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1 Introduction

The need for high performance materials has motivated the
use of structures made of brittle materials. Such materials are
usually characterized by a large scatter in strength leading to a
requirement for a statistical treatment of ‘strength properties.
For design purposes, a statistical failure analysis should allow
the use of experimental data obtained on small specimens sub-
jected to simple load patterns, to infer the failure probability of
structures under complex stress states encountered in service.

It is now well accepted that initial laws cause catastrophic
failure by fracture of structures made of ceramics. These initial
flaws are usually randomly distributed, and lead to different
strengths, even though the geometry and the loading conditions
are identical. The failure condition is given by the probability
of finding one critical flaw within a structure. To be critical, a
flaw needs to be large enough and located in a sufficiently high
loaded region. This critical flaw then represents ‘‘the weakest
link”’ of the structure,

To predict failure conditions, various expressions of the fail-
ure probability have been proposed. Generally, they are deduced
from both the weakest link theory and the independent everits
hypothesis. The first attempt was made by Weibull (1939), and
was based upon an empirical treatment of failure. Yet ‘‘this
approach does not recognize the flaws as being unique entities
operated on by the multiaxial stress and does not, therefore,
represent a fundamental way of treating the multiaxial effect
(Bvans, 1978)."” Batdorf and Crose (1974) modeled initial
flaws by cracks whose size and orientation are randomly distrib-
uted. Evans and Lamon (1978; 1983; 1988) derived another
model based upon similar assumptions. The drawback of these
approaches is that they are not easily extendable to cases where
the material behavior is time-dependent, i.e., exhibiting Subcrit-
ical Crack Growth,

In the framework of Linear Elastic Fracture Mechanics, Jaya-
tilaka and Trustrum (1977) showed that under some simplifying

assumptions the Weibull parameters can be related to flaw distri-
butions. These results have been extended in the framework
of Linear Elastic Fracture Mechanics and Continuum Damage
Mechanics (Hild and Marquis, 1992). An expression for the
failure probability was obtained, in which the flaw distribution
was directly considered. Therefore, when the material is exhib-
iting Subcritical (or Slow) Crack Growth (SCG), the initial
flaw distribution evolves with time, and the previous approach
can still be used. Some attempts have been made by Aoki et
al. (1980; 1983) but by assuming that the time effects can be
decoupled from the stress effects. This assumption is generally
not valid: Hild and Roux (1991) obtained an expression for the
flaw size distribution after a time ¢ related to the initial flaw
size distribution (i.e., ¢ = 0). More recent results can be found
in (Brinkman and Duffy, 1994); most of the approaches do not
explicitly consider the flaw distribution. The aim of this paper
is to derive an expression for the failure probability taking
account of the evolution of the flaw distribution for materials
with a time-dependent behavior.

Section 2 is devoted to deriving an expression for the failure
probability of a structure made of a material with a time-depen-
dent behavior. This expression is derived within the framework
of the weakest link theory and the independent events hypothe-
sis. It consists in modeling the mechanical behavior of a single

. link and studying the failure of a structure composed of several

links. In Section 3 the general equations governing Subcritical
Crack Growth are presented. Approximations are made in order
to derive tractable expressions. Based upon the hypotheses of
Section 3, Section 4 deals with a simplified expression for the
failure probability of a structure made of a material with a time-
dependent behavior, The failure probability of a single link is
related to an initial flaw size distribution, To assess the reliabil-
ity of a Representative Volume Element (RVE), one needs to
calculate the initial critical flaw size under static and dynamic
conditions. An upper bound and a lower bound of the failure
probability are then derived. In Section 5, the previous results
are studied when the flaw size distribution is modeled by a
modified Gamma function. In particular, a Weibull law can be
derived by using simplifying assumptions. Lastly, in Section 6,
experimental data obtained on a spinel Mn Zn ferrite are com-
pared with predictions using the previous results.



2 Reliability of Structures Containing Flaws With a
Time-Dependent Failure Behavior

In general, initial flaws are randomly distributed within a
structure. We assume that the flaw distribution is characterized
by a probability density function f. The function fgives the flaw
distribution at a given stage of the load history. The function f
may depend upon several morphological parameters w (e.g., a
flaw size denoted by a; a flaw direction characterized by a
normal n).

