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Micro-mechanics and continuum damage mechanics

A. Burr, F. Hild, F. A, Leckie

Summary Continuum Damage Mechanics has been applied successfully to technical problems since
the idea was introduced by Kachanov almost 40 years ago. In keeping with the traditions of mechanics,
the formulation was based on the results of mechanical tests on specimens whose size is measured

in centimeters. To model the observations which describe the deterioration of material properties

it was found necessary to introduce internal variables referred to as ‘damage’. The approach is
phenomenological, with only a minimal attempt to provide a physical interpretation of damage. For this
reason the approach has had little appeal to those whose interest is in the physical mechanisms which
cause material deterioration. In this presentation a description is given of attempts to develop
continuum damage mechanics so that the relationship with the physical mechanism approach is less
abrupt. The procedure is illustrated with reference to ceramic matrix composites.

Key words continuum damage, micro-mechanics, ceramic matrix, composite modelling
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Introduction

By contrast with fracture mechanics, which describes the behavior of a component weakened by the
presence of a single well-defined crack, Continuum Damage Mechanics (CDM) attempts to deal with
the circumstances when multiple cracking or voidage is evidently the dominant degradation and
failure mechanism. The uniform distribution of voids and cracks, which was observed in
high-temperature creep rupture, attracted the attention of Kachanov in 1958 [1]. Kachanov was
apparently the first to attempt a description of a creep rupture model by introducing an internal
damage variable inta the constitutive equations describing the creep behavior. While microscopic
examinations clearly identified the presence of voids and cracks, the influence of damage and its growth
were deduced from the results of the traditional tests performed by mechanical engineers, and given
in the form
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where n, p, &, o, were selected to fit experiments, o and ¢ denote stress, and strain, respectively. The
damage D was assumed to be a scalar, in spite of contrary microscopic evidence which
indicated the damage to have directional properties. Equations of this form have been used
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extensively [2; 3] and the term
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is referred to as the ‘effective stress’ [4]. The approach has been fully described and utilized by Lemaitre
and co-workers [5]. The procedure has the advantage that it is simple and can be readily related to
the results of macroscopic tests, and by simple generalization can provide a means of extending

the effects of damage on more complex phenomena, such as anisothermal viscoplasticity [6], by
measuring stiffness loss as an indication of damage accumulation [7].

The behavior of concrete is another example which lends itself well to a CDM description. In this
case, when concrete is loaded, microcracks appear at the interface of the cementitious matrix and
the aggregate. Using the concept of ‘effective stress’, Mazars [8] has proposed simple damage laws
which have proved to be useful in predicting the behavior of complex engineering components such as
dams. Other applications can be found in the work of Krajcinovic [2].

In the engineering development of CDM there is little attempt to give a precise physical description
of damage, since the focus is on the prediction of component behavior for which the length scale is
many times that associated with the physical damage in the material. By temperament and training,
design engineers tend to place greater confidence in the results of appropriate mechanical tests than
they do in the results of studies of physical mechanisms. However, the inability to respond to the inquiry,
‘What is this damage D?’, has limited the wider acceptance of the CDM approach and denied it
the benefits to be gained from understanding the physical processes of damage growth. Ashby and
Dyson [9] were able to establish the connection between the damage parameter D and the physical
deterioration occurring in metals operating at elevated temperatures. A major contribution of this
study was to identify the operating condition within which any particular mechanism is operative.
Subsequently, Cocks and Leckie [10] recast the results of the Ashby and Dyson study in the CDM
format. Using this approach, Hall and Hayhurst [11] demonstrated how CDM procedures can predict
with precision the type and growth of damage occurring in complex engineering components.

