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Abstract

In this paper, so-called fatigue failure maps are studied as a function of initial flaw size distributions. The main cause
of fatigue failure for brittle materials, and of fatigue initiation for ductile materials, is that initial flaws become critical.
Fatigue failure maps where the number of cycles to initiation for a given failure probability is plotted for various flaw size
distributions are a means of characterizing the influence of the initial flaw distribution on fatigue crack initiation. The results
are applied to fatigue failure of austempered spheroidal graphite cast iron,
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1. Introduction

The fatigue process in materials can be schemati-
cally divided into two stages. Initiation, which is often
due to initial flaws, has to be considered for both brittle
and ductile materials. Propagation is usually unstable
for brittle materials (e.g. engineering ceramics, many
metals in the domain of high cycle fatigue), while sta-
ble for ductile materials (e.g. many metals in the do-
main of low cycle fatigue). In this paper we will focus
our attention on initiation in heterogeneous solids. The
structure is supposed to remain macroscopically elas-
tic whereas the microscopic evolution of the flaws is
described according to a generalized Paris’ law up to
local faiture. The macroscopic initiation corresponds
to local failure.

In many heterogeneous materials, initial hetero-
geneities are mostly sphere-like cavities (e.g. intrinsic
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flaws in ceramics due to processing, flaws due to
cooling down in S.G. cast iron), sphere-like brittle
inclusions (e.g. spheroidal graphite), or sphere-like
brittle inclusions with low interfacial strength (e.g. in
ceramics). In all cases, micro crack initiation appears
in planes perpendicular to the maximum principal
stress. Furthermore, even though the initial nature of
the flaws may be different, as soon as micro initiation
occurs, most flaws behave like cracks of surface A
with a normal aligned with the maximum principal
stress direction (Clément, 1984). Consequently, in
this paper only one flaw population is considered.
During micro crack propagation, it is assumed that
the surface increases with no morphological change,
therefore the radius a of the surface is the only pa-
rameter to be accounted for, and the micro crack
propagation law will be written in terms of this pa-
rameter. Initial heterogeneities are usually randomly
distributed within heterogeneous materials, and are
modeled by a flaw size distribution f, which is a



function of the size a. This function needs to be
determined in order to assess the reliability of hetero-
geneous materials as shown in Section 2,

The flaws are supposed to be described by cracks
whose geometry is taken into account by a dimen-
sionless factor Y such that the energy release rate G is
given by

Y2ola

G=—F% (1)

where o stands for an equivalent uniaxial stress (for
instance the maximum principal stress), and E the
Young’s modulus of the virgin material. It is worth
noting that the values of the parameter ¥ depend upon
the geometry of the initial defect and whether this flaw
intersects a free surface. For instance, the distance of
the flaws to the surface of the structure may be taken
into account through the dimensionless parameter Y.
Under monotonic and cyclic loading conditions, micro
failure can be described by a criterion referring to a
critical value of the energy release rate G,

g20. (2)

In order to take into account the localized non-linear
behavior of the material in the vicinity of the crack tip
under cyclic loading conditions, Elber (1970, 1971)
has shown that crack propagation depends upon a so-
called effective energy release rate density AGey =
Gmax — Gop» Where Gpax is the maximum energy release
rate over one cycle and G, the value of the energy
release rate when crack opening occurs, Consequently,
it is natural to define a crack initiation criterion as

AGe 2 0. (3)

In the following, micro crack initiationis described by
a similar criterion postulated by Pellas et al. (1977)

AGetr = [8(R)1*Grmax — Gin = 0, (4)

where Gy, refers to a so-called threshold energy release
rate and g(R) an experimentally identified function of
the load ratio R defined as

_ MiNcyele 7 (1) _ Omin _ Gmin (5)
maxcycieo'(z) Tmax

gmax

It is supposed that the load history is simple, i.e.
the maximum principal stress direction is constant

throughout the load history, and therefore bifurcation
is not considered. The micro crack propagation law is
assumed to be written as

da
N = G(AGese)

when AGe¢ > 0and § < Ge, (6)

where G is a function of the effective energy release
rate AGeg., This function G is known and obtained for
macro cracks by performing, for instance, experiments
on CT specimens. However, the micro crack propaga-
tion law is, a priori, not known, since the average flaw
size is, at least, one order of magnitude smaller than
the macro crack used in CT specimens. The function
G, in addition to the flaw size distribution f, is needed
to fully assess the reliability of heterogeneous materi-
als. The identification procedure is addressed in Sec-
tion 3. The particular micro crack propagation law, as
well as flaw size distribution are considered in Section
4 and used in Section 5 to analyze experimental data
obtained on an austempered spheroidal graphite cast
iron subjected to cyclic loading conditions.