2.1 Failure Probability of a Representative Volume Ele-
ment. The failure probability, Pro, of an RVE is given by the
probability of finding a critical flaw within an element , of
volume V. The probability of finding a critical flaw refers to the
initial flaw distribution characterized by a probability density
function f,. For a given load level, the set of flaws 9 splits into
two subsets, The first subset, 9., is related to the flaws that are
critical (e.g., the energy release rate §(w, Q) = §,., where Q is
a loading parameter, and §, a critical energy release rate). The
second one, U,., is related to the flaws that are not critical (e.g.,
§(w; Q) < §.). The higher the load level, the larger %), becomes
with respect to 9,.. The determination of the critical flaws de-
pends upon the mechanical modeling of the‘flaw (Hild and
Marquis, 1992). Some particular expressions can be found in
the literature: Weibull (1939) used the ‘‘mode I'’ energy release
rate, Batdorf and Crose (1974 ) used the coplanar energy release
rate, Lamon and Evans (1983) used the non-coplanar energy
release rate. When propagation is unstable, the failure probabil-
ity Pro(Q) of a volume ), for a given loading parameter Q is
given by

Pro(Q) =f(Q)fo(W)dW (1)

I

with, for instance, 9,(Q) = {w|&(w; Q) = §,}. In the case of
stable propagation, the initial morphological parameters w
evolve to become W after an instant 7. In particular, bifurcation
may take place (therefore N + n, and other morphological
parameters may be needed). The morphological parameters W
are assumed to be uniquely related to their initial values w
through deterministic functions of C' class

W=2§&w; Q,7) (2)

At an instant T and a fixed Q, the failure probability Pro(Q,
7) is linked with the flaw density function f,
(3)

PFO_(Q) ’f') = fr(W; Q’ T)dw

1(0)
e.g., N(Q) = {(W|§(W; Q) = 4.}. If no new cracks initiate

during the loading, f; is related to f by (Hild and Marquis,
1995)

FLEw; @, 7)1 = T (w; @, T) fa(w) (4)
where J denotes the Jacobian of the transformation defined in
Eq. (2). This relationship is a generalization of the results de-
rived in the case of a flaw size distribution (Hild and Roux,
1991). Through Eq. (4), Eq. (3) can be written as Eq. (5),
where ¥ defines the initial flaws that become critical after 7

Pro(Q, T) =f, (5

D AQiT)

e.g, DE(Q, 1) = {w|8[§(w; @, 7); @] = §,}. Equation (5)
constitutes a unified expression for the failure probability with
or without SCQG. It relates the failure probability to the initial
flaw distribution fj.

2.2 Failure Probability of a Structure Under Time-De-
pendent Conditions. If we assume that the interaction be-
tween flaws is negligible, the expression for the failure probabil-

Jo(w)dw

ity, P, of a structure  of volume V can be derived in the
framework of the weakest link theory and with the independent
events assumption. When the material behavior is either time-
dependent or time-independent, the expression for Pr can be
related to the failure probability, Pro, of a link by (Freudenthal,
1968)

Pp= 1 —exp{vifn ln(l —PFo)dV} (6)

0

The failure probability, Pro, as well as the failure probability,
Pr is a function of the loading parameter Q and elapsed time
7. By means of Egs. (5) and (6), a general relationship between
the initial flaw distribution and the failure probability of a struc-
ture £} can be derived

Pe(Q,T)=1-— exp{%fn In (1 - f/'(g )fo(W)dW)dV}
( belQr

(7

Equation (7) constitutes the main result of this section. The
failure probability of a structure can be related to the initial
flaw distribution even for materials exhibiting time-dependent
behaviors. The time dependence is given in the definition of
the set of initial defects that become critical after an instant 7
and when the applied load level is equal to Q. Equation (7)
constitutes a generalization of the existing failure probabilities
only valid under time-independent behavior. It is worth noting
that Eq. (7) allows the competition of flaws of different sizes
at different locations with different stress levels, and the weakest
link is not necessarily a flaw located at the most loaded point(s)
but the most critical flaw defined by $[&(w; @, 7); Q] = 9..

3 _Modeling of Subcritical Crack Growth

In this section, the evolution law of a single flaw is analyzed.
The aim of this section is to study different expressions of Eq.
(2) obtained experimentally.