Recently, the authors were involved in a study of the properties of Ceramic Matrix Composites
(CMCs) consisting of a brittle matrix reinforced by continuous fibers and which, when loaded, exhibit
multiple matrix cracking. The matrix cracking is known to be accompanied by slipping at the
fiber/matrix interface which results in irreversible macroscopic strains. Following recent materials
science studies [12], substantial knowledge exists about the damage mechanisms occurring in these
materials, and the effect they have on material properties. These circumstances provided an opportunity
to develop a CDM description for CMCs based on the results of materials science, which is the
subject of this presentation. It is worthy of note that the CDM description was being developed at
a time when little material was available to support an extensive test program. These circumstances
emphasized the need of an approach, which is sufficiently general to allow for systematic improvement
as material science knowledge unfolded, and the results of further tests became available,

2

The formulation of a physically-based CDM model

The general structure for the constitutive equations is obtained by following a thermodynamic approach
[13-15] in identifying a finite number of internal state variables. The state of the material is then
described by calculating the Helmholz free energy density , from which the associated thermodynamic
forces may be derived. Once the state variables and the associated forces are defined, the formulation
is then completed by defining growth laws of the state variables in terms of their associated forces.

It is common at this stage [3] to define the damage growth laws by the introduction of a potential

of the internal forces. This approach is not used in the present development, and the growth laws are
obtained directly from experimental results.

In addition to the total strain tensor, the variables defining the state of the CMC include the size,
shape and distribution of the matrix cracks. The materials science studies also indicate [12] that matrix
cracking is accompanied by slipping at the fiber/matrix interface, so that the degree of interface slipping
must be included in the state variables. The state of the material can also be defined in a very
compact form by a scalar which is the Helmholz free energy. The free energy is calculated by following
any reversible path to the current state,

In the present study, the reversible path consists of two steps. The first step consists in introducing
into the unloaded cracked material the interface slips by a series of cutting, displacing and resealing
operations. This approach was introduced by Volterra [16], and used to analyze the elastic behavior
of homogeneous and isotropic media by considering the elastic properties of a cut cylinder [16;17],
as well as inclusions in an infinite medium [18], or to study creeping materials [10]. In each



case, the contribution to the free energy density can be written as

Y= 'ps(ﬁk’ a), (4)

where each f, represents an interface slip, and a the resulting macroscopic inelastic strain tensor.
The second step consists in loading the cracked material elastically with the elastic strain &° so
that the free energy is given by

Y =18":1C(5y):&% (5)

where C is the elastic stiffness tensor which is a function of the crack sizes and distributions §,, and
& is the elastic strain tensor resulting from the application of load.

The total free energy density associated with the present state is given by summing the two energy
components so that

Y =1£°:C(6,):e° + ¥ (B, &), (6)

where the usual summation convention is used, ‘:’ represents the contraction with respect to two
indices. The strain partition £* = & — &, where £ is the total strain tensor, permits the free energy density
to be written as follows:

Y =1(g —a):C(8,):(e — &) + (B ). )

The thermodynamic forces associated with the state variables &, a, J, and f, (i.e. 6, X, G, and 5,
respectively) can be found by differentiation of Eq, (7},

J:G:é+x:&+6k'5k+sk'l}k’ (8)
where
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and where s,, G, have the same tensorial nature as f,, J, and - represents contraction with respect
to the number of indices equal to the rank of the tensors f, and .

The results obtained in this section are central to the developments in the remainder of this
paper. In Sect. 3 the elastic properties resulting from matrix cracking shall be analyzed. The free
energy associated with interface slip is discussed in Sect. 4. The growth laws relating damage to the
internal forces are discussed in Sects. 5 and 6. Instead of following the conventional procedure of
identifying a scalar potential to define the growth laws as used in [13-15], a different approach
is described which combines the results of micromechanics with the results of conventional
mechanical tests.

3
Elastic properties of isotropic and anisotropic damaged materials

31

Isotropic description

The effect of matrix voids and cracks on the elastic properties of materials have received considerable
attention. The continuum damage description of the coupling between elasticity and damage has
been presented by Lemaitre and Marquis [19], and the micromechanics for specific distributions of
cracks have been completed for example by Budiansky [20; 21]. It is the expression for the Helmholz free
energy density  which is used to determine the associated internal forces. It proves to be simpler

in some problems to use the Gibbs specific enthalpy ¢ which is the Legendre transformation of

the Helmholtz free energy density according to the relation

cie=y+ ¢ (10)



The Gibbs specific enthalpy ¢ shall be introduced later in this section when appropriate.