The next step is to study the sensitivity of the fail-
ure probability to the flaw size distribution. This con-
stitutes the main aim of this paper and is achieved by
deriving so-called fatigue failure maps in Section 6.
These fatigue failure maps give the number of cycles
to initiation, for a given cumulative failure probabil-
ity and for various flaw size distributions in the mate-
rial. The approach presented herein may be applied to
either brittle materials such as engineering ceramics,
or ductile materials such as austempered spheroidal
graphite cast iron,

2. Reliability of structures containing flaws

Statistical methods applied to predicting failure un-
der monotonic conditions have been extensively used.
The first attempt was made by Weibull (1939) and was
based upon a statistical treatment of failure. Mono-
tonic and cyclic loading conditions were analyzed.
Batdorf and Crose (1974) modeled initial flaws by
cracks whose size and orientation are randomly dis-
tributed. Evans and Lamon (1978, 1983, 1988) de-
rived another model based upon similar assumptions.
The drawback of these two last approaches is that they
are not easily extendable to cases where stable crack



growth is possible (i.e. cyclic conditions). Attempts to
model stable crack growth have been made by Sobczyk
(1986) using stochastic crack growth equations. Sta-
tistical methods are also presently developed for Con-
tinuum Damage Mechanics (Krajcinovic, 1989).

In the framework of linear elastic fracture mechan-
ics, Jayatilaka and Trustrum (1977) showed that under
some simplifying assumptions the Weibull parameters
can be related to the flaw distribution. These results
have been extended in the framework of linear elastic
fracture mechanics and continuum damage mechan-
ics (Hild and Marquis, 1992). An expression for the
cumulative failure probability was obtained in which
the flaw distribution was directly considered. Under
cyclic conditions, the initial flaw distribution evolves
with the number of cycles; however, as shown in Hild
and Roux (1991) and recalled in the following, the
previous approach can still be used since it deals di-
rectly with the flaw distribution.

In the following, for the sake of simplicity, we shall
consider only cases for which the load level is con-
stant. Yet generalization to more complex load histo-
ries can easily be done by integration of Eq. (6). The
cumulative initiation probability, Py, of a representa-
tive volume element (RVE) of volume V, is the prob-
ability of finding an initial flaw, whose size is larger
than the critical flaw size a, (determined from Egs.
(1) and (2)). In the case of monotonic loading con-
ditions, the expression for Py is given by

+00
Po= / fo(a) da, 7)

where fo stands for the initial flaw size distribution. In
the case of cyclic loading conditions, the stable micro
crack propagation leads to the evolution of the flaw
size distribution. After N cycles, it is assumed that the
flaw distribution is described by a function fy. The
expression for Py is then given by

+o0
Po= /f~<a) da. (8)

At this stage, it is useful to introduce a function ¢ that
relates the initial flaw size ag to the flaw size after N
cycles ay

ap =y (an) . (%)

The function ¢ is determined by integrating Eq. (6).
Since the flaw size evolution is assumed to be deter-
ministic, and if the only flaws to cause failure are those
initially present within the material, the probability of
finding a flaw of size ay after N cycles is equal to the
probability of finding an initial flaw of size ¢ (ay).
Thus, the function fy can be related to the function
fo by (Hild and Roux, 1991)

F(a) = folp (@) 3o (10)
where the coefficient (dy/da) comes from the change
of measure from da to dy(a). Therefore Pig can be
rewritten as

+00

Po= / fo(a)da, (11)
¥(ac)

where ¢ (a.) denotes the initial flaw size that, after N
cycles of loading with a maximum equivalent stress
over one cycle omax, reaches the critical flaw size ac.
Eq. (11) constitutes a unified expression of the cumu-
lative initiation probability in the case of monotonic
and cyclic loading conditions. It relates the expression
of the cumulative initiation probability to the initial
flaw size distribution f.

