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1 Introduction

Ceramic matrix composites (CMCs) can either be reinforced
by fibers in one direction or by fibers in two directions, The
aim of this paper is to study composiles reinforced with fibers
in two perpendicular directions by extending a previous study
on CMCs with fibers in one direction (Hild et al., 1992).

The rupture of most of the CMCs involves two separate
failure mechanisms. The first mechanism is matrix cracking,
The matrix cracks develop and their density saturates as the
load level increases. The second mechanism is fiber breakage
accompanied by fiber pull-out. Eventually, the final rapture will
take place around one of the matrix cracks: it corresponds to
localized fiber pull-out due to fiber breakage. The occurrence
of this mechanism corresponds to the appearance of a mac-
rocrack and will be described by a localization of deformation.
The initiation of macrocracks in a structure during service often
constitutes the early stage of the final failure of the structure,
Starting from a material that is assumed free from any initial
defect, the initiation” of macrocracks can be predicted using
continuum damage mechanics, The driving force is fiber breuk-
age, which is accompanied by distributed pull-out, The ap-
proach using localization has successfully been used for ductile
materials (Billardon and Doghri, 1989a, b; Doghii, 1989), The
initiation stage is considered as the onset of a surface across
which the velocity gradient is discontinuous. Under small defor-
mation assumptions, this phenomenon is mainly driven by the
damage mechanism that causes strain softening. For CMCs, the
damage mechanism is related to fiber breakage, and the damage
variable describes the percentage of broken fibers (Hild et al,,
1992).

Although localization can be studied at the scale of fibers
bonded to a matrix through an interface (Benallal et al,, 1991a),
i.e., at a micro level, localization also can be analyzed at a
mesolevel, when the material is assumed to be homogencous.
Continvum damage mechanics, which represents a local ap-
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mechanics, and corresponds to a localization of deformation. After deriving two
damage models from a uniaxial bundle aupproach, different configurations are ana-
lyzed through numerical methods. For one model some very simple criteria can be
derived, whereas for the second one none of these crireria can be derived and the
general criterion of localization must be used.

proach to fracture (Benallal et al,, 1991b), constitutes an effi-
cient tool for this purpose, The progressive deterioralion of the
material is modeled by internal variables defined at the meso
level. These variables arc called damage variables, The damage
state and the evolution of these variables is obtained through a
uniaxial study based on fiber breakage (Coleman, 1958; Curtin,
1991). A two-dimensional plane-stress analysis is performed
based on an extended model. The loss of uniqueness and the
localization arc studied for shear free states, A criterion referring
lo a critical value of the damage or to a maximum normal stress
can describe the localization, which conslitutes an objective
criterion, from a design point of view,

2 Localization and Loss of Uniqueness

The failure at a meso level, with the initiation of a mac-
rocrack, is defined as the bifurcation of the rate problem in
certain modes, viz. the appearance of a surface across which
the velocity gradient is discontinuous (Billardon and Doghri,
1989a). This phenomenon is referred to as localization, and
corresponds to the failure of the ellipticity condilion. The condi-
tion of localization can also be compared to the loss of unique-
ness of the rate problem,

Stationary waves were studied by Hadamard (1903) in elas-
ticity and by Hill (1962) and Mandel (1962) in elastoplasticity.
Rice (1976) related the localization of plastic shear bands to
jumps of the velocity gradient. Boreé and Maier (1989) have
given necessary and sufficient conditions for the onset of modes
inside the body, and extended the results given by Rice (1976)
and Rice and Rudnicki (1975, 1980).

Under small strain assumption and in clasticity coupled with
damage, the behavior of a material is assumed to be described
by the following piece-wise linear rate constitutive law:

E:¢ if D=0
o =
H:e

if D#0
where & and ¢, respectively, denote the stress and strain rates,
E and H arc fourth rank tensors, I is assumed to be positive
definite, and D is either a single damage variable or 4 set of
damage variables,
Localization oceurs inside the body, if and only if (Rudnicki
and Rice, 1975; Borré and Maier, 1989; Benallal et al., 1991a)

Det (n*H-n) =0 foravectorn =0

(1)

and at a point inside a structure €2,

(2)



This criterion corresponds to the failure of the ellipticity condi-
tion of the rate equilibrium equation; it also can be used as an
indicator of the local failure of the material, at a meso scale
(Billardon and Doghri, 1989a).

