J A Carrillo 
  
S Fagioli 
email: simone.fagioli@univaq.it.
  
F Santambrogio § 
email: filippo.santambrogio@math.u-psud.fr.
  
M Schmidtchen 
email: m.schmidtchen15@imperial.ac.uk.
  
SPLITTING SCHEMES & SEGREGATION IN REACTION-(CROSS-)DIFFUSION SYSTEMS *

Keywords: cross-diffusion, reaction-diffusion, splitting schemes, variational schemes, segregation, pattern formation AMS subject classifications. 35K57, 35A15, 47N60

One of the most fascinating phenomena observed in reaction-diffusion systems is the emergence of segregated solutions, i.e. population densities with disjoint supports. We analyse such a reaction cross-diffusion system. In order to prove existence of weak solutions for a wide class of initial data without restriction about their supports or their positivity, we propose a variational splitting scheme combining ODEs with methods from optimal transport. In addition, this approach allows us to prove conservation of segregation for initially segregated data even in the presence of vacuum.

Introduction.

In this work we consider the following reaction-diffusion system for the evolution on an interval Ω of two species with population densities ρ, η ≥ 0 :

(1.1)

∂ t ρ = ∂ x (ρ∂ x χ (ρ + η)) + ρF 1 (ρ, η) + ηG 1 (ρ, η), ∂ t η = ∂ x (η∂ x χ (ρ + η)) + ηF 2 (ρ, η) + ρG 2 (ρ, η),
where χ : [0, ∞) → [0, ∞) is a C 1 super-linear function modelling nonlinear diffusion and F i and G i , i = 1, 2 model the reaction phenomena. Systems of this type appear naturally in mathematical biology. A fundamental biological phenomenon in interactions among different biological species is the inhibition or activation of growth whenever two populations occupy the same habitat. One species may promote or suppress the proliferation of the other species. In models involving cells or bacteria, the limited growth of different cell types can be attributed to volume or size constraints of the individual cells forming the different populations. The diffusive part in (1.1) was originally introduced in the seminal papers [START_REF] Gurtin | A note on interacting populations that disperse to avoid crowding[END_REF] and [START_REF] Bertsch | On interacting populations that disperse to avoid crowding: preservation of segregation[END_REF][START_REF] Bertsch | On a degenerate diffusion equation of the form c(z)t = ϕ(zx)x with application to population dynamics[END_REF] and exhibits an intriguing phenomenon: segregated densities remain separated at all times. In fact, nonlinear diffusions are natural ways to include volume filling effects into mathematical biology models, see [START_REF] Painter | Volume-filling and quorum-sensing in models for chemosensitive movement[END_REF][START_REF] Calvez | Volume effects in the Keller-Segel model: energy estimates preventing blow-up[END_REF] in the case of the classical Keller-Segel system. They help to avoid blow-up in these aggregation models in a biologically meaningful way and lead generically to asymptotic stabilisation. In the absence of reactions, the system leads to the nonlinear diffusion equation

(1.2) ∂ t σ = ∂ x (σ∂ x χ (σ)) = ∂ 2 x β(σ).
with σ = ρ+η, in which χ (σ) models the resistance to compression of the whole group of individuals σ. The natural assumption on (1.2) in order to be a diffusion equation is β (s) > 0 for s > 0, possibly degenerating at s = 0, or equivalently χ (s) > 0 for s > 0. The particular relevant case of χ(s) = s 2 /2 can be understood as the mean-field limit of interacting particles with very localised repulsion, see [START_REF] Oelschläger | Large systems of interacting particles and the porous medium equation[END_REF][START_REF] Burger | On an aggregation model with long and short range interactions[END_REF][START_REF] Bodnar | Friction dominated dynamics of interacting particles locally close to a crystallographic lattice[END_REF][START_REF] Klar | A multiscale meshfree method for macroscopic approximations of interacting particle systems[END_REF]. Related reaction-diffusion models to (1.1) appear in tissue growth models where cell adhesion and volume effects are important factors determining cell sorting in heterogeneous cell populations, see [START_REF] Murakawa | Continuous models for cell-cell adhesion[END_REF][START_REF] Carrillo | Zoology of a non-local cross-diffusion model for two species[END_REF][START_REF] Burger | Sorting phenomena in a mathematical model for two mutually attracting/repelling species[END_REF][START_REF] Carrillo | Adhesion and volume constraints via nonlocal interactions lead to cell sorting[END_REF], and zebrafish lateral line patterning [START_REF] Volkening | Modelling stripe formation in zebrafish: an agent-based approach[END_REF]. They are also basic building bricks for a variety of cancer invasion models in the literature [START_REF] Chaplain | Mathematical modelling of cancer cell invasion of tissue. the role of the urokinase plasminogen activation system[END_REF][START_REF] Preziosi | Cancer modelling and simulation[END_REF][START_REF] Stinner | Global existence for a go-or-grow multiscale model for tumor invasion with therapy[END_REF][START_REF] Johnston | On the proportion of cancer stem cells in a tumour[END_REF][START_REF] Bertsch | A free boundary problem arising in a simplified tumour growth model of contact inhibition[END_REF][START_REF] Armstrong | A continuum approach to modelling cellcell adhesion[END_REF][START_REF] Armstrong | Adding adhesion to a chemical signaling model for somite formation[END_REF][START_REF] Armstrong | The impact of adhesion on cellular invasion processes in cancer and development[END_REF][START_REF] Gerisch | Mathematical modelling of cancer cell invasion of tissue: Local and non-local models and the effect of adhesion[END_REF][START_REF] Domschke | Mathematical modelling of cancer invasion: Implications of cell adhesion variability for tumour infiltrative growth patterns[END_REF][START_REF] Sfakianakis | A multiscale approach to the migration of cancer stem cells: Mathematical modelling and simulations[END_REF] in which the coupling with other biologically meaningful modelling factors such as extracellular matrix, enzymatic activators and other substances are taken into account. These works usually involve drift terms due to long range attraction and/or repulsion between individuals leading to related mathematical difficulties with respect to (1.1), see for instance [START_REF] Kim | On nonlinear cross-diffusion systems: an optimal transport approach[END_REF].

The nonlinear diffusion equation (1.2) is well-studied, see [START_REF] Vázquez | The porous medium equation[END_REF], and it can be understood as a gradient flow, see [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF][START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF][START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF], of the energy functional

E(σ) =    Ω χ(σ) dx χ(σ) ∈ L 1 (Ω) +∞ otherwise
, in the metric space of probability measures endowed with a suitable topology induced by the L 2 -Monge-Kantorovich distance denoted by d 2 . The wellposedness of solutions to the nonlinear diffusion equation (1.2) was obtained in [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF] by means of the so called JKO-scheme, cf. [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF], which is a particular case of the minimising movement scheme by De Giorgi, see [START_REF] Ambrosio | Minimizing movements[END_REF] and the references therein. The idea of such a scheme is to recursively construct a sequence by solving a minimisation problem in a certain metric space (X, d), corresponding to the space of probability measures endowed with d 2 in our case. Given some initial condition σ for Eq. (1.2) and a fixed time step 0 < τ < 1 we set σ 0 τ = σ, and then recursively define

(1.3) σ n+1 τ ∈ argmin σ∈X 1 2τ d 2 (σ, σ n τ ) + E(σ) ,
for n ∈ N. The seminal work of R. J. McCann [START_REF] Mccann | A convexity principle for interacting gases[END_REF] shows that E(σ) is displacement convex or geodesically convex on the metric space of probability measures on the line endowed with d 2 as soon as β is nondecreasing on (0, +∞) or equivalently χ convex, called the McCann's condition in short. We also refer to [2, Chap. 9], [24, p. 26], or [START_REF] Villani | Optimal transport : old and new[END_REF]Chap. 17] for this classical notion, and [START_REF] Bolley | Nonlinear diffusion: geodesic convexity is equivalent to Wasserstein contraction[END_REF] for related issues. Upon choosing a proper time interpolation σ τ , it can be proven that the sequence {σ τ } τ converges to a weak solution of Eq. (1.2), see [START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF][START_REF] Villani | Optimal transport : old and new[END_REF][START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF] and the references therein.