If the interaction between defects is negligible, an
independent events assumption can be made. The ex-
pression of the cumulative initiation probability, Pt of
a structure {2 of volume V can be derived in the frame-
work of the weakest link theory. In the case of mono-
tonic and cyclic loading conditions, the expression of
P can be related to the cumulative initiation probabil-
ity, Pyg, of a link by (Freudenthal, 1968)

Pr=1—exp Vl/ln(l—Plo) dv ;. (12)
0
0

By means of Eqs. (11) and (12), a general relation-
ship between the initial flaw distribution and the cu-
mulative initiation probability of a structure {2 can be
derived

+o0

Pi=1-exp Vi/ln I—/fo(a)da dv
0
N #(a;)
(13)



For monotonic loading conditions, the same equation
holds with a, in place of ¢/ (a. ). In the case of unstable
macro propagation, the structural failure corresponds
to the initiation and the expression of the cumulative
failure probability Pr is given by

Pe=P (14)

It is worth noting that in the case of high cycle fa-
tigue, the propagation stage tends to become negligi-
ble when compared, in terms of number of cycles, with
the initiation stage. In such circumstances, Eq. (14)
can be applied to both brittle and ductile materials. In
other words, since the propagation stage is neglected
when Eq. (14) is used, this equation corresponds to
a lower bound to the cumnulative failure probability of
the structure. Hence, in the following, “failure” refers
to local failure, i.e. macroscopic initiation or lower
bound to macroscopic failure.

Besides, Eqs. (13) and (14) show that the cumu-
lative failure probability is a function of the applied
load level, the volume of the structure, the stress field
pattern as well as the number of cycles.

3. Identification from S-N curves

Standard macroscopic S-N curves can be inter-
preted as iso-failure probability plots. In particular, fa-
tigue limits are defined for different values of the fail-
ure probability. In the following, an identification pro-
cedure is developed to determine the flaw size distri-
bution f as well as micro crack propagation law mod-
eled by the function G defined in Eq. (6).

When the fatigue limits are known, the identification
can be performed in two different steps (Hild and
Marquis, 1995). The first step consists in identifying
the flaw size distribution 7. A minimization scheme is
used to determine the minimum error between all the
available experimental data on fatigue limits. Such an
error can be defined as

N,
1
Brr = & > (Pri = Proo)? (15)
¢ =l

where N, denotes the number of experimental data,
Pr; is the experimental cumulative failure probability
and Pgoo is the predicted cumulative failure probabil-
ity for an infinite number of cycles to failure. When

the number of cycles to failure tends to infinity (i.e.
the fatigue limit is reached), the cumulative failure
probability can be rewritten as

PFoo=
: +c0
1 —exp -—/ln 1- / fo(a)da | dV >,
W
] Aivep M)
(16)
with
E
an (%, M) = 2 ()

V202 (or M) [g(R)]*

derived from Eqs. (1) and (4), where oo (or, M) is
the maximum applied equivalent stress level at a point
M of 2 when the maximum equivalent stress level in
the structure (2 is denoted by o,

The second step of the identification concerns the
parameters of the micro crack propagation law G.
When the S-N curves used for the identification have
been obtained in tension, this identification is straight-
forward: it consists of the analysis of a single iso-
cumulative failure probability (e.g. 50%) since an iso-
cumulative failure probability is described by a con-
stant cumulative failure probability Prg = P, there-
fore ¢r(a.) = const. (see Eq, (11)). When S-N
curves used for the identification have been obtained
for more complex stress fields (e.g. rotating flexure),
an iso-cumulative failure probability is no longer asso-
ciated to a constant cumulative failure probability Pgp.
However, the identification is still possible by consid-
ering an iso-cumulative failure probability (e.g. 50%)
defined for the testing specimen considered as a struc-
ture,

4. Particularization

In this section, the previous results are particularized
to one type of micro crack propagation law as well
as to one given flaw size distribution. It is assumed
that the flaw size is bounded by a maximum value ay.
Two threshold stresses can be defined. A monotonic
threshold stress (this quantity is only relevant in the
case of monotonic brittle failure), S, may be defined
as the lowest value of the stress level below which the
monotonic failure probability has a zero value, From



Eqgs. (1) and (2), the following expression for S, can
be derived

_L /B
Su—Y vl (18)

In other words, S, denotes the minimum value of the
applied local stress for which local failure is certain
when a flaw of maximum size ay is present in an RVE
under monotonic loading condition.