For an isotropic material, the initial elastic properties are defined by the shear modulus G and
the bulk modulus K. If, after degradation, the material remains isotropic the elastic properties are
defined by the new values of the shear modulus G and bulk modulus K. The elastic energy density, which
is here identical to the Helmholtz free energy density y, is written as follows:

2 = 2Ge:e + Ke?, (11)

where e is the deviatoric strain tensor, and ¢, denotes the volumetric strain. The associated force to
the infinitesimal strain tensor ¢ is the Cauchy stress tensor @

_W
0'—55 (12)

and the associated force(s) to the damage variable(s) D are obtained by partial differentiation of the
state potential with respect to the corresponding internal variables. The exact expression depends
on the details of the model, as shown in the following.

A first attempt within the context of CDM to write a state potential for isotropic damaged materials
was the phenomenological description of Lemaitre and Chaboche [22]. The formulation is based on
the assumption of ‘equivalence of the deformations hypothesis’ [23] that states that ‘any strain
constitutive law for a damaged material may be derived in the same way as for a virgin material except
that the usual stress is replaced by the effective stress’. It is postulated that in the case of an isotropic
material, only one damage variable D is needed. The consequence is that the two elastic parameters
are written as a function of one scalar damage variable D

=1-~D, (13)

=1-D. (14)

It is noted that with this definition, Poisson’s ratio remains unaltered compared to the undamaged
material. The associated force to the damage variable D is referred to as the energy release rate density
Y [24], and is defined as

— 4 _1 . 2
¥ —2(2Ge.§+st). (15)

These associated forces (here Y ) are usually used as driving forces of the internal state variables (here D).

Ladeveze [25] originally proposed a general expression of the Gibbs specific enthalpy as a function
of two independent damage variables d and § in the so-called ‘kinematics of zeroth order’. However,
the same formalism can be used when the Helmholtz free energy density is analyzed, provided a partition
of the strain tensor is written in terms of its deviatoric and spherical parts. The two elastic
parameters are written as

=1-—4d, (16)

=1-4. (17)

The two forces associated with the damage variables d and ¢ are respectively given by

oy

Yd— el BE—Ge.e, (18)
oy '

Y5= ———6-g=%K£§. (19)

These first two models are completely phenomenological. On the other hand, the micromechanics
analysis performed by Budiansky [20] predicts the effect of a dilute concentration of voids on



the macroscopic elastic properties. The new values of the shear and bulk moduli resulting from an
average void density @, are given by

G 1—v
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where v is the Poisson’s ratio of the undamaged material. This micromechanics approach gives results
which are dependent on a single state variable similar to that defined by Lemaitre and Chaboche in
Eq. (13-14). However, there are differences in the predictions of the two approaches as can be
readily demonstrated by making the substitution

p=15-"" (22)

G

—==1-D, 23
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The corresponding thermodynamic force or energy release rate density is given by

9K +8G
Y: ——=l ZG . — 2
D 2( ee+ 390G K8v>, (25)

which is different from the expression given in Eq. (15).

Budiansky and O’Connel [21] have also performed similar calculations to determine the changes
in the elastic properties of an isotropic distribution of penny-shaped cracks. The relationship between
the shear and bulk moduli changes, and the average crack density @, is given by

G 32(1—-9)(5—7) _
G "B 2-3 % (26)
K 161 i @)
K = 91=-27 ¢
with
45 v—"02—-7
52 ~(2 ) - ) ’ (28)
16 (1 =93 [10v — (1 + 3v)]
where ¥ denotes the Poisson’s ratio of the damaged material. Setting
32(1 —W)(5—V) _
D= _(__‘_)(._.—Ja) (29)

45 2—7 .

shows that in this case there is no linear relationship between the damage variable D and the average
crack density .. It is worth remembering that Egs. (26-29) are valid when the crack is embedded
in homogeneous equivalent material (i.e. using a self-consistent scheme [26]). When v =0, then