3.1 Crack Propagation Under Pure Mode I Conditions.
Brittle fracture of ceramic materials is often preceded by SCG.
This behavior leads to a time-dependence of the failure strength
(Evans, 1972; Evans and Wiederhorn, 1974). This effect is due
to the interaction between the environment and the material. A
sensitivity of a ceramic to SCG is measured by the evolution
of mode I stress intensity factor K versus crack growth rate da/
dt. Usually, the K — da/dt curve is schematically described by
the curve given in Fig. 1 (Evans, 1972). Region I corresponds
to somewhat low stress levels. The chemical reaction at the
crack tip controls the crack propagation, Evans and Wiederhorn
(1974) proposed to model this region by the following relation-
ship

Ke

A a
111

Crack Velocity, log(da/dt)

Stress Intensity Factor, log(K)

Fig. 1 Schematic representation of the effect of stress Intensity factor,
K, on crack velocity, da/dt, during Subcritical Crack Growth.



L CK", K = Ky,

dt
where C, n are material parameters, and a the flaw size. The
parameter r can be used as a measure of material sensitivity to
SCG: the higher n, the lower the sensitivity to SCG. Region I
is characterized by a threshold stress intensity factor K, (or a
threshold energy release rate %, ) under which no growth occurs.
For example, the spinel Mn Zn ferrite exhibits SCG when dou-
ble torsion experiments are performed in air at room tempera-
ture, The value of the parameter n is found equal to 20 (Ka-
douch, 1993). Region II corresponds to the diffusion of corro-
sive species to the crack tip. This diffusion controls the crack
growth, The characteristic of the region is a constant velocity.
Region IIT sometimes exits, Yet, the crack velocities are very
high in the two last regions as compared to the first region, The
fracture condition given by § = ¢, can be rewritten in terms of
stress intensity factors under a pure mode I loading condition
K = K,. Equation (8) agrees with most of the experimental
data for ceramics exhibiting SCG. These data were established
on macrocracks under pure mode I, and therefore they did not
experience kinking. Under mixed mode conditions however,
kinking may take place and the previous laws may not be appli-
cable anymore.

(8)

3.2 General Case and Approximations. In practice,
most of the intrinsic flaws observed in ceramics are either cavi-
ties or inclusions of hard materials (Kingery et al., 1976), The
most likely shape can be approximated by a sphere of radius
a. Initiation is assumed to occur in a plane perpendicular to the
direction of maximum principal stress, gy, and the initial flaw
is assumed to be penny shaped. If the load history is simple
(i.e., the direction of principal stresses does not change), then
micro propagation happens in the same plane as micro initiation
and no kinking is involved (Bilby and Cardew, 1975; Lemaitre,
1976; Wu, 1978; Amestoy et al,, 1979). Consequently, the only
morphological parameter needed is the radius of the crack in
the considered plane, since the shape of the initial circle is not
altered during micro propagation. The crack geometry is taken
into account by a dimensionless factor Y so that the energy
release rate § is given by

E9 = Y?g|a €))

where ||g]| denotes an equivalent uniaxial stress (here the maxi-
mum principal stress oy), and E the Young’s modulus of the
virgin material. The values of the parameter Y depend upon the
geometry of the initial flaw and on the fact that this flaw inter-
sects or not a free surface. The crack propagation law is assumed
to be described by an expression similar to that of Eq. (8)
written in terms of the energy release rate & instead of the stress
intensity factor K

é‘_z_ — oy ni2

d t C( ES ) ’
and the parameters characterizing the crack propagation law are
still C and n. Equation (10) is consistent with Eq. (8) in the
case of pure mode I conditions.

Moreover, when the maximum principal stress o is very
large compared with the other two principal stresses oy and
o, the approximations made in this sub-section are not strong.
The initial flaw size distribution to consider is denoted by fo(a).
Because of the approximations made in this section, the general
results derived in Section 2 can be simplified, and are studied
in the following section by only considering the flaw size as a
morphological parameter modeling the flaw distribution,

'(;lh = § = (();_.

(10)

4 Simplified Reliability Analysis

In this Section, we assume that the flaw distribution is only
dependent upon the size of the initial flaws and will be denoted
by fo(a).