In the case of cyclic loading, a cyclic threshold
stress may be defined as the lowest value of the stress
level below which the cyclic failure probability has a
zero value. It is worth noting that this cyclic threshold
stress depends upon the load ratio R (see Eq. (4) ). For
identification purposes, the cyclic threshold stress, S,
is defined for g(R) = 1, and is related to the threshold
energy release rate Gy,. Its expression can be derived
from Egs. (1) and (4)

E
Sm=%\/a—gdl- (19)

In other words, Si denotes the minimum value of the
applied local stress for which local failure is certain
when a flaw of maximum size ay is present in an RVE
under cyclic loading condition. It is worth noting that,
combining Egs. (18) and (19), there exists a simple
linear relationship between the two threshold stresses

S = Suk, (20)

with

_ ./
k=2 1)

The results derived so far will be used to study the
high cycle fatigue behavior of an austempered S.G.
cast iron, It is assumed that the micro crack propaga-
tion law is a modified version of an Elber law (1970,
1971), and keeps the main features of the macro crack
propagation law based upon a generalized Paris’ law
proposed by Pellas et al, (1977)

E =C vV Gmaxg(R) — \/ﬁ (22)

N [Gn |
VG - g(R)

where N denotes the number of cycles, C and n are
material parameters. The advantage of Eq. (22) is that

it may be integrated explicitly (Hild and Roux, 1991).
An expression for the function g has been proposed
by Pellas et al. (1977)

1-R

g =7 g i
R<R, = _—M (23)

V Umax — M/ G ’

where m is a material parameter. The values of m are
usually on the order of 0.5. The limit value R; of the
load ratio R corresponds to the initiation condition of

Eq. (4),

Omaxg (Re) =/ Gn =0, (24)
so that

94 _ 0 ifR> R and if Gues < G (25)
dN — 1 2 K¢ and II Ymax c .

For high values of the load ratio R such that g(R) >
k, unstable propagation is deemed to occur. In prac-
tice, that means that when the maximum and mini-
mum stresses over a cycle are of the same order, the
initiation conditions correspond to the monotonic fail-
ure condition. On the other hand, when the load ratio
R is negative, g(R) remains close to unity, The ap-
proximation g(R) = 1 is usually sufficient to model
the effects of negative load ratios.

By integration of Eq. (22) and recalling Eq. (1), the
following closed form solution can be derived (Hild
and Roux, 1991)

o(Var) o (/)

n

g(R) a\"
=C*| ————+~ — ] N, 26
| VGn <5u> 20
vGc8(R)

where ay denotes the maximum flaw size in the struc-
ture, ag the initial flaw size, and ay the flaw size after
N cycles. The dimensionless constant C* is equal to
C/anm. When ay is equal to the critical flaw size a. de-
termined from the failure criterion defined in Eq. (2),
the initial flaw size is then equal to the initial critical
flaw size (a.) and Eq. (26) allows to relate (a.)
to a. by



e ‘p(ac)
go< E>_¢< am )

n

" g(R) <0'>"
=C*"| —————— — | Ng, 2
1— Vgth Su F ( 7)
VGeg(R)

where Nf denotes the number of cycles to failure. The
value of the function ¢ depends upon the power n.
When n # 1 and n # 2, the function ¢ is given by

p(x) =<p<\/;1% I

(x = xa) ™" (o — (n— 1)x)
(n—1)(n-2) '

where xy, is the normalized threshold defect size ob-
tained by using Eqs. (17) and (19)