Eqs. (26-27) are simplified and are identical with the results given in Eqs. (13-14) with

D =%, (30)

The above results have been obtained for isotropic and homogeneous damage, and are unable to
model the influence of randomly distributed damage. Using a pattern approach [27] applied to

a generalized self-consistent scheme [28; 29] it can be shown that the shear modulus of a material
containinga distribution of voids is not only dependent upon the average concentration (i.e. the average
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void density @,) but also on the standard deviation (@,), as shown in Fig. 1. Therefore, the damage
variable D, = G/G at least depends upon the first two moments of the void distribution. Figure 1 also
shows that it is possible to describe continuously the change from the result given by a self-consistent
scheme to that given by a generalized self-consistent scheme, by varying the standard deviation

of the distribution of voids.

When cracks and cavities are present, the simplest result to be derived is by assuming no interaction
between the two defect papulations as well as a Taylor scheme. The overall behavior is still isotropic,
but now it depends on the statistical distributions of the two populations. From the previous results,
the average free energy density i is then related to the average free energy density y, of a cracked
system, and the average free energy density y, of a system containing voids by

¥ =01-fY.(a) + fY, (@), (31)
so that

(@, @, v) = (1 — f)G.(B, V) + fG,(D, V) = G(1 —d),

R(0,3,v) =1 — fIR(®,v) + fR(®,v) =K(1 —d),

where f is the volume proportion of material embedding voids. The average void density and the
average crack density are the two independent damage variables required to model the behavior.
The forces associated with the average crack density @, and the average void density @, are defined by

W 06.(@,v) . K (®,v) ,

Y, = ad)c—z(l N (2 2%, ere + 2, e ), (32)
W[, @) K (@,) ,

Y,= 2, = zf<2. 70, ele+ 20, £V>. (33)

If the internal variables selected are the damage variables d and J, then the associated Y, and Y
defined in Eqs. (18-19) are functions of the average crack density as well as the void density. From
this it can be appreciated that the formulation of the free energy from micromechanics has the advantage
that it allows more physical insight.

Even though the initial behavior of a damaged material may be isotropic, loading conditions shall
result in an evolution of cracks which introduce anisotropic behavior. For example, this is the case
in materials experiencing multiple cracking such as concrete, rocks, and brittle matrix composites.
In this case, the previous descriptions are not valid, and it is necessary to take the crack orientation
into account.

3.2

Anisotropic description

When studying the effect of a distribution of crack orientation, it is easier initially to limit the study
to plane stress conditions. This is also a circumstance when it is an advantage to introduce the Gibbs
specific enthalpy ¢ following the Legendre transformation of Eq. (10). Figure 2 shows a sheet subjected
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to a tensile stress o, _and shear stress o, with a crack of length 2a(s,, 6, and ¢, are the components
of the stress tensor o of the material expressed in the x-y frame, Fig. 3). The change of potential

energy density due to the presence of a crack is given by [21]

2
Ap = a—i‘%& w, (a), (34)

where E is the Young’s modulus of the virgin material, and @, (a) is the crack density assumed to be
independent of the crack orientation n. The corresponding compliance variation AS at constant stress
level is given by

_PAe
" dedo’

(35)

Since the energy density variation written in Eq. (34) is proportional to o2, + 0%, Eq. (35) shows that
the compliance variation affects the Young’s modulus along the x-direction as well as the shear modulus,
so that the expression of the Gibbs specific enthalpy is

a: vo. 0, O a’
20 = XX xyy o Py xy , 36
*“ra-pyt E TE GO (36)
with
~ G
1-D,/2(1+v)
and
2w, (a)
e 38)
T4 20,@ G

where E, v are the initial elastic properties of the matrix, G is the shear modulus which is a function
of damage variable D.,.