4.1 Expression for the Failure Probability. If the proba-
bility density function is assumed only to be dependent upon
the flaw size, the failure probability, P, of an RVE of volume
Vo, is the probability of finding an initial flaw, whose size is
larger than the critical flaw size. Rewriting Eq. (5) in the case
of one parameter, the failure probability, Pno, can be rewritten
as (Hild and Roux, 1991)

P FO(Qv T) = f
Ylae(0m)1

where r(a.) denotes the initial flaw size that, after a time T,
reaches the critical flaw size g, obtained by integration of Eq.
(9). It is referred to as initial critical flaw size. Its derivation is
addressed in sub-Section 4.2. By means of Eq. (6), a simplified
relationship between the initial flaw distribution and the failure
probability of a structure Q can be derived

PF(Q! T)

1 +o0
=1~ CXP{V(; f“ In <l - fwtac(o.m fo(a)da)dv} (12)

Equation (12) constitutes a unified expression for the failure
probability with or without SCG. It relates the expression for
the failure probability to the initial flaw size distribution fy. In
the next sub-section, expressions of the initial critical flaw size
are derived.

4.2 Initial Critical Flaw Size. Expressions of the initial
critical flaw size are derived under static (e.g. constant stress
level) and dynamic conditions (e.g. linear stress level with
time) by integration of Eq. (8)

a (@) ‘e
f x "y = f CY"g (@, ml"dr (13)
a0, 7)] i

where t; denotes the initiation time (Y3g(Q(1)), t)|%a = Ey)
and tr the failure time (Y 3z (Q(t¢), tr)]|%a = ES.). These ex-
pressions enable to compute the failure probability of an RVE
given in Eq. (11). In the following, o denotes the value of the
equivalent stress ||g(Q(¢r), tr)|| at failure. We define a scaling
flaw size ay, so that the scaling stress S, corresponds to the
failure stress of the scaling flaw: Y2S%ay = EY,.

4.2.1 Static Conditions. Under static condition, the initia-
tion time is equal to zero and integration of Eq. (13) shows
that the normalized critical initial flaw size, y(a.)/a,, is related
to the normalized failure stress a/S, and the time to failure
under static condition zgr by

2 _ 2 Y202-m
Wa.) _ (ﬁ) L2 (55 -
Ay Or 2 S*

it o ¥ <g_")2 =1 (14)
*

00

fola)da (11)

G, Ay

with Fp = CY *(ES,)"* ' S5 ter.

4.2.2 Dynamic Conditions. When the stress evolution is
linear with time, o = &¢, integration of Eq, (13) enables us to
relate the normalized stress velocity ¢/Sy to the normalized
failure stress ox/Sy by
2(n+ 1) ¢ <ZE>_3
(n—-12) S* S




with S, = CY2(ES,)"*'8%, and k = (§4/8,)'"*. The quantity
(Y(a.)lay) " "*(or!Sy) is bounded by k and 1. It is worth noting
that when Y(a,)'*or approaches (Ef,) "' the stress velocity
¢ approaches zero: this effect is due to the threshold energy
release rate under which no SCG occurs. Conversely, when
Yyi(a,)'*or approaches (E§,)'* the stress velocity ¢ ap-
proaches infinity: there is no SCG phenomenon. Equation (15)
constitutes an implicit relationship between the failure stress o
and the stress rate &, Figure 2 shows the evolution of the left-
hand side of Eq. (15) as a function of normalized initial critical
flaw size (P(a.)/ ay)*(ar/Sy).

It is possible to relate the time to failure under static condi-
tion, tgr, to the time to failure under dynamic condition, ¢pp,
and the time to initiation under dynamic conditions, #;, when
the failure stress level is the same under static and dynamic
conditions :

—-nl2 -n
tpr = (n + lr)tsp + tl),k"<'¢%2) (2-!) (16)

® S*

In most practical cases, Eq. (16) can be simplified: the param-
eter n has often a value between 10 and 30. Since the value of
the ratio k is on the order of 0.5, the term k*(¢¥(a.)/ay) ™"*(or/
Sg) " is often very small compared to unity. Therefore the
normalized critical initial flaw size, y/(a,)/ay, is related to the
normalized failure stress o/, and to the time to failure ¢, by