_ o Su_
= o T og(R) 2

At an RVE level, an iso-probability is defined as a
curve o—-N such that the cumulative failure probabil-
ity Ppo = Pyo is constant, If the load history is propor-
tional, it can be shown from Eq. (11) that this condi-
tion can be rewritten as

y(ac) =B,
am

=2

(28)

(30)

where the constant B depends upon the details of the
flaw distribution and the value of the considered cu-
mulative failure probability. By using Egs. (27), (30)
the normalized number of cycles to failure N* is given
by

N* =400 if o g(R)VB < S (31.1)
PRI
Y (g)"’
g(R) Su
x {9(8/e) = ¢(VB) |
. Sth
1f~g(—R) < aVB <S8, (31.2)
N*=0 ifovVB>S,, (31.3)

where the normalized number of cycles to failure is
defined as

N* =C*Ng. (31.4)

Eq. (31.1) corresponds to a case where no failure at
all is possible. The limiting case is when o'g(R) VB =
St in other words, the “fatigue limit” is reached. The
expression of the cumulative failure probability then
only depends upon the initial flaw distribution and the
value of the cyclic threshold stress Sy. This case al-
lows an identification of the flaw size distribution in-
dependently of the crack growth law (as presented in
Section 3). Eq. (31.2) corresponds to a case where
fatigue failure occurs. For a given value of B (i.e. a
given failure probability), the evolution of the num-
ber of cycles to failure mainly depends on the crack
growth law, Therefore, the analysis of a constant fail-
ure probability allows to identify the parameters of
the crack growth law, provided the flaw size distribu-
tion is known (i.e. the different values of the constant
B have been identified). When this approach is still
applicable to smaller number of cycles to failure, Eq.
(31.3) corresponds to a case where monotonic fail-
ure occurs. The limiting case is when ov/B = S,. The
expression of the cumulative failure probability again
only depends upon the initial flaw distribution, and the
value of the monotonic threshold stress S.

Lastly, it is assumed that the flaw size distribution
fo can be particularized as a beta distribution

oo \-ap
fo(a) = a®(ay — a)P,
B
O<a<ay, @pB>-1, (32)

where a and 8 are the parameters of the beta function,
and B,p is equal to B(a + 1,8+ 1), where B(.,.)
is the Buler function of the first kind (Spanier and
Oldham, 1987). In Fig. 1, the normalized beta density
and cumulative beta density are plotted with & = 1.8,
B =17.5 and are compared with the case when e = 1,
B = 5. Fig. 2 shows a Wohler diagram when o = 1,
B=5 R=0,n=4,and k =1/3, 1t is recalled that
N* = C*Npg is the normalized number of cycles to
failure. It is worth noting that when the ratio o/Sy <
1, no failure occurs under monotonic condition while
failure due to cyclic loading occurs when /Sy 2> 1,
a/Sy = k = 1/3. When o/Sy < 1, no failure at all
is possible. These results are consistent with the two
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threshold stresses Sy and Sy = kS, defined in Egs.
(18) and (19).

By using Eq. (31.2), the equation of the median
Wohler curve (Pro = 50%), if Sm/g(R) < o/Bsg <
Su, 18 given by

n

- Gin
Ve o | —VGeR) | (e
. g(R) S
x {@(S/o) — o(v/Bso) } (33)

where Bso denotes the value of B for which Prg =
50%. This equation can also be written in a format
close to that suggested by Wohler

o o
log(Nsy) =¢ (E—;R;n> —ne (34)
u u

where ¢ is a function of the normalized stress level
a/Sq, the load ratio R, and n, the power of the crack
growth law, The fatigue limit, Sso, defined as the small-
est value of the stress level such that Pry = 50%

Sin
S50 = ———F= (35)
g(R)+/Bso
In Fig. 3, the cumulative failure probability is plot-
ted as a function of the normalized number of cycles
to failure, N*, for different stress levels when R = 0.
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Fig. 4. Experimental data of austempered nodular graphite cast
iron subjected to rotating flexure.

All these results show that the scatter observed in fa-
tigue can be described by the introduction of a statis-
tical flaw size distribution.

