation of (6) and (7) is dis-
cretized by a boundary element method, with RWG and rooftop
basis and test functions, both denoted by (Galerkin method).
Equation (6) is tested with test functions and (7) is tested
with test functions.

The discretized operators read (e.g. [13]):

(8)

(9)

This leads to the following linear system, which can usually
be solved directly:

(10)
Note that we use unknowns instead of unknowns in
order to obtain a symmetrical discretized matrix [16].

This formulation can be generalized to an arbitrary number
of dielectric regions. Due to the continuity of tangent fields, for
an edge belonging to two or more dielectric regions numbered

to k, there is one composite basis and test function for
J and one composite basis and test function for M [17]. The
value for a composite function in region d is (cf. Fig. 2).
Note that it is necessary to use composite functions on every
edge: on edges belonging to two dielectric regions, the com-

Fig. 2. Top view of a junction between several dielectric regions and composite
function on a junction edge.

posite function is made of two RWGs or two rooftops functions
with opposite signs.

The PMCHWT formulation writes for [13], [17]:

(11)

The PMCHWT formulation writes for [13], [17]:

(12)

Please recall that the incident field is non-zero
only in the region where the source is located. On PEC bound-
aries, , and there are no test functions and we write
only (11) for test functions . Note that (11) only includes con-
tributions from dielectric regions.

C. Hybrid SIE Formulation: Fictitious Surfaces

A way to adapt the PMCHWT formulation to doubly pe-
riodic scatterers is to replace, in each unbounded region, the
Green’s function by the pseudoperiodic Green’s function, i.e.
the Green’s function for a double array of point sources in this
region. Each of these Green’s functions satisfies the PBC (1).

We investigate here another way, following [11], to address
the computational time issue: reducing as much as possible the
number of evaluations of the pseudoperiodic Green’s function.
We add fictitious surfaces between the reference unit cell and its
translated neighboring cells, as shown on Fig. 3. Thus the inner
regions of the periodic structure are bounded, allowing the use
of the free-space Green’s function, whose computation cost is
negligible.

D. Writing a Pseudoperiodic PMCHWT Formulation With

Fictitious Surfaces

For the sake of simplicity, we first consider the case where
two homogeneous regions bounded by fictitious surfaces fill the
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Fig. 3. Example of a pyramid array on a silicon slab. Left: mesh used for a 3D
pseudoperiodic SIE. There are three infinite regions: the two outer regions are
filled with air; the inner region is filled with silicon. Right: mesh used for the
proposed hybrid method. Here only the outer regions are infinite and the inner
region is bounded by adding four vertical fictitious surfaces.

Fig. 4. Pseudoperiodic electric equivalent currents on two opposite fictitious
surfaces with pseudoperiodic boundary conditions.

symmetry cell (Fig. 4). The mesh is assumed to have been cre-
ated so that the surface meshes on opposite fictitious surfaces
are identical. Only unknowns belonging to the (0,0) symmetry
cell are considered. The values of the currents in other cells can
be computed thanks to the PBC (1).

The pseudoperiodicity of the solution is enforced strongly by
eliminating the unknowns of the boundary of cell (0,0) with cells
(1,0), (0,1) and (1,1) using the PBC (1). Therefore, contributions
to a matrix entry involving the image of unknown
in the cell should be replaced as follows

(13)

We want to use a PMCHWT formulation in all the homoge-
neous regions for consistency and accuracy and for an easier
treatment of junction cases. The PMCHWT formulation con-
sists in summing the contribution of the integral operators on
both sides of a surface. The question for the pseudoperiodic
PMCHWT formulation with fictitious surfaces is how to get the
contributions coming from the neighboring cells.

For a test function between the (0,0) and ( 1,0) cells,
the PMCHWT involves terms from the entire boundary of the

and regions.
We remark that the contribution from region to a

test function can be obtained from the contribution from
region to the corresponding test function and
the PBC (1). Contributions to a matrix entry in-

Fig. 5. Left: The PMCHWT formulation involves terms from four different
unit cells. Right: Those terms can be obtained through phase relations with the
terms that are directly available in the reference unit cell.

volving the image of a test function in the
cell can be computed with:

(14)

Some edges belong to four regions of Fig. 4 (e.g. ,
, and ); on such edges, there

are contributions from the entire boundary of these four regions.
Each of the last three contributions is obtained from a
contribution and (14).

All the contributions will be computed from those of the (0,0)
cell (Fig. 5), by looping over the elements bounding the regions
of the reference cell and applying the PBC relations (13) and
(14), accordingly to the source and reception elements. This
scheme also applies to the top and bottom surface and to com-
plex junctions (e.g. when there are several arbitrary internal
PEC or dielectric regions, thin sheets, impedance boundary con-
ditions ).