In this work, we propose a variational splitting scheme in order to construct weak solutions to the reaction-diffusion system (1.1). More precisely, we solve in an inner time step the diffusive part of the system by the JKO scheme related to the nonlinear diffusion equation (1.2), and then we transport both densities ρ, η through the flow generated by the equation for the total population σ. Note that in this step the total and individual masses of the populations are unchanged in time. In the second inner time step of the splitting scheme, we solve the system of ODEs parameterised by the spatial variable x ∈ Ω leading to the final approximation of our new population densities after a time step. This variational splitting scheme will be written in details in Section 2. The splitting between reaction and diffusion steps is natural from the numerical analysis view point as it has already been used for variations of Keller-Segel models where the diffusion step is solved by the JKO scheme [START_REF] Blanchet | Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model[END_REF][START_REF] Carrillo | A hybrid mass transport finite element method for keller-segel type systems[END_REF] in the case of a single population density coupled with a system of reaction-diffusion equations.

Our main result shows the convergence of the splitting variational scheme towards weak solutions of the system (1.1). The main mathematical difficulty here arises from the cross-diffusion term allowing for segregation fronts to form in the solutions. This phenomenon was proven in [START_REF] Bertsch | On interacting populations that disperse to avoid crowding: preservation of segregation[END_REF] in the case of initial data with separated supports for the populations. More precisely, while [START_REF] Gurtin | A note on interacting populations that disperse to avoid crowding[END_REF] constructs a source solution of the system without reactions similar to the well-known Barenblatt-Pattle profiles [START_REF] Vázquez | The porous medium equation[END_REF] for nonlinear diffusions, [START_REF] Bertsch | On interacting populations that disperse to avoid crowding: preservation of segregation[END_REF] constructs a solution to the system without reactions by formulating it as a free boundary problem for a single effective equation, and by characterising the segregation front through this free boundary. This approach can only work in case the support of both populations are at a positive distance to each other initially. Later [START_REF] Bertsch | A free boundary problem arising in a simplified tumour growth model of contact inhibition[END_REF][START_REF] Bertsch | A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth[END_REF] combined both the nonlinear diffusion and the reaction to obtain a system similar to (1.1) showing similar segregation phenomena by regularisation techniques. However, their approach heavily relies on the absence of vacuum as they assume that σ 0 is bounded below by a positive constant.

These remarkable results have severe consequences -initially smooth solutions lose their regularity when both densities meet each other. In fact, they become discontinuous at the contact interface immediately. This phenomenon legitimises our functional space choice as bounded functions of bounded variation, see the precise notion of weak solution and assumptions on the initial data in the next section.

In contrast to [START_REF] Bertsch | On interacting populations that disperse to avoid crowding: preservation of segregation[END_REF][START_REF] Bertsch | A free boundary problem arising in a simplified tumour growth model of contact inhibition[END_REF][START_REF] Bertsch | A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth[END_REF], we show the convergence of our variational splitting scheme for general initial data even in the presence of vacuum and for general nonlinearities. Moreover, we recover their result in [START_REF] Bertsch | On interacting populations that disperse to avoid crowding: preservation of segregation[END_REF][START_REF] Bertsch | A free boundary problem arising in a simplified tumour growth model of contact inhibition[END_REF] about segregation fronts, even in the case of initial vacuum, by showing that initial data which are initially segregated remain segregated for all times. An important technical point in our proof relies on displacement convexity of an auxiliary functional that allows to obtain further regularity on the approximate solutions in order to pass to the limit in the nonlinear diffusion terms. This auxiliary functional imposes a slightly more restricted set of nonlinear diffusions satisfying some integrability condition at the origin, see the precise conditions in the next section.

The rest of the paper is organised as follows: In Section 2 we introduce the variational splitting scheme, present the main result, and explain the strategy of the proof. Section 3 is dedicated to deriving all estimates necessary for proving the existence theorem as well as the segregation theorem.

2. Preliminaries and main result. As already mentioned, our main aim is to study the existence of weak solutions for the following one-dimensional two species cross-diffusion and reaction system:

(2.1)                ∂ t ρ = ∂ x (ρ∂ x χ (ρ + η)) + ρF 1 (ρ, η) + ηG 1 (ρ, η), in [0, T ] × Ω, ∂ t η = ∂ x (η∂ x χ (ρ + η)) + ηF 2 (ρ, η) + ρG 2 (ρ, η), in [0, T ] × Ω, ρ(t, x)∂ x χ (ρ + η) (t, x) = 0, on [0, T ] × ∂Ω, η(t, x)∂ x χ (ρ + η) (t, x) = 0, on [0, T ] × ∂Ω, ρ(•, 0) = ρ 0 , η(•, 0) = η 0 , in Ω,
where Ω ⊂ R is an open bounded interval, T > 0. Moreover, χ denotes an internal energy density and F i and G i , i = 1, 2 model the reaction phenomena. Throughout we shall use the notation L 1 + (Ω) in order to denote the set of non-negative Lebesgue integrable functions. As mentioned before the space of bounded functions with bounded variation is a natural functional setting. Definition 2.1 (Space of functions of bounded variations). Let f : Ω → R. We define its variation with respect to a partition

P := {x 1 < x 2 < • • • < x |P | } ⊂ Ω by V P (f ) := |P |-1 i=1 |f (x i+1 ) -f (x i )|.
We call f a function of bounded variation if its total variation sup P V P (f ) < ∞ is finite. Here the supremum is taken over all partitions of Ω. We denote by BV (Ω) the set of functions whose variation is bounded. Equipped with the norm

f BV := sup P V P (f ),
the set BV (Ω) is a vector space.

We shall see in the remainder of this section that the vector space of bounded function with bounded variation is a good choice to construct solutions. In our analysis we will exploit the following property. Lemma 2.2 (BV (Ω)∩L ∞ (Ω) is an R-algebra.). The vector space BV (Ω)∩L ∞ (Ω) equipped with the pointwise multiplication

BV (Ω) ∩ L ∞ (Ω) 2 (f, g) → f g ∈ BV (Ω) ∩ L ∞ (Ω),
is a real algebra.

The proof of the previous result is standard. Notice that in one dimension, BVregularity implies boundedness. We prefer to write BV (Ω) ∩ L ∞ (Ω) for the sake of clarity and possible future generalisations. 