5. Analysis of fatigue tests on austempered S.G.
cast iron

In this section, a series of experiments reported in
Jokipii (1992) are analyzed in detail. These experi-
ments have been carried out at different stress levels
on Kymenite, which is an austempered S.G. cast iron,
grade K-10005. The ratio between the threshold en-
ergy release rate and the critical energy release rate
is of the order of 1/9 (i.e. k = 1/3). The specimens
were subjected to rotating flexure with a test area di-
ameter equal to 7.5 mm. Fig. 4 shows the experimen-
tal data obtained in rotating flexure, It is worth noting
that there is information on both limited (open sym-
bols) and unlimited (solid symbols) number of cycles
to failure at different stress levels and for different cu-
mulative failure probabilities.

In this case a two-step identification procedure can
be carried out, The following values are identified by
analyzing the fatigue limits: « = 1.8, 8=17.5,V/V; =
112, S, =520 MPa. The result of the identification is
shown in Fig. 5 in terms of cumulative failure prob-
ability versus fatigue limit. In flexure, because of the
stress heterogeneity in the specimen, Eq. (30) is not
equivalent to an iso-cumulative failure probability on
a structural level, One single iso-cumulative failure
probability is still sufficient to identify the two mate-
rial parameters. The iso-cumulative failure probability

o o o
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Cumulative Failure Probability
=)
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L]
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300 350 400 450 500
Fatigue Limit (MPa)
Fig. 5. Experiments and predictions of the fatigue limits for

different cumulative failure probabilities (@ = 1,75, 8 = 17.5,
YV = 112, Sy =520 MPa, k = 1/3),
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Fig. 6. Comparisons between experimental and predicted values
of the number of cycles to failure when k = 1/3 (n = 2.34, and
C/am(1—k)" = 1,3 10=4), The identification points were taken
for a cumulative failure probability equal to 50%.

of 50% is used to minimize an error similar to that
defined in Eq. (15). The following values were ob-
tained: n = 2.34, and C/am(1 — k)" = 1.3 x 1074,
In Fig. 6 the predictions of the number of cycles to
failure are compared with the experimental observa-
tions. Three points were used for the identification and
the remaining points are predictions, Out of 19 exper-
imental data, 15 points exhibit a difference between
experimental and predicted value of less than 15%,
and the maximum difference is 75%. In Fig. 7 the cu-
mulative failure probability is plotted as a function of
the number of cycles to failure for the three different
stress levels, It is worth noting that all the predictions
are in good agreement with the experimental data,
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Fig. 8. Evolution of the average flaw size, @/awm, as a function of
the parameters « and S.

6. Fatigue failure maps

The next question to address is the influence of the
flaw size distributionupon failure properties. So-called
fatigue failure maps are drawn for this purpose. By
varying the values of « and S of the beta distribution
given in Eq. (32), it is possible to vary the values of
the average flaw size and the corresponding standard
deviation, Fig. 8 shows the type of dependence of the
average flaw size upon the values of the parameters
a and B. For a beta density (Spanier and Oldham,
1987), the average flaw size, a is given by

& cadl (36)
am C!+,B+2

Fig. 9. Fatigue failure maps giving the logarithm of the normalized
number of cycles to failure as a function of the parameters e and
B, for a given cumulative failure probability Pro = 50%, and a
given load level /S, =05, R=0,n=4,and k=1/3.

and the corresponding standard deviation a

a (a+1D(B+1)
av | (a+B+2)2a+B+3)’

Fatigue failure maps correspond to various contours of
number of cycles to failure for a fixed stress level and
are drawn for a given value of the cumulative failure
probability Prg = Pyo. Therefore they directly illustrate
the relationship between the flaw size distribution in
the material and the reliability of heterogeneous ma-
terials under cyclic loading conditions.

The first stage is to determine the values of the
constants B for different values of & and S to plot such
a map for a given value of Pgg, for instance, 50%. In
the following, we shall consider cases for which 0 <
@, B < 20, and all these results are given for R = 0,
and are easily generalized to other cases. To obtain the
number of cycles to failure when Pry = 50%, we use
Egs. (31.1), (31.2) and (31.3). One of these maps is
drawn in Fig. 9 for a load level characterized by the
ratio o/ S, = 0.5. The boundary of the no-failure zone
corresponds to ay/Bsg = Sy, (since g(R) =1). When
the failure probability equals 50%, this boundary can
be described by a straight line. Because initiation and
final failure are assumed to be described by the same
kind of criterion referring to the energy release rate G,
the boundaries can be drawn on one single map. These
boundaries can be drawn for different stress levels, as
shown in Fig. 10, Such a map can be used as follows.
Below a given normalized stress level contour, /Sy,
monotonic failure occurs when Pry = 50% and Eq.