The associated force to the damage variable D, corresponds to the energy release rate density Y,

dp 1 +d
(p__ xx+ax (39)

*=oD, 2E(1-D)

The corresponding Helmholtz free energy density is obtained as a Legendre-Fenchel transformation
of Eq. (36)

E((1 —D,)& +2v(l1 — D)), ¢, +£,)

2 = == 4G >
y 1—v(1-D,) +4G(D,)é, vy (40)
and the energy release rate density Y, is now defined as
oy
Y,=— s 41

and has the same significance and expression as that given in Eq. (39).

When interactions between cracks are accounted for, it is shown that within the framework of
the Nonlocal Damage Theory (NDT) [30], the damage variable measured as loss of stiffness not only
depends on the crack density w, but also on the interaction between cracks. For instance, in tension
it is shown that the damage variable D of cracked systems along one direction, measured as a loss
of stiffness in the perpendicular direction, is given by

Ha,
“1THao' (42)
with
na?
C=aw 43)

where 2L and 2W denote the cell size as well as the distance between two horizontal and two vertical
cracks, The interaction coefficient H represents the interaction between the cracks in the considered
array [31]. It is worth noting that Eq. (38) is similar to Eq. (43). However, depending on the
micromechanical model, the relationship between the damage variable and the crack density is different.

The previous results can be generalized to materials with a distribution of crack size a and
orientations n. This distribution is characterized by a probability density function f(a,n). The average
energy variation A is then expressed as

1
@:2—'{ j' Ag(a,n) f(a,n)dadl, (44)
Te o

where & is the circle of unit directions n. If the interactions are neglected, the energy variation for
a crack of size 4 and orientation n is given by

Ag(a,n) =0 (a)“—f’F. (45)

The average compliance variation AS at constant stress level is then given by

FPAG 11
As——m—z EI(CU (n >N(n)dl (46)

with
(o> = | a)f(an)da,

Nﬂﬁﬁ (n) = %(nanvaﬂé + na"éavﬂ + nﬁnvéaé & nﬂnééar) opy,d=1,2



where § is the Kronecker symbol. The average crack density (w,(n)) along a normal n can be expanded
through a modified Fourier representation {32]

(0, (1)) = g1 + Wy fog + Oupys Fapps + 5> 47)

where 1, f o fuﬂyﬁ ... are the basis functions, and w,, @, © afys -+ AT€ the Fourier coefficients. The

basis functions 1, f,, and f,, ... are orthogonal to each other so that

ilfwdl=£1faﬂr5dl=£fmﬂfw dl=...=0. (48)

The tensors f,, and f,, ; are completely symmetric with respect to their indices, traceless, and can
be defined as follows:

fup@) =n,n,—30,4 (49)
fups@) = nngn.ng — i(n,n0,5+ 1,10, + n,1,055 + 1,150,5 + ngn, 8,5 + nghsd,,)
+ 527 (8,40,5 + 8,055 + 0,505,

The expansion coefficients w,j, @, ... are also completely symmetric and traceless with respect to
their indices. They are expressed as the inner product of {w, (n)) and the basis functions

1
w, =££<wc(n)> dl, (50)
12x4
Wy =ﬂ-2—£ (o)) fo,(n)dl,
12x4x6%8

,[ (w (n)) faﬂyé (n)dl,

Oyprs =
#om 2x3x4 g

These tensors are written for plane problems, the same formalism can be used in 3D problems as
shown in [32; 33].

According to Onat and Leckie [32-34], a fourth-order tensor, e.g. the stiffness tensor C, with the
following symmetries

Coprs = Cpers = Capty = Cyoapr (51)
can be written as a unique linear combination of the previous basis functions. The fourth-order tensor
N(n) can be expressed as a combination of the first two basis functions

Nog,s(0) = 500,055 + 80505,) + (£, ()05 + fis(m) S5+ £, (M) 05+ S5 ()6,,)s (52)

and the compliance variation depends upon the first two coefficients of the series expansion (47)
- 1
AS,p5= E‘f[%ooo(dmyémS + 8,505,) + (@, 05 + 50,5+ @35 + @550,)]. (53)

Equation (53) shows that in the case of a random distribution of cracks, the first two coefficients of

the series expansion (47) define the damage state variables. To get the expression of the Helmholtz free

energy density, a Legendre-Fenchel transformation of the Gibbs specific enthalpy, has to be used.
These results are written for plane problems, and the same formalism can be used in 3D problems

related to random distributions of penny-shaped cracks as shown in [32-34]. In that case, the first

three coefficients of the series expansion of the average crack density {w (n)) along a normal

n define the damage state variables.