Furthermore, any loss of uniqueness, considered as bifurca-
tion of the rate boundary value problem, is excluded provided

(3)

In this study, the quantity that defines loss of uniqueness and
localization is the linear tangent modulus H, In the following,
we analyze loss of uniqueness and loss of ellipticity (i.e., local-
ization) for states when

€ = aep

€1y = 0.

The parameter « is referred to as the strain ratio and its inverse
is denoted by 8. These particular states only are considered,
When the hypothesis of Eq. (4) is satisfied, the nonvanishing
components of the vector n are n, and ny, and the matrix A =
n+ H- n reduces to (Ortiz et al., 1987)

_ [ miHyy + ndHpn  mim(Hae + anz)] (5)
wny(How + Han)  niHg + n3Hes |7

o.&>0,

(4)

If we rewrite (n, M) = (cos 8, sin 8), X = tan® 0, then the
localization condition is equivalent to finding real positive roots
of the following equation:

aX*+bX +c¢c=0 (6)
with
¢ = HyaHen
b = HynHyppn — HynHay — Hanflan — HooHon
c= Hmann- (7

If real positive roots are found, then the localization direction
is perpendicular to the vector (n;, 1y, 0) = (cos 8, sin 8, 0),
characterized by the angle 8 (Fig. 1). The values of Hyy\, Fay,
Hyi22, Haayy and Hyz12 are model dependent and specific models
are now developed.

3 Constitutive Laws

This section is concerned with the development of two consti-
tutive laws in the case of CMCs reinforced in two perpendicular
directions. At constant temperature, the behavior of a CMC
reinforced by unidirectional fibers in the x,-direction (see Fig.
1) can be characterized by the Helmholtz free energy density
W, which is a function of the state variables €, €2, €, and
the damage variable D, in the x,-direction

Fig. 1 Localizatlon mode

oy = oY(en, €, €12, Ds, f2, k), (8)

where D, represents the fiber degradation in the x,-direction, E;
the Young's modulus in the x,-direction, v, the Poisson’s ratio,
k, the ratio of the Young’s modulus in the fiber direction (E;)
to the Young’s modulus in the transverse direction (E,), and
G, the shear modulus. It is worth noting that the elastic quanti-
ties depend on the volume fraction of fibers. The expression for
the general Helmholtz free energy density ¢ is given by

pu(x, v, 2, d, f, k)

_E(f) [ XF + k() = d)xy + ky? 3
C2 [ k{1 = vhk(l = d)) ] +2Gnz" (9)

where p is the material density, x, y, z are dummy variables
representing strains, d damage, f volume fraction, and &
Young’s moduli ratio. The stresses and the thermodynamic
force Y, associated to the damage variable D, are derived from
the Helmholtz free cnergy density ¢, as follows:

d 9 A
011=P§gﬁ' ozz=p§‘%§ 20.z=pﬁ
0
fi=p 22t (10)
2

The explicit expressions for the stresses related to the strains
and the damage variable modeling the fiber degradation in the
x;-direction are given by

E,
= + L-D
7 kil = vh(1 = D)k Len + il 2 )k
Ex(1 — Dy)
il T TG R

(1)

The damage state of fibers in the xp-direction, D, can be
related to the stress (and is denoted by D%") or strain state
(and is denoted by D$). The relationship is either implicit in
terms of the normal stress in the x,-direction (model #1)

i 022 w1
S i (T 7

if e, >0 and & >0 (12)

where m is the shape parameter of a Weibull law (Weibull,
1939), o, the characteristic strength (Henstenburg and Phoenix,
1989), and f, is the volume fraction of fibers in the x,-direction;
or explicit in terms of the normal strain in the x,-direction
(model #2)