P m (Ω) := µ ∈ M + (Ω) µ(Ω) = m ,
that is, the set of positive measures with mass m > 0. Consider a measure µ ∈ P m (Ω) and a Borel map T : R → R. We denote by ν = T # µ ∈ P m (Ω) the push-forward measure of µ through T , defined by

Ω f (y) dT # µ(y) = Ω f (T (x)) dµ(x),
for all Borel functions f on Ω. We call T a transport map pushing µ to ν. We endow the space P m (Ω) with the p-Wasserstein distance, p ≥ 1,

d p p (µ 1 , µ 2 ) = inf γ∈Π m (µ1,µ2) Ω×Ω |x -y| p dγ(x, y) .
Here, Π m (µ 1 , µ 2 ) is the set of all transport plans, γ, between µ 1 and µ 2 , that is the set of positive measures of fixed mass γ(Ω × Ω) = m 2 , defined on the product space such that π i # γ = µ i , for i = 1, 2, where π i denotes the projection operator on the i-th component of the product space. If µ 1 is absolutely continuous with respect to the Lebesgue measure the optimal transport plan, γ, is unique and can be written as γ = (id, T ) # µ. In addition there exists a Kantorovich potential, ϕ, that is linked to the transport map, T , in the following way

T (x) = (id -∂ x ϕ)(x). (2.2)
We refer to [START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF][START_REF] Villani | Optimal transport : old and new[END_REF][START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF] and the references therein for a good account of the properties of transport distances and the state of the art in gradient flows/steepest descents of functionals in metric spaces of probability measures. While transport distances are an incredibly powerful tool for dealing with transport PDEs exhibiting a gradient flow structure, it is not applicable in the presence of source terms. This is owing to the fact that it is only defined for two measures of the same mass.

To resolve this shortcoming we will make use of the Bounded-Lipschitz distance d BL , classically used for the derivation of the Vlasov equation, see [START_REF] Neunzert | An introduction to the nonlinear Boltzmann-Vlasov equation[END_REF][START_REF] Spohn | Large scale dynamics of interacting particles[END_REF][START_REF] Cañizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF][START_REF] Cañizo | Measure solutions for some models in population dynamics[END_REF][START_REF] Gwiazda | Structured population equations in metric spaces[END_REF] and the references therein. The Bounded-Lipschitz distance d BL , also frequently called flat metric, is defined as follows

d BL (µ, ν) := sup Ω f d (µ -ν) | f L ∞ (Ω) , f L ∞ (Ω) ≤ 1 = µ -ν (W 1,∞ (Ω)) * .
(2.3) Note that the Bounded-Lipschitz distance may be defined in any space dimension with the properties below. Thus, we shall state all required properties in our setting. Since our problem is posed on the product space we extend the metric setting to the space M + × M + , the product space of nonnegative measures in the canonical way. For d ∈ {d BL , d p }, 1 ≤ p < ∞, we define the product metric (still denoted d) as

d(U, Ũ ) := d(ρ, ρ) + d(η, η) , (2.4) where U = (ρ, η), Ũ = (ρ, η) ∈ M + × M + . Proposition 2.3 (Properties of d BL ). Let µ, ν ∈ L 1
+ (Ω) be two densities. Then the following properties hold true:

(i.) d BL (µ, ν) ≤ µ -ν L 1 (Ω) , (ii.) d BL (µ, ν) ≤ d 1 (µ, ν), whenever µ(Ω) = ν(Ω). Proof. Let µ, ν ∈ L 1 + (Ω) be arbitrary and f ∈ W 1,∞ (Ω) with f W 1,∞ (Ω) ≤ 1. Hence we may write Ω f d(µ -ν) ≤ Ω |f | d|µ -ν| = µ -ν L 1 (Ω) .
Taking the supremum over all such functions f we get the first statement by using definition (2.3). For the second statement, we additionally assume that µ(Ω) = ν(Ω).

We recall the dual definition of d 1 ,

d 1 (µ, ν) = sup Ω f d(µ -ν) | f ∈ Lip(Ω) s.t. f Lip(Ω) ≤ 1 ,
where Lip(Ω) is the set of Lipschitz-continuous functions, see [START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF]. Then property (ii.) is a consequence of this formulation, and this concludes the proof.

Corollary 2.4. Let U i = (µ i , ν i ) ∈ M + (Ω) 2 for i = 1, 2, 3. Furthermore as- sume µ i , ν i ∈ L 1 (Ω) for i = 1, 2 as well as µ 2 (Ω) = µ 3 (Ω) and ν 2 (Ω) = ν 3 (Ω). Then d BL U 1 , U 3 ≤ U 1 -U 2 L 1 (Ω) + d 1 U 2 , U 3 .
Throughout two quantities are crucial for our analysis -the sum of the two densities, σ, and the ratio, r, between one density, say ρ, and the sum

σ = ρ + η, and r = ρ σ ,
Note that, at this stage, the quotient can only be written formally. A straightforward computation shows these functions formally satisfy the following system of PDEs

     ∂ t σ = ∂ x (σ∂ x χ (σ)) + σ r( F1 + G2 ) + (1 -r) G1 + F2 , ∂ t r = ∂ x r∂ x χ (σ) + r(1 -r) F1 -F2 + (1 -r) 2 G1 -r 2 G2 , (2.5) 
where we used Fi (σ, r) = F i (rσ, (1 -r)σ) and Gi (σ, r) = G i (rσ, (1 -r)σ), for i = 1, 2, to denote the reaction terms in the transformed variables. In order to simplify the analysis in Section 3, let us introduce the more concise notation A 1 (r, σ) := F1 + G2 , A 2 (r, σ) := G1 + F2 , and A 3 (r, σ) := F1 -F2 .

Note that these functions are Lipschitz and bounded as they are linear combinations of BV ∩ L ∞ functions. Thus the transformed system (2.5) can be rewritten in the more compact form

∂ t σ = ∂ x (σ∂ x χ (σ)) + σ rA 1 + (1 -r)A 2 , ∂ t r = ∂ x r∂ x χ (σ) + r(1 -r)A 3 + (1 -r) 2 G1 -r 2 G2 . (2.6)
Let us note here, that taking F i = G i = 0 in (1.1), yields the following nonlinear cross-diffusion system

∂ t ρ = ∂ x (ρ∂ x χ (σ)) , ∂ t η = ∂ x (η∂ x χ (σ)) , (2.7)
where the sum σ satisfies the nonlinear diffusion equation (1.2).

In order to be useful for our purposes, we need some properties on the internal energy density. The role of these properties will be clearer after the statement of our main result.

Definition 2.5 (Internal energy density). A function

χ : [0, ∞] → R is an internal energy density if (NL-i) χ ∈ C 0 ([0, ∞], R) ∩ C 2 ((0, ∞), R) with χ > 0, (NL-ii) lim h↓0 χ (h) = 0. (NL-iii) the integrals κ(x) := x 1 χ (s) s
ds, and K(σ) := σ 0 κ(x) dx exist. As mentioned in the introduction, the space of probability measures endowed with d 2 has proven to be an exceptional choice of a metric space. In this case the minimiser in Eq. (1.3) satisfies the optimality condition ϕ τ + χ (σ n+1 ) = const., (2.8) cf. [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF]Proposition 7.20], for instance. Here ϕ denotes the associated Kantorovich potential transporting σ n+1 to σ n in P m1+m2 , with m 1 and m 2 the masses of ρ and η, [44, Theorem 1.17]. Notice that this optimality is only obtained in those references for non-degenerate problems, where β (0 + ) > 0. However, similar approximation techniques as those developed in [41, p. 156] and [24, p. 27] allow to overcome the difficulties associated to degenerate diffusions, where β (0 + ) = 0. In the rest of the paper, we will proceed as if we were dealing with nonlinearities leading to nondegenerate diffusions since by this standard approximation procedure, the same result can be obtained for the degenerate ones. We are now ready to introduce our notion of weak solutions. > 0, and is therefore displacement convex. This fact will be crucial in Section 3.3 in order to prove Lemma 3.10. Let us just state here that it is necessary to obtain additional regularity from the dissipation of this functional on the nonlinear diffusion term, thus allowing us to pass to the limit in the approximating sequence.