4

Inelastic properties of damaged materials

The inelastic strains which occur in CMCs are the result of slip at interfaces. The inelastic strains
resulting from the slip and the elastic energy introduced into the broken part are the subjects of this
section, The unit cell in Fig. 4 shows a crack in a unidirectionally reinforced CMC accompanied by
interface slip occurring over a debond length I;. The volume fraction of the broken part is f, and

the elastic moduli of the broken part and the broken part are E,, G, and E,, G, respectively. There are
two components of slip whose effects are discussed separately.

The first component of slip occurs when tensile stress is applied in the fiber direction, The faces
of the crack are open by an amount A and cause slip over the debond length [, Fig, 4, When the slip is
introduced and locked in position, a self-equilibrating state of stress p* is introduced into the composite
and the total compatible strains consist of two components

gt = g 4 ghin,) (54)
where g* is the elastic strain tensor which satisfies the elastic stress/strain condition
g =CH:pt, (55)

and & are the inelastic strains. The macroscopic inelastic strains may be calculated using the
relationship derived in [10]

Véio+ [T* udS=|é*:(e” +edV, (56)
A 2

where 6" is the elastic stress in the composite corresponding to a macro stress &, and £2 an integration
domain of volume V., The body £ contains a plane of surface A with outward normals n*™ andn™.
The positive side of the plane moves an amount u with respect to the negative side. The body is

treated as if it contained an internal surface S that is subjected to tractions T* = —&-n* along §*
and T~ = —&:n~ along S ™. When ¢, = &, = 1, the internal elastic stresses are
E
ol = Eu Gy (57
E,
6‘:? “F 611 (58)

where E= (1 — f)E, + fE,, then

AfE
=7 Tb (59)
Similarly,
Oy = 0y, = 0. (60)

It might be noted that the same result applies irrespective of the crack angle.
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The second type of slip which is the result of shear is shown in Fig. 5. Applying again the previous
results, and using the shear field shown in Fig. 5, when 4, = é,, = 8, = 1, for which the elastic stress
distribution is

G, , G, ,
6l = 'Eu Oy 6’3 = Eb G1p (61)
gives the result

d, fG
% 17g «
oy =0, =0, (63)

where G = (1 — f)G, + fG,. With the assumption on the shear stress at the slipping interface, it is
possible to show that the elastic energy resulting from the slip A is

) k (64)

Y (A) =EM <_A_ o

3 E I,

and the corresponding value for the shear slip J, is

Y (d) = (65)

LfG(1=)Gu( 5Vl
2 G L)L

lFs

The results derived in Sect. 3 and 4 will be used in the following sections to derive a 2D constitutive
law of CMCs under monotonic loading conditions,

5

CM(s with multidirectional fibers systems

This section is concerned with the behavior of ceramics reinforced by CMCs. It has been demonstrated
by Evans and Marshall [35] that following matrix cracking, sliding occurs at the fiber/matrix interface
which results in inelastic deformations. The presence of matrix cracks and inelastic deformations
may impart to the material the ability to redistribute stresses. The results of experiments on notched
panels on SiC/CAS composites [36] suggest the capacity of the material to redistribute stress is
sufficiently high for this material to be notch-insensitive. The ability to redistribute stress is an
important property since design studies indicate that working stresses are sufficiently high for matrix
cracking to be unavoidable in regions of stress concentration.