" €2 m+1
D =1 —exp| - =

if €23 > 0 and €y > 0 (13)

where ¢, is related to the characteristic strength o. by o, = Epe,
(Eris the Young's modulus of the fibers ), Both models describe
the same material behavior when subjected to uniaxial tension.
However, the models give different predictions for multiaxial
loading states (Hild et al., 1992), It is worth noting that the
damage evolution laws are a priori independent of the volume,
since we assume that the local behavior of the fiber degradation
is not dependent on the total length of the fiber (Curtin, 1991).
This type of behavior is observed when distributed pull-out
happens in conjunction with fiber breakage, and it can be shown
that in most practical cases, the statistics driving the fiber break-
age iy independent of the total length of the composite. On the

012 = 2Ga602,



other hand, if the composite length becomes very small, a length
dependence is found again (Hild et al., 1994), and in this case
the evolution of the damage variable is mainly given by a fiber-
bundle-type of behavior, which leads to replacing m + 1 by m,
the characteristic strength o, by ao(L/L) '™, where oy is the
scale parameter of a Weibull law, and the scale strain ¢, by
€o(L/Ly) """, where L, is the gauge length at which the scale
parameter has been identified, and o, = Ere,. Since the results
are the same for both damage evolution laws when the previous
permutation is used, we will just express them in the case when
the model is length independent, which is the most relevant in
practice.

If the fibers are in the x,-direction then the breakage can be
modeled by a damage variable denoted by D,. Using Eq. (9),
the Helmholtz free energy density pi, is given by

P‘J‘l = pi(en, €, €, D, fiy k). (14

If the fibers are in both x| and x,-directions, then we assume
as a first approximation that the total specific Helmholtz free
energy pi» is given by a law of mixture of the Helmholtz free
energy densities in the x, and in the x,-directions

pe = (1 = flpyn + fo, (15)

where [ is the fraction of fibers in the x,-direction (f = £,/(f,
+ f2), and where f; and f; are the volume fraction of fibers
in the x; and x,-direction, respectively), This assumption also
corresponds to a Lin-Taylor Hypothesis. The evolution of the
stresses is given by

J
oy = P%:= (1 - f)8n + fSi
i)
On = P'a{lf‘ = (1~ )8 + fSn
=1 0a_
=3P s = 2G € (16)

where the explicit expression for Sy is given in Appendix A,
and the corresponding thermodynamic forces associated to the
two independent damage variables D, and D, are

L) W,

Y'=pa_z),=(l_f)p35—.
alpll alf’z
= = —_— 17
Y, ,pr'JD; fpaD; umn

Again, the evolution of the damage variables can either be
implicit in terms of the respective normal stresses (model #1)

. B on m+1 7]
DM =1~ exp —{(————1 - D\”)faaf} ]
and

if 6||>0 é||>0

N B On m+ | 7]
DY =1-exp| - -—“ = DY o

if €, >0 and &, >0 (18)

or explicit in terms of the respective normal strains (model #2)

m+ |
D'n“=l~exp[-(ﬂl> ] if >0 und & >0

€

€2 w1
D¥ =1 —expf — -

if €33 > 0 and ézz > 0. (19)

It is worth noting that we assume that the statistical propertics
of the fibers are supposed to be identical in both directions,
This hypothesis will be maintained throughout the paper since
generalization would be straightforward. Both models are stud-
ied for shear free states when the strain ratio @ (see Eq. (4)),
and thus its inverse G are given,

3.1 Failure Criteria for Model #1. For model #1, the
evolution of the damage variables is implicit in the sense that
DAY (respectively D3") is a function of the normal stress oy,
(respectively o3;) and the damage variable D" (respectively
D4") itself. The evolution is therefore computed by a numerical
scheme based upon a Newton method, To study localization
and loss of uniqueness, we need to compute the tangent opera-
tor, which takes the following form:

[(1 =Yy + fF2I(1 + fRoFy)
= fFuFal(l — f)Fy + fFq]
[1 4+ fFuFn](]l + fFsFp)
‘f(l ““f)FzzFquval

[(1 —f)Fa + fFI1 + (1 = f)FyFy]
= (L = OYFaFal(l = f)Fu + fF,]
[1 + fFF](] + fFsaFa3)
=S = [)FuFpFyFy

[(1 = fYFay + fF](l + fFsaFs)
— fFnFul(1 = fYFg + fFa)
[1 +fFyFpl(l + fFaF3)
‘f(l ‘“‘f)FnFnFlen