III. EFFICIENT COMPUTATION OF THE INTEGRAL OPERATORS

ON THE TOP AND BOTTOM BOUNDARIES

A. Structured Mesh on Top and Bottom Boundaries

We use RWG and rooftop elements on composite meshes
made of triangles and quadrangles. Only the top and bottom re-
gions contributions will involve computations of the pseudope-
riodic Green’s function. If the boundaries of the top and bottom
regions are planar, it is possible to use a structured mesh made
of identical quadrangles. If the top (resp. bottom) boundary is
not, we suggest to add a fictitious slab on the top (resp. bottom)
of the biperiodic structure, in order to use a structured mesh on
its top (resp. bottom) boundary, as illustrated on Fig. 6.

B. Use of the Algorithm for Planar FSS Screens

The algorithm for planar FSS of [1], [3] is based on the PEC
or resistive version of the EFIE (2). In fact, this algorithm leads
to a highly efficient discretization of the operator with the
pseudoperiodic Green’s function for a planar surface discretized
with identical rooftop elements. This is precisely what we need
to compute the contributions of the upper and lower regions to

the PMCHWT formulation, since and

on the planar surfaces bounding these regions.
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Fig. 6. Adding a fictitious slab above the biperiodic scattering structures (a)
makes it possible to have a structured mesh (c) on the top and bottom surfaces
of the entire mesh (b).

Fig. 7. Array of dielectric spheres in a dielectric outer region. The radii of the
spheres is taken to be 0.2 or 0.23 .

The computation time of the contributions obtained with the
planar FSS algorithm is much shorter than what is needed to
compute the integral operators in the 3D case. The overall as-
sembly time of this pseudoperiodic SIE method is then similar
to that of a 3D SIE with the same number of degrees of freedom.

IV. VALIDATION

The validation of the method has been carried out extensively
in [18]. Here three cases are presented, that correspond to two
different frequency ranges: infrared (IR) and radar frequencies.
For all validation cases, we have used a direct solution method
to solve the discretized linear system.

A. Array of Dielectric Spheres at Near IR Wavelengths

1) Description: The first test case consists in a square array
of dielectric spheres embedded in a dielectric infinite region.
This test case was suggested by T. Teperik [19] and is illustrated
on Fig. 7.

The lattice constants are 1 . The relative permittivity of the
outer region is 2.1 and the relative permittivity of the spheres is
3.05.

We compute the transmission efficiency under normal inci-
dence for wavelengths from 1.448 to 1.460 in vacuum
for two spheres radii and .

Fig. 8. (a) Mesh of a single free stranding dielectric sphere. (b) Mesh with
fictitious surfaces, with structured mesh on top and bottom surfaces.

Fig. 9. Comparison between analytical approach and numerical modeling
(with and without fictitious surfaces) for two arrays of dielectric spheres (radii
200 nm and 230 nm).

2) Modeling: To assess the effect on accuracy and computa-
tion time of fictitious surfaces, the case has been computed with
and without fictitious surfaces.

For the first model (cf. Fig. 8(a)), the pseudoperiodic Green’s
function is used for the external region and the free-space
Green’s function for the internal region. A single model with
2160 unknowns is used for both radii and corresponding to an
average edge length of , where is the wavelength
in the dielectric sphere. Since the number of unknowns is
small, we didn’t try to use a mesh with a minimal number of
unknowns.

In the second model (Fig. 8(b)) we add fictitious surfaces
meshed with rectangles with edge length. The total
number of unknowns is now 7808.

3) Results and Computation Time: We present the trans-
mission efficiency under normal incidence computed with our
method and fictitious surfaces, with an asymptotic model [19]
and with our method without fictitious surfaces on Fig. 9. There
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Fig. 10. Scheme of the FSS embedded in a dielectric slab: (a) in the xy-plane
(b) in the yz-plane.

is very good accuracy between all the results with a slight fre-
quency shift, which is negligible compared to the wavelength.

The computation is carried out with an Intel Itanium II node
with 8 processors at 1.4 GHz. Without fictitious surfaces, the
computation time is 0.44 h for one wavelength; 99.9% of which
is matrix assembly time. With fictitious surfaces, the computa-
tion time is only 0.028 h, 82% of which being spent during the
matrix assembly. In this case, the fictitious surfaces add a lot of
extra degrees of freedom (3.2 times more than without the ficti-
tious surfaces) but even in this case the total computation time
is improved by a factor 15.7.

B. FSS at Radar Frequencies

1) Description: We consider now the case of a square array
of perfectly conducting rectangular patches embedded in a di-
electric slab.

The patches are 5 mm long and 2.5 mm wide with lattice con-
stants of 10 mm along the x and y directions. The FSS is placed
in the median plane of a 2 mm thick dielectric slab with
and . The geometrical and material characteristics of this
case are illustrated on Fig. 10.

2) Modeling: In a first model (Fig. 11(a)), the patch is in
the middle of the symmetry cell. There are 3464 unknowns and
the maximal edge length at 24 GHz is , where is the
wavelength in the dielectric region.