The micromechanics which describes interface bedonding and sliding has been established by
Hutchinson and Jensen [37] and Evans et al. [38]. In contrast to the early phenomenological studies
[25; 391, the intention of the present study is to develop a continuum description of the damage processes
which is mechanism-based, and which may be used to describe the behavior of CMCs under the
conditions of multiaxial stresses occurring in practice. Since crack spacing at saturation is small in
CMCs [12], CDM is an appropriate means of describing damage. Changes in elastic moduli, measured
on a macroscopic level, provide a simpler and more robust means of measuring damage than does
microscopic measurement of crack density, The latter requires the average of many readings
before reliable values are established [40].

By combining CDM with the micromechanical studies referred to previously, constitutive equations
are developed which lend themselves to the finite element procedures commonly used in practice
[41; 42]. Following established procedures, the properties of each layer are first derived, and those
of the composite are calculated by ensuring compatibility conditions.

The components of each layer consist of the matrix, the fiber and the interface, with f being the
fiber volume fraction. The fiber direction defines the 1-2 axes, The axes x -y correspond to the principal
axes of the strains in the ceramic matrix. The definition of the axes used at the constituent, layer and
composite levels are shown in Fig. 3. Following Sect. 3, the loss of stiffness due to matrix cracking
and fiber breakage is first established, and this is followed by the influence of the slip at the interface
studies in Sect. 4.

5.1
Elastic energies of the composite associated with matrix cracking and fiber breakage

5.4

Constituent level: matrix and fiber

The initial behavior of the matrix is assumed to be isotropic. The presence of cracks leads to an
anisotropic behavior. The assumption is made that cracking occurs in the x-direction (e.g. the maximal
principal strain direction) in the matrix, and that this direction is constant during a2 monotonic load
history. It is worth noting that this assumption excludes nonproportional loading conditions as well
as equibiaxial straining. Under this hypothesis, only one damage variable for matrix cracking is
needed, and is denoted by D__. The crack distribution is different from zero only along one direction,
The results of Sect. 3 show that the Young’s modulus along each direction as well as the shear modulus
are altered [21;43]. The expression of the elastic energy density of the matrix is (see Eq. (40))

1 Em ((] = Dmx:} glzuxx + 2"'"! (l - Dmx} Emuaﬂlyy + 87?;’!’)")")

== 2G,(D, )., 66
]//m 2 1—“;(1 _Dmr] i GM( mx)smxy (5
with
~ G
Gm(Dmx) = D - 1 ) (67)

1+ mx

1-D,,2(1+v,)

where E_, v,, are the initial elastic properties of the matrix, G,, is the shear modulus which is a function
of damage variables D, , and ¢ -, are the components of the strain tensor &, of the matrix
expressed in the x-y frame.

Itis assumed that the fibers are aligned along the 1-direction and that fiber breakage is perpendicular
to the fiber direction. Therefore the elastic energy is given by

mxx? smyy’ 6m

Yy =;1E;(1—Dy) ‘c‘}u + Egepy] + 2Gf(Dﬂ)3}u’ (68)

where E, is the Young’s modulus of the uncracked fiber, Gf(Df) is the shear modulus of the cracked
fiber embedded in the matrix, g, , &, and ¢;,, the components of the strain tensor g;of the fiber expressed
in the 1-2 frame,

The expression of the stresses in the matrix a,, and in the fibers g, are obtained by partial
differentiation of the elastic energy density with respect to the strain tensors ¢,, and &, respectively,

W

O'm = Em, (69)
Gf= a_‘lp[: (70)
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and the associated forces are defined as

oy,
Y, . =— D, (71)
oYy
Y,=— —aDﬂ. (72)

These generalized forces are the energy release rate densities associated with matrix cracking and
fiber breakage, respectively.

5.1.2

Layered composite

When the composite consists of layers of unidirectional fibers with different orientations, the laminate
properties are determined by applying laminate theory to the properties of individual layers.