Definition 2.6 (Notion of weak solutions

). A couple ρ, η ∈ C 0, T ; BV (Ω) ∩ L ∞ (Ω) is a weak solution to system (2.1) if σ = ρ + η ∈ L 2 (0, T ; H 1 (Ω)) and there holds Ω (ρ(t) -ρ(s)) ζ dx = t s Ω -ρ∂ x χ (ρ + η)∂ x ζ + (ρF 1 (ρ, η) + ηG 1 (ρ, η)) ζ dx dτ , Ω (η(t) -η(s)) ξ dx = t s Ω -η∂ x χ (ρ + η)∂ x ξ + (ηF 2 (ρ, η) + ρG 2 (ρ, η)) ξ dx dτ , for 0 ≤ s < t ≤ T any two test functions ζ, ξ ∈ C ∞ c (Ω). Remark 2.
2. Let us note that we can also allow for nonlocal reaction terms, i.e.

F i = W 1,i ρ + W 2,i η,
and similarly for G i , for i = 1, 2. The only assumption we need to impose on the kernels is that they are smooth and integrable. These models are found in modelling pattern formation, as for instance the kernel-based Turing pattern system [START_REF] Kondo | An updated kernel-based Turing model for studying the mechanisms of biological pattern formation[END_REF] or the nonlinear aggregation-diffusion system [START_REF] Volkening | Modelling stripe formation in zebrafish: an agent-based approach[END_REF].

3. Similarly, we can -at least formally -interpret the system (2.7) as a gradient flow of the functional

E(ρ, η) = Ω χ(ρ + η) dx,
in the product Wasserstein space.

2.2. Splitting scheme. We are now ready to introduce our splitting scheme for equation (2.1). Let some initial data ρ 0 , η 0 ∈ BV (Ω) ∩ L ∞ (Ω) be given such that there exists a function r 0 ∈ BV (Ω) such that σ 0 := ρ 0 + η 0 , and ρ 0 σ 0 = r 0 {σ0>0} , and 0 ≤ r 0 ≤ 1. Furthermore we assume F i and G i , i = 1, 2 are bounded and Lipschitz with respect to ρ and η and we impose G 1 (0, •) ≥ 0 and G 2 (•, 0) ≥ 0 to ensure positivity of solutions.

We fix 0 < τ < 1 and n ∈ {0, . . . , N }, with N ∈ N such that N τ = T . We then recursively construct the piecewise constant approximation to the system as follows. We impose (ρ 0 , η 0 ) = (ρ 0 , η 0 ), and then construct U n+1 = (ρ n+1 , η n+1 ) by the following scheme. We split the equation into a reaction step and a diffusion step on the time interval [t n , t n+1 ), with t n = nτ , for all 0 ≤ n ≤ N .

Reaction step.

The reaction phase consists of solving the system of ordinary differential equations

       ∂ t σ = Σ(σ, r) := σ rA 1 + (1 -r)A 2 , ∂ t r = R(σ, r) := r(1 -r)A 3 + (1 -r) 2 G1 -r 2 G2 , σ(t n ) = σ n , and r(t n ) = r n ,
in the time interval [t n , t n+1 ). We then set ρ n+1/2 := rσ t=(n+1)τ , and η n+1/2 := (1 -r)σ t=(n+1)τ . (2.9a) A straightforward computation reveals

∂ t (rσ) = rσ F1 + (1 -r)σ G1 , ∂ t ((1 -r)σ) = (1 -r)σ F2 + rσ G2 , (2.9b)
formally verifying that rσ and (1 -r)σ solve the reaction part of Eq. (2.1). Note that we shall solve the system rigorously in the subsequent section.

Diffusion step.

After the reaction phase we solve

(2.9c) U n+1 ∈ argmin U ∈P m 1 (Ω)×P m 2 (Ω) 1 2τ d 2 2 U, U n+1/2 + E(U ) ,
where m 1 = ρ n+1/2 (Ω) and m 2 = η n+1/2 (Ω). Let T denote the associated optimal transport map, i.e. T # U n+1 = U n+1/2 . We define

σ n+1 := ρ n+1 + η n+1 , and 
r n+1 := r n+1/2 • T . (2.9d)
While the definition of σ n+1 is somewhat natural, the definition of r n+1 seems a bit surprising. Let us note here that, indeed, r n+1 = ρ n+1 /σ n+1 where σ n+1 > 0. For the precise argument we refer to Section 3.2, Eq. (3.3).

Combination of both steps -construction of a solution.

Throughout this paper we refer to Eq. (2.9a) as reaction step and to Eq. (2.9c) as diffusion step, respectively. Definition 2.8. [Piecewise constant interpolation] Let (r n , σ n ) n∈N be the sequence obtained from the splitting scheme. Then we define the piecewise constant interpolations by r τ (t, x) = r n (x), and σ τ (t, x) = σ n (x), as well as

ρ τ (t, x) = r n (x)σ n (x), and η τ (t, x) = (1 -r n (x))σ n (x), for all (x, t) ∈ Ω × [t n , t n+1
). Furthermore we write U τ := (ρ τ , η τ ).

We will say that two densities ρ, η ∈ BV (Ω) ∩ L ∞ (Ω) are segregated if the intersection of the interior of their supports is empty. We are now ready to state our main result.

Theorem 2.9 (Convergence to weak solutions). Let ρ 0 , η 0 ∈ BV (Ω) ∩ L ∞ (Ω) and assume there exists a function r 0 ∈ BV (Ω) such that r 0 = ρ 0 /(ρ 0 + η 0 ) on {ρ 0 +η 0 > 0} and 0 ≤ r 0 ≤ 1. Furthermore, we assume that the nonlinearity χ satisfies the assumptions in Definition 2.5 and the reaction terms F i and G i , i = 1, 2 are bounded and Lipschitz with respect to ρ and η with G 1 (0, •) ≥ 0 and G 2 (•, 0) ≥ 0. Then, upon the extraction of a subsequence, the piecewise constant interpolations (ρ τ ) τ >0 and (η τ ) τ >0 converge to a weak solution of system (2.1) in the sense of Definition 2.6. Moreover, if initially the two densities ρ 0 , η 0 are segregated, then, in the absence of cross-reactions, the limit densities ρ(t, •), η(t, •) remain segregated for all times.

3. Proof of the main result. This section is dedicated to proving the main result of the paper -the convergence of the approximation obtained by the splitting scheme to a solution of the system. It is organised as follows: in Section 3.1 and 3.2 we establish the crucial BV-estimates and L ∞ -bounds. In Section 3.3 we combine the estimates from the previous sections in order to get uniform estimates for a whole iteration. Finally, in Section 3.4 we show how to extract a convergent subsequence and identify its limit as a weak solution to system (2.1).

3.1.

Estimates for reaction step. Since the right-hand sides, Σ(σ, r), R(σ, r) are Lipschitz continuous in both components we note that the solution of the reaction system is unique. Proposition 3.1 (L ∞ estimates of the reaction step). Let (r n , σ n ) be given by our splitting scheme. Then there holds

0 ≤ σ n+1/2 ≤ σ n L ∞ exp(cτ ), and 0 ≤ r n+1/2 ≤ 1,
for some constant c > 0 independent of n and any x ∈ Ω.

Proof. We show first that there holds r n+1/2 ∈ [0, 1]. Assume the contrary, i.e. there exists an x ∈ Ω such that r n+1/2 (x) < 0 or r n+1/2 (x) > 1. If r n+1/2 (x) < 0 then, by continuity, there exists a time t (x) ∈ (t n , t n+1 ) such that r(t , x) = 0 and ∂ t r(t , x) < 0. However, this is absurd as

0 > ∂ t r(t , x) = R σ(t , x), r(t , x) = G1 σ(t , x), 0 ≥ 0.
Analogously, it can be shown that r n+1 (x) ≤ 1. Finally, for the positivity of σ we can use a similar argument. Let us assume σ n (x) ≥ 0 and σ n+1/2 (x) < 0 for some x ∈ Ω. Then, there exists another t such that 0 > ∂ t σ(t , x) = Σ σ(t , x), r(t , x) = 0, which clearly is a contradiction. For the L ∞ -bound we simply apply Gronwall's lemma and the fact that r ∈ [0, 1].