2 _ 2 2/(2-n)
(/x‘(lac) _ (%) {1 Al 2 (‘T_F) i"D,,-} (17)
*

2(n + 1) \ Sy

with o = CY 2(E4,)"*' §%pr. The previous approximation
is only valid when (¢(a.)/ay)(0r/Sy)? is close to unity. In
that case, the influence of the threshold energy release rate, &,
is negligible. When Eq. (17) is compared with Eq. (14), the
well known relationship between the static life #pr and the dy-
namic life tsr is found: tpr = (n + 1)ts- (Davidge et al., 1973).
On the other hand, when the ratio (y(a.)/ay)(or/Sy)? is on
the order of k, the previous approximation is not valid (Fig.
2). A series expansion about ((a,)/ay)(cr/Sy)* = k of Eq.
(15) leads to the following result

Wa) _ ( ki)

Ay Or
1 2

1+
X n=2 (or\'o  n=6+(n+2)k?
260" = 1) \S) " 21 — &%)

(18)
When k"% < 1, Eq. (18) can be rewritten as

¥(a.) Sy : 1+ L c
ay or n—2for 2}_ W -6
2" \8, ) 2

(19)

1

Figure 2 shows the two approximations about (y(a.)/ay)(or/
S«)?* = k given by Eq. (18) and about (¢(a.)/ay)(or/Sy)* =
1 given by Eq. (17) compared with the exact solution given by
Eq. (15). The approximation about (¢(a.)/ay)(ar/Se)? = 1
is valid in a very large interval, whereas the approximation
about ((a,)/ay)(ar/Se)* = k is valid only in a narrow inter-
val.

4.3 Upper and Lower Bounds. By definition, Eq. (10)
shows that ¢/(a,) is greater than ay (when § = §;) and less
than a, (when § = §,.). This result can be extended to all initial

101 [ ! ''''
100 " Eqn' (15)
- ] —a—Eqn. (17)
o ~-a—Eqn. (18
g’: Qﬁ ]0‘l F - - 5 ( )
&
g 107}
g.e
é & 10°?
§ &
) = 104
A
& 105 i b o X a

0.5 0.6 0.7 0.8 0.9 1
Normalized Initial Critical Flaw size, (\u(ac)/a_)m(oFIS,)

Fig.2 Comparison of the evolution of a dimenslonless group, 2(n + 1)/
(n - 2]{&!8,}(s,ﬂ.hr,l°. as a function of normalized Inltlal critical flaw
slze, (y{8.)/8.) " (ae/S,), by using Eds, (15), (17), and (18). The param-
eter n is equal to 16, and the energy release rate ratio k is equal to 0.5.

flaws, i.e., to the initial flaw distribution, and two bounds can
be obtained.

In inert environment, i.e., when SCG does not occur, Eq. (11)
holds with r(a.) equal to a.. This particular case corresponds to
an upper bound of the expression for the failure probability,
denoted by P F-UB

{7 dom(

Prys(@)=1—expi= | In{1 -

Vo da

+w

ﬁ,(a)da)dV}

(@)

(20)

On the other hand, (a,) may be substituted into ay, defined as
the initial threshold flaw size obtained when § = &,. This partic-
ular case corresponds to another bound, viz. a lower bound of
the failure probability, denoted by Py.p
1
Prp(Q)=1—expy— | In{1-
. Vo 1]

+eo

ﬁ,(a)da)dV}

ag (@)

(21)

Equation (21) shows that a crucial material parameter is the
threshold energy release rate, 5,,. This factor allows to derive
an expression for a lower bound of the failure probability. A
second crucial information is the flaw distribution. Because of
linearity between external loads and stress field, and because §
is a homogeneous function of degree 2 of the applied load Q,
the following result applies

Prp(kQ) = Pr_ys(Q)

This result shows that for a given failure probability, the failure
stress corresponding to the lower bound is equal to the failure
stress corresponding to the upper bound times the ratio k.

(22)

5 Correlation to a Weibull Law

This section is devoted to the analysis of a particular flaw
size distribution, We assume that the initial flaw size distribution
is approximated by a power law function for very large flaw
sizes

’ Kk fa\"”
Jo(a) =a—<—)

% \

(23)



where k is a dimensionless constant. This function may corre-
spond to the expression of a modified Gamma density function
(Jayatilaka and Trustrum, 1977)

_ 1 au \ _ O
_a*r(p—n(a)exp( a) el

where T represents the Euler integral of the second kind. When
the ratio a/ay, becomes large, the function f; is proportional to
a power law function with k = 1/T'(p — 1).