With the second model, we test junctions through fictitious
surfaces. We set the patch across the fictitious side walls
(Fig. 11(b)) also adding a horizontal fictitious surface. The
surface of the PEC patch is considered as two separate surfaces
with one set of test functions on each side of the patch. On
junction edges between the patch and the horizontal fictitious
surface, there is only one test function. There are 7050
unknowns. The maximal edge length at 24 GHz is .
On this simple geometry, reference results are obtained with a
planar FSS code based on [1], as shown on Fig. 11(c).

3) Results: We compare the reflection efficiencies for TE
(H) and TM (V) polarizations, at normal and 30 incidences on
Figs. 12 and Fig. 13. The comparison between the three models
is very good, indicating that there are no significant errors due to
fictitious surfaces and to junctions with the fictitious surfaces.

Fig. 11. Three different modeling of a FSS made of an array of perfectly con-
ducting patches embedded in a dielectric slab: (a) BEM modeling where the unit
cell consists of a patch embedded in a “box” of dielectric (b) BEM modeling
where each patch is placed on two translated unit cells (c) Stack calculation with
FSS algorithm.

Fig. 12. Reflection efficiency of the array of metallic patches embedded in a
dielectric layer under normal incidence.

Fig. 13. Reflection efficiency of the array of metallic patches embedded in a
dielectric layer under oblique incidence (30 ) for TE and TM polarizations.
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Fig. 14. Geometrical parameters and mesh of the unit cell of the array of evo-
lutive coaxial cavities in a perfectly conducting slab.

Fig. 15. The cavity is created by rotating two arcs of circle around the z axis.
The circles are passing by three points given by the inner and outer radii in

and .

C. Array of Evolutive Coaxial Cavities in a Perfectly

Conducting Metallic Slab

An array of straight coaxial cavities in a silver slab in the vis-
ible optical wavelengths has been presented in [20]. This struc-
ture has band-pass properties, which are independent on the
polarization and on the angle of incidence. It was shown that
these properties are due to a resonance of the TE11 mode of the
waveguides. Total transmission is not achieved though, due to
losses in the silver slab.

We present here a structure based on evolutive coaxial cav-
ities in X band which is a broadband filter under oblique inci-
dence in the TM polarization.

1) Description: The coaxial cavities are arranged in a square
lattice 8 mm 8 mm. The perfectly conducting slab is 10 mm
thick. The cavities have a horn-like shape whose vertical section
is defined on Fig. 14 and Fig. 15. The cavities are filled with
PTFE, with a refractive index of in order to
reduce the frequency for the first TE11 resonance.

Fig. 16. Transmission efficiency of the array of evolutive coaxial cavities under
oblique incidence (64 ) and TE (H) polarization: comparison with arrays of
straight coaxial cavities.

Fig. 17. Transmission efficiency of the array of evolutive coaxial cavities under
oblique incidence (64 ) and TM (V) polarization: comparison with arrays of
straight coaxial cavities.

2) Modeling: Two fictitious slabs of air are added in order to
use locally structured meshes on the top and bottom boundaries.
There are 16488 triangles and 512 quadrangles on the mesh we
used and 31552 unknowns. All the edges are shorter than
at the highest frequency, even in the PTFE. The mesh is shown
on Fig. 14.

3) Results and Computation Time: The computation is car-
ried out with an Intel Itanium II node with 8 processors at 1.4
GHz. Both the matrix assembly and the direct resolution are par-
allelized. For one frequency and one incidence, the computation
time is 1.3 h.

The transmission efficiencies under oblique incidence at
30 in both TE (H) and TM (V) polarizations are presented
on Fig. 16 and Fig. 17 and compared to arrays of straight
cavities (narrow, wide or median). The bandwidth is narrow
in TE polarization. But the bandwidth in TM polarization is
larger with a flat-top of 0.6 GHz. This phenomenon is due to
a coupling between the TE11 and TEM coaxial modes in TM
polarization (cf. [21], [22]).
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V. CONCLUSION

We have introduced a general method to model the scattering
by complex doubly periodic structures, which is based on a
single PMCHWT formulation for all regions.

The inner regions are bounded by using fictitious surfaces
between translated unit cells. In these regions, the free-space
Green’s function is used with PBC. We have shown how to de-
rive the PMCHWT contributions from regions neighboring the
symmetry cell from terms internal to the symmetry cell. This in-
tegral formulation ensures the best accuracy of the final results.
The assembly time of the part of the matrix corresponding to
the inner region is similar to what we would have had with a 3D
case.

The pseudoperiodic Green’s function must be used on the top
and bottom boundaries. These contributions can be efficiently
computed by using an adaptation of the algorithm for planar
FSS. The assembly time for these contributions is negligible,
due to the local Toeplitz matrix.

Examples of calculation and computation times have been
given. They highlight the reduction of the computation time
due to the use of fictitious surfaces: for the array of dielectric
spheres, it was reduced by a factor 15.7.

The method is a general formulation for arbitrary geometries
combining PEC and dielectric regions and all possible junc-
tions used in 3D models. Localized or surface impedance con-
ditions and thin wires can be taken into account. Furthermore,
the method can be extended to include a local coupling with the
finite element method to handle anisotropic materials.
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