Since we control the L ∞ -norm of both r and σ the local solution provided by the Cauchy-Lipschitz Theorem is indeed global. Next we address the BV-estimates during the reaction step. Proposition 3.2 (Bounded variation of r n+1/2 and σ n+1/2 ). Let us consider (r n , σ n ) as initial data for our splitting scheme. Then, the reaction step is BV-stable in the following sense.

r n+1/2 BV + σ n+1/2 BV ≤ ( r n BV + σ n BV ) exp(cτ ),
for some positive c, depending only on the Lipschitz constants of F i , G i and the L ∞bounds on F i , G i , for i = 1, 2.

Proof. Using the transformed system, Eqs.(2.6), r and σ satisfy the following equations in the reaction step

∂ t σ = Σ(σ, r), and ∂ t r = R(σ, r).
Upon integrating in time we get σ(t) = σ(s) + t s Σ σ(τ ), r(τ ) dτ , and r(t) = r(s) + t s R σ(τ ), r(τ ) dτ . Now, let P ⊂ Ω be an arbitrary partition. We compute the variation of σ and r with respect to P and obtain

Q(t) := V P (σ(t)) + V P (r(t)) ≤ V P (σ(s)) + V P (r(s)) + t s V P (Σ(τ )) + V P (R(τ )) dτ , whence Q(t) ≤ Q(s) + c t s Q(τ ) dτ ,
where c only depends on the L ∞ -bounds and the Lipschitz-continuity of A i , for ∈ {1, 2, 3} and the L ∞ -bounds of σ and r. Applying Gronwall's lemma we finally obtain

Q(t) ≤ Q(s) exp c(t -s) .
Passing to the supremum on the right-hand side and then on the left-hand side yields the result.

3.2.

Estimates for diffusive step. This section is devoted to establishing BVestimates and L ∞ -bounds in the diffusive step. To this end we will make use of the following lemma. Lemma 3.3 (Same optimality conditions). (ρ n+1 , η n+1 ) be given by the JKO step for E, cf. (2.9c). Moreover, let

σ * ∈ argmin σ∈P m 1 +m 2 (Ω) 1 2τ d 2 2 (σ, σ n+1/2 ) + E(σ) ,
and T be the associated optimal transport map,

T # σ * = σ n+1/2 .
Then there holds σ * = ρ n+1 + η n+1 and T ρ = T η = T σ on supp(ρ n+1 ) ∪ supp(η n+1 ) for the associated optimal transport maps. Moreover the optimality conditions read

δE δρ + ϕ ρ τ = c 1 , δE δη + ϕ η τ = c 2 , and with δE δρ = δE δη = χ (σ n+1 ),
on supp(ρ n+1 ) ∪ supp(η n+1 ) as well as ϕ ρ = ϕ η = ϕ up to an additive constant.

Proof.

Let (ρ n+1 , η n+1 ) ∈ argmin 1 2τ d 2 2 (U, U n+1/2 ) + E(U ) ,
and let T ρ , T η be the associated transport maps, i.e. T ρ # ρ n+1 = ρ n+1/2 and T η # η n+1 = η n+1/2 . Note that the optimality conditions take the following form

χ (ρ n+1 + η n+1 ) + ϕ ρ τ = c ρ , on supp(ρ n+1 ), ≥ c ρ , elsewhere,
for ρ and

χ (ρ n+1 + η n+1 ) + ϕ η τ = c η , on supp(η n+1 ), ≥ c η , elsewhere,
for η, respectively. Thus the optimal maps are given by

T ρ = id + τ ∂ x χ (ρ n+1 + η n+1 ), on supp(ρ n+1 ), T η = id + τ ∂ x χ (ρ n+1 + η n+1 ), on supp(η n+1 ).
In particular, note that T ρ ≡ T η =: T , on supp(ρ n+1 ) ∩ supp(η n+1 ). We claim that

σ n+1 := ρ n+1 + η n+1 is a minimiser of the problem min 1 2τ d 2 2 (σ, σ n+1/2 ) + E(σ) . (3.1)
To this end suppose there exists σ * ∈ P m1+m2 (Ω) such that

1 2τ d 2 2 (σ * , σ n+1/2 ) + E(σ * ) < 1 2τ d 2 2 (σ n+1 , σ n+1/2 ) + E(σ n+1 ).
Then there holds

1 2τ d 2 2 (U n+1 , U n+1/2 ) + E(U n+1 ) = 1 2τ Ω |x -T ρ (x)| 2 ρ n+1 (x) dx + Ω |x -T η (x)| 2 η n+1 (x) dx + E(U n+1 ) = 1 2τ supp(ρ n+1 ) |x -T ρ (x)| 2 ρ n+1 (x) dx + supp(η n+1 ) |x -T η (x)| 2 η n+1 (x) dx + E(U n+1 ) = 1 2τ supp(ρ n+1 )\(supp(ρ n+1 )∩supp(η n+1 )) |x -T ρ (x)| 2 ρ n+1 (x) dx + supp(η n+1 )\(supp(ρ n+1 )∩supp(η n+1 )) |x -T η (x)| 2 η n+1 (x) dx + (supp(ρ n+1 )∩supp(η n+1 )) |x -T (x)| 2 σ n+1 (x) + E(U n+1 ) = 1 2τ supp(ρ n+1 )\(supp(ρ n+1 )∩supp(η n+1 )) |x -T ρ (x)| 2 σ n+1 (x) dx + supp(η n+1 )\(supp(ρ n+1 )∩supp(η n+1 )) |x -T η (x)| 2 σ n+1 (x) dx + (supp(ρ n+1 )∩supp(η n+1 )) |x -T (x)| 2 σ n+1 (x) + E(U n+1 ) ≥ 1 2τ d 2 2 (σ n+1 , σ n+1/2 ) + E(σ n+1 ) > 1 2τ d 2 2 (σ * , σ n+1/2 ) + E(σ * ) = 1 2τ Ω |x -S(x)| 2 σ * (x) dx + E(σ * ),
where S is the optimal transport map, such that S # σ * = σ n+1/2 . We may write σ * = ρ * + η * such that S # ρ * = ρ n+1/2 and S # η * = η n+1/2 . Then we may write

1 2τ d 2 2 (U n+1 , U n+1/2 ) + E(U n+1 ) > 1 2τ Ω |x -S(x)| 2 ρ * (x) dx + 1 2τ Ω |x -S(x)| 2 η * (x) dx + E(ρ * + η * ) ≥ 1 2τ d 2 2 (U * , U n+1/2 ) + E(U * ),
which is absurd for it implies U n+1 is not a minimiser. Hence we conclude that σ n+1 is a minimiser of problem (3.1) and, as a byproduct, T ρ ≡ T η on supp(ρ n+1 ) ∪ supp(η n+1 ) = supp(σ n+1 ). Finally let us address the construction of the partition σ * = ρ * + η * . To this end we set A := supp(σ * ) ⊂ Ω and recall that this set is compact. Therefore its complement in Ω is open, and we may write it as

A c = i∈N I i
i.e. as the countable union of open intervals. Taking the closure of these intervals, we see that

B := Ω \ i∈N cl(I i ),
satisfies A = B up to a set of measure zero. However, since σ n+1/2 is absolutely continuous the transport map cannot map intervals with positive mass onto a point. Thus, restricting S to B even makes the map injective and we can readily define its inverse. Setting ρ * = S -1

B # ρ n+1/2 and η * = S -1 B # η n+1/2
is a suitable decomposition of σ * , which concludes the proof. Proposition 3.4 (L ∞ stability of the diffusive step). Let (r n+1/2 , σ n+1/2 ) be given by the splitting scheme (2.9a). Then these quantities satisfy

0 ≤ σ n+1 ≤ σ n+1/2 L ∞ , and 
0 ≤ r n+1 ≤ 1,
after the diffusion step for any 0 ≤ n ≤ N .