By using the previous assumption it is possible to correlate
the failure probability of a structure to a Weibull law, In this
section we assume that an initial flaw is only described by a
flaw size. The failure probability, Pro, is assumed to be very
small as compared to unity. The initial flaw size distribution
can therefore be approximated by a power law function. When
the ratio ((a.)/ ay ) (or/Sy)? is close to unity, the failure prob-
ability of a single link, Pro, can be rewritten as

2(p-1) — 2 [2(p—1)/(n=2)]
K <ﬁ) p 8= 2B s
b~ 1 S* 2 S*

(25)

where 7 is either equal to Fgr or fps/(n + 1). The failure
probability of a structure, Py, can then be rewritten as

Pre=1l— exp{—-‘%—f Pde}
(X4

When the term (&7/8, ) is very small compared with unity,
i.e., Y(a.) au(oplSy)* = 1, the expression for the failure prob-

ability, Pr, becomes
2(p-1)
lf « (5’5> dV} 27
Vo np—l S*

This expression is similar to a two-parameter Weibull law (Jay-
atilaka and Trustrum, 1977; Hild and Marquis, 1992). This case
corresponds to fast fracture or fracture in an inert environment,
and therefore gives an approximation of the upper bound of the
failure probability given in Eq. (20). When the term
(or/Sy)%Ir is very large compared to unity, i.e. Y(a.)/ay(or/
S4)? = k, the expression for the failure probability, Pr, can be
rewritten as

1 K oF 2(p-1)
Prex1 — ———f ol S avi (28
’ °""{ 2 np—l(ks*> S

This expression again is similar to a two-parameter Weibull
law in which the scale parameter becomes kS, instead of Sy, in
Eq. (27). This modification can also be seen as a change in
critical conditions: instead of the failure criterion (§ = §.),
one uses the initiation criterion (§ = §;). This case gives an
approximation of the lower bound of the failure probability
given in Eq. (21). The result shown in Eq. (22) is also found
when Eq. (28) is compared to Eq. (27). Lastly, when the two
previous approximations are not valid, there is a coupling be-
tween the stress level and the time to failure (see for instance
Eq. (25)) and it is not possible a priori to correlate the failure
probability to a Weibull law,

fo(a)

Pro =

(26)

Pr=1 —exp{

6 Analysis of Four-Point Flexure Tests

In the following, we analyze the experimental results carried
out on a spinel Mn Zn ferrite. One hundred machined rectangu-
lar-type specimens (45 mm X 4 mm X 8 mm) were subjected
to four-point flexure in air at room temperature, The inner span
was equal to 20 mm and the outer span was equal to 40 mm,

Five different stress rates were applied (0.0975, 9.75, 48.75,
487.5, and 9750 MPa/s). In this analysis, for the sake of sim-
plicity, only the part of the material within the inner span length
is considered. Verifications on the whole structure have shown
that this hypothesis was not too restrictive, In four-point flexure,
the stress field is considered mainly one-dimensional, From
post-mortem analyses, initiation occured within the volume and
therefore the approximations made in Section 3 are consistent
with these ohservations.

The flaw size distribution is first determined by analysis of
the experimental data at the lowest stress rate. The identification
procedure can be decoupled if the lowest stress rate corresponds
to the lower bound described in Eq. (21). The flaw size distribu-
tion fy(a) is assumed to be described by a Gamma density

function
a\"! a
(2] en(- )
“*F(P) ay

By using a least squares method, the following parameters are
obtained: p = 6.4, S, = 160 MPa, when V/V, = 2400 to fit the
experimental results at the lowest stress rate. The values of the
material parameters modeling SCG are then 1der|uﬁed by using
the expenmentnl data at highest stress rate: CY*(Ef,)"*"' =
32102 m* MPa®s™", n = 20, k = 0.625. In Fig. 3 the identified
curve is plotted and compared with the experimental data for the
highest and the lowest stress rates. The value of the parameter n
is consistent with that found in double torsion experiments on
a sharp crack (n = 20). If the material parameters previously
obtained are used, it is found that the lower bound given in Eq.
(21) coincides with the failure probability computed by using
Eq. (12). This result shows that the hypothesis made a priori
to identify the flaw size distribution as well the parameters of
the crack growth law, is satisfied a posteriori. In the same
figure, the failure probability corresponding to the upper bound
is plotted, The experiments almost all lie between the lower
bound and the upper bound, Furthermore, the predictions of the
highest stress level are quite close to the predictions of the
upper bound,