[(1 = F)Fy + fFQ][1 + (1 = fYFuFy
- (1 ‘f)FmFﬂ[(l -f)pll +fF|2]
[l + fF Fpl(l + fFuFn)
= fl = fIFuFynFs Fy

Hiz = 261, (20)

Hyyy =

Hyyy =

Hy =

Hy, =

where the explicit expressions for F; are given in Appendix B,

The loss of uniqueness and Jocalization are investigated when
the fiber fraction fand the strain ratio « vary. Although analyti-
cal results cannot be derived from criterion (2) in the general
case, some simple results can be found when f is equal to 0 or
L. In these cases, the criteria derived by Hild et al, (1992)
apply. If fis equal to O (fibers only in the x,-direction), then
localization and loss of uniqueness occur at the same load level
when

-1
DM=D,=1-
ﬁ ‘ exp(m+l)

] 1/(n+1)
On =0 =fl0'v(m)

2
T i

i=Yo=—20
2E,(1 - D.)

(21)

where the stress o, corresponds to the ultimate tensile strength
in the x,-direction. It is worth noting that the three previous
criteria are easier to compute than the general criterion (2).
The direction of localization is # = 0 deg, i.e., a localization
surface perpendicular to the fiber direction.

If fis equal to 1, the same kind of result apply and the
direction of localization is 8 = 90 deg, i.e., a localization surface
again perpendicular to the fiber directiont. When f + 0 and f
# 1, these results cannot be proved. However the computations
show that loss of uniqueness and localization can be described
very accurately by the two following criteria;



D,=1-— exp(—-lw) (22)

Max(D{", Di") m+ 1

Oy =0y O Opn = 0Op (23)

when the fiber properties are the same in the two directions.
The maximum error is .5 percent in terms of criteria (22)
and (23).

Criterion (22) shows that for model #1, maximum damage
at localization depends only on the Weibull exponent of the
fibers. Furthermore, criterion (23) shows that the maximum
normal stress o, (respectively 03;) depends only on the volume
fraction of fibers in the ¥, (respectively x,-) direction and on
the fiber characteristics, This result is consistent with some
experimental observations on woven carbon matrix composites
reinforced with SiC (Nicalon) fibers (Heredia et al., 1992). On
the other hand, the localization angle is dependent on the fiber
percentage f (see Fig. 2), When the fiber percentage fand the
sign of the strains ¢, and ey, are constant, the variation of the
localization angle is due to the fact that the maximum tensile
stress is either reached in the x, or in the x,-direction,

Moreover, if the strain ratio @ is different from 0 and 1 then
there is a complete symmetry of the results, If the strain ratio
« is positive, the strains ¢, and e, are positive, changing «
inte B, f; into f;, changes finto 1 — f, and alters the absolute
value of the localization angle |8] into /2 — |@] and keeps
the maximum stresses and damage levels constant, These two
properties arc referred to as symmetry properties, and are mainly
due to the features of Eqgs. (4), (8), (14), and (15).

When the strain ratio « is equal to | and the fiber percentage
fis equal to .5, the localization angle is undetermined. This is
due to the vanishing of the three constants a, b, and ¢ in Eq.
(6), for H|||| = H||22 = sz” = Hnn =0. Any value of the
angle # satisfies Eq. (6). This phenomenon can be observed
when the fiber percentage f is different from L: if oy = o,
and Ty =0 Simllllﬂneﬂusly. then D(I') = D&U =D, and [‘1“”
= Hym = Hon = Hap = 0. This particular result shows that
in terms of this model, for a given strain ratio e, it is possible
to optimize locally a CMC reinforced by fibers in two perpen-
dicular directions. Indeed, in terms of fiber breakage, a condition
o = 0, and g1y = 0, leads to an optimum of the fiber behavior
in both directions.