Proof. Choose x 0 ∈ argmax(σ n+1 ). Then, by the optimality condition, Eq. (2.8),

χ (σ n+1 ) + ϕ τ = c,
we have x 0 ∈ argmin(ϕ) where we used the fact that χ ≥ 0, cf. Definition 2.5, (NL -iii). Hence ϕ (x 0 ) ≥ 0 and consequently, by passing to the derivative in Eq.

(2.2) we get

T (x 0 ) = 1 -∂ xx ϕ(x 0 ) ≤ 1. (3.2)
where T is the transport map from σ n+1 to σ n+1/2 . After a change of variables we get

σ n+1 (x) ≤ σ n+1 L ∞ = σ n+1 (x 0 ) = T (x 0 )σ n+1/2 (T (x 0 )) (3.2) 
≤ σ n+1/2 (T (x 0 ))

≤ σ n+1/2 L ∞ ,
for any x ∈ Ω. For the non-negativity we observe that T ≥ 0 by Brenier's theorem [START_REF] Brenier | Décomposition polaire et réarrangement monotone des champs de vecteurs[END_REF][START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF][START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Villani | Optimal transport : old and new[END_REF]. Note that we exploited here the fact that the problem is posed in one spatial dimension. Thus

σ n+1 (x) = σ n+1/2 • T (x)T (x) ≥ 0.
Finally the bounds for r n+1 follow from its definition, cf. Eq. (2.9d), as the composition with a monotone function does not change the infimum and the supremum of a function. This concludes the proof.

Proposition 3.5 (Bounded variation of r n+1 and σ n+1 ). Let (r n+1/2 , σ n+1/2 ) be given. After the diffusive step they satisfy the following estimate.

σ n+1 BV ≤ σ n+1/2 BV , and 
r n+1 BV ≤ r n+1/2 BV .
Proof. The result for the BV-norm of the minimiser, σ n+1 , is shown analogously to the proof of Theorem 1.1., cf. [START_REF] De Philippis | BV estimates in optimal transportation and applications[END_REF]. Now we need to show that the BV-norm of the ratio r does not increase. Recall the definition of r n+1 , cf. Eq. (2.9d), as

r n+1 := r n+1/2 • T ,
where T is the transport map such that ρ n+1/2 = T # ρ n+1 and σ n+1/2 = T # σ n+1 . Note that it is indeed the same function and there holds T ≥ 0, by Brenier's theorem [START_REF] Brenier | Décomposition polaire et réarrangement monotone des champs de vecteurs[END_REF][START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF][START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Villani | Optimal transport : old and new[END_REF] . Now, let P ⊂ Ω be any partition of Ω. There holds

V P (r n+1 ) = V P (r n+1/2 • T ) = V P (r n+1/2 ) ≤ r n+1/2 BV ,
where P is another partition induced by the monotone map T . Taking the supremum over all partitions P , we get

r n+1 BV ≤ r n+1/2 BV .
Finally note that, indeed,

r n+1 (x) = ρ n+1 (x) σ n+1 (x) ,
on supp(σ n+1 ) as we shall see now. According to Lemma 3.3, the same transport map T pushes ρ n+1 onto ρ n+1/2 and σ n+1 onto σ n+1/2 . As a consequence the densities satisfy

ρ n+1 (x) = ρ n+1/2 T (x) T (x), and σ n+1 (x) = σ n+1/2 T (x) T (x), whence r n+1 (x) := r n+1/2 • T (x) = ρ n+1/2 σ n+1/2 • T (x) = ρ n+1 σ n+1 (x). (3.3) 
3.3. Combined estimates for an entire splitting step. We have now garnered all information necessary to pass to the limit. Let us combine the estimates from the previous section in the following lemma. Proof. The uniform L ∞ -bound is a consequence of combining Propositions 3.1 and 3.4. We use these uniform L ∞ -bounds in the estimates for the BV -norm, cf. Propositions 3.2 and 3.5. Combining both for the reaction and diffusion step we also obtain the uniform BV -bounds.

As a result of Lemma 3.6 and Lemma 2.2 we obtain the following corollary.

Corollary 3.7 (BV -estimates and L ∞ -estimates for ρ, η). The sequences of approximated densities (ρ τ ) τ >0 , (η τ ) τ >0 are uniformly bounded, i.e.

ρ τ L ∞ (0,T ;L ∞ ∩BV ) ≤ C, and η τ L ∞ (0,T ;L ∞ ∩BV ) ≤ C,
where the constant C > 0 is independent of the parameter τ Finally, we need to prove an estimate on the cross-diffusion term to be able to pass to the limit later. This estimate is achieved in Lemma 3.10 which is preceded by two technical lemmas. We exploit the existence of an auxiliary functional guaranteed by Definition 2.5. Note that in the absence of the reaction part this would indeed be an entropy in the classical sense, i.e. that it is decayed along solutions. Since we are interested in a uniform estimate we shall begin by proving a control of this functional during each reaction phase. Lemma 3.8 (Control of the auxiliary functional in the reaction step). K increases at most at a constant rate independent of n. More precisely there holds

K(σ n+1/2 ) ≤ K(σ n ) + cτ, for any n ∈ N. Proof. A straight forward computation yields d dt Ω K(σ) dx = Ω κ(σ)∂ t σ dx = Ω κ(σ)σ(rA 1 + (1 -r)A 2 ) dx ≤ c,
using the uniform L ∞ -bound on σ and the fact that |Ω| < ∞. Hence,

K(σ n+1/2 ) ≤ K(σ n ) + cτ,
where c is independent of n.

Next, we address the diffusion step. As mentioned earlier the auxiliary functional, K, is an entropy for the diffusive part and from its dissipation we obtain the necessary regularity, as asserted in the following lemma. Lemma 3.9 (H 1 -bound for σ n+1 ). The minimiser of the JKO step satisfies the following estimate

τ ∂ x σ n+1 2 L 2 (Ω) ≤ K(σ n+1/2 ) -K(σ n+1 ) , for each 0 ≤ n ≤ N . Proof. Let (ρ n+1 , η n+1 ) ∈ argmin 1 2τ d 2 2 (•, U n+1/2 ) + E(U ) .
Let σ s = (T s ) # σ n+1 be the geodesic interpolation between σ s | s=0 = σ n+1 and σ s | s=1 = σ n+1/2 , given by

T s = (1 -s)id + sT , and 
T = id -∂ x ϕ,
for the associated Kantorovich potential, ϕ, cf. Eq. (2.2). As a consequence the velocity field is given by

v s = (T -id) • T -1 s ,
satisfying the following continuity equation,

∂ s σ s = ∂ x (σ s v s ).
We differentiate the entropy along the geodesic and obtain

d ds Ω K(σ s ) dx = Ω κ(σ s )∂ s σ s dx = - Ω κ (σ s )∂ x σ s σ s v s dx = - Ω χ (σ s )∂ x σ s v s dx = - Ω ∂ x χ (σ s )v s dx.
Thus, at s = 0, the evolution of the entropy Eq. ( 9) becomes

d ds Ω K(σ s ) dx s=0 = Ω ∂ x χ (σ n+1 )∂ x ϕ dx.
Using the optimality condition, Eq. (2.8), we obtain

τ Ω ∂ x χ (σ n+1 ) 2 dx = - Ω ∂ x χ (σ n+1 )∂ x ϕ dx = d ds Ω K(σ s ) dx s=0 ≤ K(σ n+1/2 ) -K(σ n+1 ),
where the last inequality is a consequence of the geodesic convexity of the entropy, cf. Remark 2.7. This concludes the proof.