In Fig. 4 the three other stress rates are analyzed. The same
material parameters are used. The predictions are in reasonable
agreement with the experiments. All these results show that Eq.
(12) is capable of modeling a series of experiments performed
at very different stress rates. In particular, the expressions of
the lower and upper bounds are consistent with the experimental
observations. The discrepancy observed for the intermediate
stress levels can be explained at least by two reasons, First, the
crack growth law parameters are identified at the highest stress

fo(a) = (29)
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Fig. 3 Evolution of the fallure probabillity, Pr, as a function of failure
atress for a spinel Mn Zn ferrite subjected to dynamlc fatigue in four-
point flexure at two different stress rates (¢ = 0.0976 and A = 8750
MPa/s), in alr at room temperature, The solid line representa the Identl-
flcation at the highest stress level, and the dashed lines correspond to
the Identified upper and lower bounds.
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Flg. 4 Evolution of the failure probablliity, P¢, as a function of failure
stress for a spinel Mn Zn ferrite subjected to dynamic fatigue In four-
polnt flexure, in air at room temperature, at a stress rate equal to:

9.75 MPa/s ( ¢ = experiments, --- = identification),
48.75 MPa/s (A = experiments, - — = identification),
487.5 MPa/s (% = experlments, — = identification).

rate where the influence of the threshold is weak. Equation (10)
overestimates the crack growth rate near the threshold energy
release rate §. The difficulty can be overcome by better ac-
counting for the crack growth law near the threshold. Second,
the flaw size distribution may vary from one set of specimens
to another. This fact may explain the experimental observations
for the first four failure probabilities when the stress rate is
equal to 48,75 and 478.5 MPa/s. A post-inspection measuring
the actual flaw size distributions could solve this problem,

7 Conclusion

An expression for the failure probability of a structure was
derived in the framework of the weakest link theory and the
independent events assumption. This expression models a brittle
material subjected or not to Subcritical Crack Growth. The fail-
ure probability of a structure can be related to the initial flaw
distribution through the evaluation of the set of initial critical
flaws.

To assess the reliability of structures made of materials exhib-
iting Subcritical Crack Growth, one needs to devise a crack
propagation law modeling the evolution and the possibility of
crack kinking. Most of the data are obtained under pure mode
I conditions, in which no kinking is involved. Under the assurmp-
tion that all the flaws leading to the failure of a structure are
initial sphere-like flaws, the crack propagation law is assumed
to be similar to that in pure mode I condition. The consequence
is that the only morphological parameter to consider is flaw
size,

When the distribution is only a function of initial flaw size,
a function s is used to find the initial critical flaw size: it
depends upon the crack growth law that is used. Some simple
results can be obtained at the level of a Representative Volume
Element. Two bounds of the failure probability are obtained.
The upper bound corresponds to the.case where no Subcritical
Crack Growth is involved. The failure conditions are then di-
rectly linked with a critical energy release rate. Conversely, the
lower bound corresponds to initiation conditions related to a
threshold energy release rate, These bounds can also be approxi-
mated by two different Weibull laws in which the shape parame-

ters are the same, and the scale parameters are related by the
energy release rate ratio.

Experiments on a spinel Mn Zn ferrite were performed at
five different stress rates. The identifications of the parameters
of the flaw size distribution give relatively good results by
considering the highest and the lowest stress rates. The five
sets of experiments show that Subcritical Crack Growth was
involved at four stress rates. To avoid Subcritical Crack Growth
the highest stress rate should have been at least one order of
magnitude higher. On the other hand, the lowest stress rate
coincides with the results given by the expression for a lower
bound of the failure probability. This stress rate enables to
get an information on the threshold energy release rate. The
intermediate stress rates- are relatively well described. These
results show that the expression for the failure probability de-
rived in this paper is able to account for Subcritical Crack
Growth at low, medium and high stress rates. They also show
that the expressions of an upper bound and a lower bound are
consistent with experimental observations.
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