Model #1 constitutes a straightforward generalization of the
fiber bundle models studied by Krajcinovic and Silva (1982),
and Hult and Travnicek (1983). Finally, a shear stress has no
influence on all the previous results since we assumed no cou-
pling between the damage variables and the shear strain or stress
for both model #1 and #2,
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Fig.2 Absolute value of the localization angle In degrees at localization
for model #1, the main caption of tha axes corrasponds to the case where
f, = .5, f, = .0, 125, .339, .B, and the captions In brackets correspond to
the cases where f, = .5, f = .0, ,125, .333, .5
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Fig. 3 Normalizad maximum stress at localization for model #2, the
main oaptlon of the axes corresponds to the case where #; = .5, f; = .0,
.125, 333, .5, and the captions in brackets correspond to the cases where
fy = .5, f; = .0,.125, .338, .6

3.2 Study of Localization With Model #2. For model
#2, the evolution of the damage variables is explicit and there-
fore is easier to compute. The tangent operator takes the form

Hyn = (1 = fY(Fy = FuFy) + fFy
Hpn = (1 = f)Fa + f(Fo — FFy)
Hyn =1 = fOFy + f(Fa = F2Fy)
Hpo= () = f)(Fa = FoyFy) + fFa

Hyu2 = 2G (24)

where the explicit expressions for F; are given in Appendix B.
As shown in the case of fibers jn only one direction (Hild et
al,, 1992), the localization criterion cannot be described by
some simple criteria as those given by model #!. When fibers
are in both directions the latter results are confirmed. A first
consequence is that an optimization procedure can be performed
since the maximum stress at localization, and the maximum
damage at localization are dependent on both the strain ratio o
and on the fiber percentage f

Since the elastic law given in Eqs. (16) is identical for both
models, the symmetry properties apply also for model #2 (see
Figs. 3, 4, and 5). It can also be noticed that the maximum
stress at localization varies with the fiber fraction f and with
the strain ratio a.

45 P ————F
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5 | s - o
po 3 30 T : ,,./J !
o
L
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Strain Ratio B
(Strain Ratio )

Fig. 4 Absolute value of the localization angle in degrees for model #2,
the main caption of the axes corresponds to the case where f, = .5, fy
=0, .125, .933, .5, and the captlons In brackets correspond to the cases
where f, = .5, f; = .0, .125, ,333, .5
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the cases where f, = 5, f; = .0, .125, .333, .5

In the experiments reported by Heredia et al. (1992) the
stress at localization was given by the ultimate tensile strength
corresponding to the volume fraction of fibers in the same direc-
tion. This is not found by using model #2. Indeed, in a tensile
test, when f, = f; = .5 the maximum stress oy, normalized by
the ultimate tensile strength o, is given by .63, whereas the
same tensile test when f; = .0 and f; = .5 would give a normal-
ized tensile strength 0,3/0,, equal to 1. On the other hand, the
damage at localization D, normalized by the critical damage D,
is equal to 1.04 when f; = 5 and f; = .5 and is equal to 1.
when f| = .0 and f; = .5.

It is too early to draw 2 final conclusion, but it seems that
the predictions of model #1 correspond more to reality than
those of model #2. On the other hand, model #2 turned out to
give results very close to model #! when applied to structures
with fibers in one direction (Hild et al., 1992). This will be
addressed in the case of structures with fibers in two perpendicu-
lar directions such as spinning disks,

4 Conclusions
Using a one-dimensional study of fiber breakage modeled by
a single damage variable, two models are derived. Both of them
are then generalized to a two-dimensional plane stress analysis,
with fibers in two perpendicular directions. Whereas model #1
constitutes a straightforward generalization of the elementary
study, model #2 exhibits different features. Indeed, loss of
uniqueness and localization can be described by some very
simple criteria referring to Continuum Damage Mechanics for
model #1, Conversely, these simple criteria do not apply for
model #2. Physically, model #1 gives a better description of
some experimental trends observed in the case of a carbon
- matrix reinforced with silicon carbide (Nicalon) fibers in two
perpendicular directions. On the other hand, model #2 is casicr
to compute, and when applied to the study of spinning disc
with fibers in one direction, it leads to load levels at localization
of the same order of magnitude as model #1 (Hild et al., 1992).
Lastly, this study shows that the localization for model #1 can
be described hy using criterion (23) derived from the general
criterion of localization (2). This criterion can also be used for
a computation in elasticity and may turn out to be sufficient in
first approximation to predict load levels at which a macrocrack
initiates, instead of using a computation in elasticity coupled
with damage.
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