We combine the previous lemmas to obtain the desired estimate for a full iteration and finally for the piecewise constant interpolation, σ τ . Lemma 3.10 (Uniform L 2 ((0, T ) × Ω)-bound for ∂ x σ τ ). There holds

∂ x χ (σ τ ) L 2 ((0,T )×Ω) ≤ C,
for some positive constant depending only on T .

Proof. This statement is a consequence of combining Lemma 3.8 and Lemma 3.9 to get

τ ∂ x χ (σ n+1 ) 2 L 2 (Ω) ≤ K(σ n+1/2 ) -K(σ n+1 ) ≤ cτ + K(σ n ) -K(σ n+1 ).
Summing over n = 0 . . . N -1 gives

∂ x χ (σ τ ) 2 L 2 ((0,T )×Ω) ≤ cT + K(σ 0 ) -inf σ K(σ) ≤ C,
which yields the statement of the lemma.

Lemma 3.11 (Total-square 2-Wasserstein distance estimates). For every n ∈ {0, . . . , N } consider two consecutive steps for (2.9c), U n+1/2 = (ρ n+1/2 , η n+1/2 ) and U n+1 = (ρ n+1 , η n+1 ), then there exists a constant C such that

1 2τ N n=0 d 2 2 (U n+1/2 , U n+1 ) ≤ C.
Proof. Using the minimising property of U n+1 we have

1 2τ d 2 2 (U n+1/2 , U n+1 ) ≤ E(U n+1/2 ) -E(U n+1 ).
Adding and subtracting E(U n ) on the right-hand side, and considering that

E(U n+1/2 ) -E(U n ) = Ω χ(σ n+1/2 ) dx - Ω χ(σ n ) dx = Ω χ σ n + t n+1 t n σ(rA 1 + (1 -r)A 2 ) ds dx - Ω χ(σ n ) dx ≤ Ω χ (ξ(x)) t n+1 t n σ(rA 1 + (1 -r)A 2 ) ds dx
due to a Taylor expansion of χ around σ n , where ξ ∈ [σ n , σ n+1/2 ]. Owing to the uniform L ∞ -bounds on the σ and σ n+1/2 we may further simplify

E(U n+1/2 ) -E(U n ) ≤ χ L ∞ Ω t n+1 t n |σ(rA 1 + (1 -r)A 2 )| ds dx ≤ Cτ, (3.4)
where, in the last inequality, we used the L ∞ -bounds on σ, r as well as on F i , G i . Hence, we may summarise

1 2τ d 2 2 (U n+1/2 , U n+1 ) ≤ E(U n ) -E(U n+1 ) + Cτ,
for a full time step. Finally, summing over n gives the result:

1 2τ N n=1 d 2 2 (U n+1/2 , U n+1 ) ≤ N n=0 E(U n ) -E(U n+1 ) + Cτ = E(U 0 ) -E(U N τ ) + N (Cτ ) ≤ E(U 0 ) - inf U ∈M+×M+ E(U ) + CN τ ≤ C.
3.4. Convergence. We now prove the convergence result.

Proposition 3.12. The piecewise constant interpolations defined in Definition 2.8 admit subsequences converging uniformly to absolutely continuous curves, ρ, η, with respect to d BL with values in M + (Ω). Moreover, ρ and η are d BL -continuous functions on [0, T ].

Proof. The proof is based on the application of a generalised version of the Ascoli-Arzelà theorem, cf. Ref. [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF], Section 3.

We begin by establishing 'almost continuity' of the approximation. To this end let 0 ≤ s < t ≤ T be two time instances. Then there exist two uniquely determined integers, m, k, m ≤ k -1, satisfying s ∈ ((m -1)τ, mτ ], and t ∈ ((k -1)τ, kτ ], such that

d BL (U τ (s), U τ (t)) ≤ k-1 n=m d BL (U n , U n+1 ) ≤ k-1 n=m d 2 BL (U n , U n+1 ) 1 2 |k -m| 1 2 , (3.5)
where U τ (t) = (ρ τ (t), η τ (t)) as defined in Definition 2.8. It becomes apparent that we need to address the bounded Lipschitz term next. To this end we use the triangulation established in Corollary 2.4 to estimate it by the L 1 -distance in the reaction step and the W 1 -distance in the diffusion step. Hence

k-1 n=m d 2 BL (U n , U n+1 ) ≤ 2 N n=0 U n -U n+1/2 2 L 1 (Ω) + 2 N n=0 d 2 1 (U n+1/2 , U n+1 ).
For the reaction step an argument similar to Eq. (3.4) yields

U n -U n+1/2 2 L 1 (Ω) = Ω |ρ n+1/2 -ρ n | + |η n+1/2 -η n | 2 = Ω (n+1)τ t n rσ F1 + (1 -r)σ G1 ds + (n+1)τ t n (1 -r)σ F2 + rσ G2 ds dx 2 ≤ Cτ 2 ,
by Eq. (2.9b), where C depends on the L ∞ -bounds of r, σ as well as F i , G i , for i = 1, 2. Using that the p-Wasserstein distances are ordered, we even have |k -m|

1 2 ≤ C √ τ |t -s| τ + 1 1 2 ≤ C( |t -s| + √ τ ).
Thus we get the 'almost 1 2 -Hölder continuity' for the curve U τ (t) and we obtain the uniform narrow compactness on compact time intervals by using the refined version of Ascoli-Arzelà's theorem, cf. [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF], Section 3. Corollary 3.13 (Strong convergence in L p (0, T ; L q (Ω))). Let 1 ≤ p, q < ∞ and (ρ τ ) τ >0 and (η τ ) τ >0 be the sequences of the piecewise constant interpolations as in Definition 2.8. Then there exist two functions ρ, η ∈ L p (0, T ; L q (Ω)) and subsequences, again denoted by (ρ τ ) τ >0 and (η τ ) τ >0 , such that ρ τ → ρ, and η τ → η, associated to the optimal map T , the integral above can be rewritten as (3.8)

We rewrite this equation in terms of the piecewise constant interpolation, Definition 2.8. For any 0 < s < t < T there are two uniquely determined integers m, k such that s ∈ (mτ, (m + 1)τ ] , and t ∈ (kτ, (k + 1)τ ] .

with r(t n ) = r n . By the uniqueness of the solution we have r(t) = r n on [t n , (n + 1)τ ] and therefore r n+1/2 = r n . Next we notice that supp(σ n+1/2 ) ⊂ supp(σ n ). This is due to the fact that the right-hand side of the equation for σ is premultiplied by σ ∂ t σ = σ(rA 1 + (1 -r)A 2 ), i.e. for any x ∈ Ω with σ(t n , x) = 0 there holds σ(t, x) = 0 for all t ∈ [t n , (n + 1)τ ] by the uniqueness of solutions, whence we deduce supp(σ n+1/2 ) ⊂ supp(σ n ). Hence we only need to prove that segregation is kept in the diffusion step. This is done by contradiction. Let us assume there exists an 1 ≤ n ≤ N such that Ω ρ n+1/2 (x)η n+1/2 (x) dx = 0, (3.9) while Ω ρ n+1 (x)η n+1 (x) dx > 0.