(37)
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Fig. 10. Fatigue gfailure map giving the boundary of the monotonic
failure and no-failure zones as a function of the parameters « and
B when Pgy =50% for different normalized stress levels o/Sy or
ag(R)/Sin.

(31.3) is satisfied. Above a given normalized stress
level contour og(R) /S, no failure takes place when
Pry = 50% and Eq. (31.1) is satisfied.

When comparing Figs. 8, 9, and 10 it can be noticed
that the iso-number of cycles to failure has the same
shape as the average defect size curves; this can be
explained by the fact that the iso-probability Pry =
50% is approximately given by a constant value of
(a+1)/(a+B+2),ie a/ay = const. (Eq. (36)).
This also means that for this particular iso-probability
the number of cycles to failure is weakly influenced
by the standard deviation .

Another feature of Eq. (12) is that the considered
stress field is the macroscopic stress field since the
interactions between defects are neglected. This ap-
proach can therefore be used as a post-processor to any
classical structural analysis (performed on the struc-
ture without flaws). Phenomena such as volume ef-
fects and stress heterogeneity effects which have been
modeled by Eq. (12) in the case of monotonic fail-
ure (Freudenthal, 1968; Hild et al., 1992), may also
be modeled by this approach and applied to fatigue
failure.

7. Conclusions

A reliability analysis taking account of flaw size dis-
tributions has been developed for solids subjected to
cyclic loading conditions. Emphasis is put on the ini-
tiation stage, which is directly related to the evolution

of initial flaws. A unified expression of the cumulative
failure probability is derived for cyclic and monotonic
failure within the framework of the weakest link the-
ory and by assuming that flaws do not interact.

A two-step procedure is developed to identify the
flaw distribution as well as the parameters of the micro
crack propagation law. It is shown that the identifica-
tion of the parameters related to flaw size distribution
and crack growth law can be decoupled. In particular,
the value of the parameters of the flaw size distribution
can be determined from the fatigue limits at different
failure probabilities. The identification of the param-
eters of the crack growth law can be obtained by the
analysis of one single iso-cumulative failure probabil-
ity (say 50%).

General features observed in the case of high cycle
fatigue are modeled. For instance, a Wohler diagram is
drawn for different failure probabilities. Experiments
on austempered S.G. cast iron are analyzed within the
previous framework. The identification strategy is ap-
plied to experimental data in rotating flexure, The pre-
dictions of the whole set of data are in good agree-
ment with the experimental number of cycles to fail-
ure. This last result shows that the expression of cu-
mulative failure probability proposed herein is able to
model fatigue data obtained on austempered S.G. cast
iron.

To model the effect of initial flaw distributions on
the fatigue behavior of heterogeneous materials, fa-
tigue failure maps are introduced. They consist in plot-
ting contours of constant number of cycles to failure
in a space representative of the initial flaw distribu-
tions. Such maps are drawn at a given load level and
for a given cumulative failure probability, When the
initial flaw distribution is modeled by a beta distribu-
tion of exponents a and S, the maps are drawn in an
a-3 plane. The fatigue failure maps allow the extrap-
olation of the results obtained for a given flaw size
distribution to other flaw size distributions.

Typical application of this approach concerns the
reliability analysis of casted components. More and
more tools are available to predict the different flaw
size distributions from one point of a part of a cast to
another, whereas the fatigue behavior of the material is
in general merely derived from experiments performed
on so-called flawless specimens. A fatigue failure map
representative of the sensitivity of the material to flaws
will enable a prediction of the reliability of the whole



component under cyclic loading conditions; in other
words, it will enable the prediction of the number of
cycles to macro crack initiation, or the probability of
reaching a certain number of cycles without failure at
every point of the component.
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