Then there exists δ > 0 and a set B ⊂ Ω with |B| > 0, such that |T (x)| < ∞ , ρ n+1 (x) > δ , and η n+1 (x) > δ,

for almost all x ∈ B. As both species have the same transport map T in common there exists a set A such that A = T (B) and 0 < δ < ρ n+1 (x) = ρ n+1/2 (T (x))T (x), 0 < δ < η n+1 (x) = η n+1/2 (T (x))T (x), which is absurd, for we assumed (3.9). Thus segregation is kept at each iteration which concludes the proof of the theorem.
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7 . 1 .

 71 Notice that the functional K(σ) := Ω K(σ) dx, associated to χ, as in Definition 2.5, satisfies the McCann condition since K (s) = χ (s) s

Lemma 3 . 6 (

 36 BV -estimates and L ∞ -estimates). The sequence (r τ , σ τ ) τ >0 obtained by the splitting scheme is uniformly bounded in L ∞ (0, T ; L ∞ ∩ BV ). More precisely there holds sup t∈[0,T ] r τ L ∞ ≤ C, and sup t∈[0,T ] σ τ L ∞ ≤ C, and sup t∈[0,T ] r τ BV ≤ C, and sup t∈[0,T ]σ τ BV ≤ C,for some positive constant C < ∞ only depending on T and the initial data but not on τ .
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 3611 1 τ Ω ρ n+1 (x) -ρ n+1/2 (x) ζ(x) dx = -1 τ Ω ρ n+1 (x) (T (x) -x) ∂ x ζ(x) dx + O d 2 2 (ρ n+1 , ρ n+1/2 ) = 1 τ Ω ρ n+1 (x)∂ x ϕ(x)∂ x ζ(x) dx + O d 2 2 (ρ n+1 , ρ n+1/2 ) .Thanks to the optimality condition, Lemma 3.3, we get1 τ Ω ρ n+1 -ρ n+1/2 ζ dx = -Ω ρ n+1 ∂ x χ (σ n+1 ) ∂ x ζ dx + O d 2 2 (ρ n+1 , ρ n+1/2 ) . Reaction part. Note that Ω ρ n+1/2 -ρ n τ ζ dx = Ω r n+1/2 σ n+1/2 -r n σ n r(τ )σ(τ ) ζ dτ dx, = Ω r n+1/2 σ n+1/2 F1 + (1 -r n+1/2 )σ n+1/2 G1 ζ dx + O(τ ) F 1 (ρ n+1/2 , η n+1/2 ) and G n+1/2 G 1 (ρ n+1/2 , η n+1/2), having used an approximation of Eq. (2.9b). Combination of both steps. Let us combine the reaction step and the diffusion step of the splitting scheme. Upon summing up Eqs.(3.6, 3.7) we obtain0 = 1 τ Ω ζ(x)(ρ n+1 (x) -ρ n (x)) dx + O(d 2 2 (ρ n+1 , ρ n+1/2 )) + Ω ρ n+1 ∂ x χ (ρ n+1 (x) + η n+1 (x))∂ x ζ(x) dx -Ω ρ n+1/2 F 1 (ρ n+1/2 , η n+1/2 ) + η n+1/2 G 1 (ρ n+1/2 , η n+1/2 ) ζ dx + O(τ ).
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strongly in L p (0, T ; L q (Ω)) as τ → 0. Moreover the convergence holds pointwise in time, i.e. for all t ∈ [0, T ] there holds ρ τ (t) → ρ(t), and η τ (t) → η(t), strongly in L q (Ω).

Proof. Note that it suffices to show the result for (ρ τ ) τ >0 as the same argument applies for (η τ ) τ >0 . By Proposition 3.12 we can extract a subsequence, still denoted the same, such that

Furthermore, from the uniform BV ∩ L ∞ -bounds, for any t ∈ [0, T ] the sequence converges strongly in L 1 (Ω). Using the uniform L ∞ -bounds and the dominated convergence theorem, we obtain the pointwise-in-time convergence in any L q (Ω). Now let us apply the same argument on the whole domain, [0, T ] × Ω. The pointwise convergence and the uniform L ∞ (0, T ; L ∞ (Ω))-bound imply ρ τ → ρ, strongly in L p (0, T ; L q (Ω)) by the dominated convergence theorem. This concludes the proof. Lemma 3.14 (Identification of the limit). The sequence constructed in (2.9a), (2.9c) converges to a weak solution of Eqs. (1.1).

Proof. The proof consists of two parts -the diffusion part and the reaction part. We write them in their respective weak formulation and combine them to obtain the complete approximation of the weak formulation. Here we only show the argument for ρ as the corresponding result for η is shown analogously. We begin with the diffusion part.

Diffusion part. We consider the two steps before and after the application of the JKO scheme (2.9c),

and

For a given test function ζ ∈ C ∞ c (Ω), let T be the optimal transport map from ρ n+1 to ρ n+1/2 . Upon integration over Ω we get

Taylor expanding ζ(T (x)) around x yields

Moreover, using the fact that T (x) = x-∂ x ϕ(x), where ϕ is the Kantorovich potential Multiplying Eq. (3.8) by τ and summing from m to k -1, we obtain

-ρτ (τ , x)F 1 ρτ (τ , x), ητ (τ , x) + ητ (τ , x)G 1 ρτ (τ , x), ητ (τ , x) ζ(x) dxdτ .

We are now ready to pass to the limit. The strong convergence obtained in Corollary 3.13 allows us to pass to the limit in the nonlinear reaction terms. Moreover the crossdiffusion term converges due to the weak-strong L 2 (0, T ; L 2 (Ω))-duality, by Lemma 3.10 and Corollary 3.13. Passing to the limit τ → 0 we obtain the weak formulation for ρ. The same argument for η yields the statement.

We end the paper with a stunning result which can be seen as a generalisation of the result of Bertsch et al., cf. [START_REF] Bertsch | On interacting populations that disperse to avoid crowding: preservation of segregation[END_REF][START_REF] Bertsch | On a degenerate diffusion equation of the form c(z)t = ϕ(zx)x with application to population dynamics[END_REF]. In their papers they prove that initially segregated species stay segregated at all times. In these works only the cross-diffusion system is considered and the authors even allow for vacuum however imposing a rather restrictive assumption on the initial datum. We can drop their assumption that supp(ρ 0 ) < supp(η 0 ), i.e. that both species are ordered and prove the following, more general theorem. In the works [START_REF] Bertsch | A free boundary problem arising in a simplified tumour growth model of contact inhibition[END_REF][START_REF] Bertsch | A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth[END_REF] the authors study the system including reaction terms for initial data that are not necessarily ordered. However they impose boundedness away from zero which we are also able to drop. Theorem 3.15 (Segregation in the case of no cross-reaction.). Assume no crossreaction terms, i.e. G 1 ≡ G 2 ≡ 0 and that both species are initially segregated, i.e. Ω ρ 0 (x) η 0 (x) dx = 0.

Then, there exists a solution such that both species stay segregated at all times.

Proof. It suffices to show this property at the level of the discrete scheme since, once it is established, we use the strong L 2 -convergence of ρ τ and η τ to show segregation is also kept in the limit:

Thus let us now show the property at the level of the approximation. During the reaction step the segregation of ρ and η is kept as can be seen as follows. First recall that in the reaction step we solve Eq. (2.9a), with initial data σ n , r n such that

on the support of σ n . Thus we conclude that already r n (1 -r n ) = 0, on supp(σ n ). Using the fact that G1 = G2 ≡ 0 the equation for r reads