5.1.21

Layer level

Alayer consists of fibers aligned along one orientation embedded in a matrix. To determine the behavior
of this layer, micro-interface compatibility conditions are written in terms of the strains & and stresses
6" on the layer level, Those conditions are the compatibility and the equilibrium between a fiber and
the surrounding matrix, which takes place in that system. Therefore, it is more convenient to

write the conditions in the 1-2 material frame as follows:

a1 =& = e (73)
fnGm + [0 = oL, (74)
Sz + FrEn = & (75)
Omn = O = T (76)
Sonbmiz + ffaflz =&y (77)
Oz = 02 = Tl (78)

where f; denotes the fiber volume fraction, and f,, denotes the matrix volume fraction. When the
principal strain directions do not coincide with the material frame, Eqs. (73-78) have to be rewritten
in the 1-2 frame. The application of these equations then defines the elastic properties of the layer,

o' =E"(D,,, D, ):¢" (79)

where B*(D,, Dﬂ) is the fourth order elastic tensor of the layer level, and is a function of all damage
variables at the constituent level. From Eq. (79), the elastic energy density associated with matrix
cracking and fiber breakage on the layer level can be written as

Wt =;8"E*(D,,, D)€" (80)

5.1.2.2

Composite level

Far simplicity, the case of two layers at 0 and 90 degrees is considered, The micromechanical quantities
associated with the 0 degree layer are superscripted by *, and those at 90 degrees by *. The elastic
behavior of the composite system is determined by applying the classical laminate theory. The
compatibility condition and the overall stresses ¢ are

£=g%=¢% (81)

P =fooo.oo + 6%, (82)



where f® and f* denote, respectively, the volume fraction of the first and the second layer, 6* and
¢® denote, respectively, the stress tensor of the first and the second layer. By solving Egs. (73-78)
and using Eqgs. (81-82), the overall behavior of the composite is defined as

¢ =E(D},, D\, D}, D):e, (83)
with
E(D%, DY, D%, D¥) = fE®(D¥, DY) + f¥E* (D, DY), (84)

where E(D%, DY, D77, D}) is the fourth order elastic tensor on the composite level, which is a function
of all damage variables D, Dfy, D7, D7} on the constituent level for the two layers. From Eqs. (81-82),

the elastic energy associated with matrix cracking and fiber breakage on the composite level can be
written as

‘I’D — fUUl/,OO +f90!//90‘ (85)

5.2

State potential associated with debonding and fiber Pull out

Inelasticity is essentially due to sliding at the interface between the fiber and the matrix. Sliding is
involved in debonding as well as fiber pullout. From a micromechanical point of view, this sliding can
take place as soon as a crack is bridged by fibers. In a CDM formulation, only the equivalent homogenous
sliding and the associated forces are considered. Therefore, the cell model used to describe

cracking and sliding is that shown in Figs. 4, 5. The analysis that has been done in Sect. 4 to give the
expression of the elastic energy due to sliding of a layered composite along the 1-2 directions can

be extended as follows: '

of, ol ol
w5=lE(i+—’5>+lG(ﬁ>, (86)
’ du dzz ? dlz
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where E® is the Young’s modulus of the 0-degree layer in the fiber direction 00, E* is the Young’s
modulus of the 90 degree layer in the fiber direction 90, G¥ is the shear modulus of the 0-degree layer,
G is the shear modulus of the 90-degree layer, d,,, d,, and d,, are damage quantities related to sliding,

and o, o, and « , are the inelastic strains.
5.2.1
State laws

The following development deals with ceramic matrix layered composites. The total elastic energy
density of the composite is the sum of the elastic energy density of the damaged composite i° and the
elastic energy density due to sliding y/*°

Y =1(e —a):E(DY,D?, Df":’, D;f): (e —a) + 5, (87)
where D%, D®, D®, and D are the damage variables modeling matrix cracking and fiber breakage
m m 1 f2 & g g g
in the 0 and 90 degree plies. The forces associated with total strains are
alp (([] 90 00 90
0= = E(D};, D2, Dy, Dp): (g — o), (88)

and correspond to the macroscopic stresses. The associated forces to the damage variables modeling
matrix cracking and fiber breakage are

»

Y= ~ 7D’ (89)



where D= {D%; D)0; DY DY}, and Y = {Y[, Y0, Y/, Y[} represent the energy release rate densities

mx? " amx? mx* ©omxd T f1
due to matrix cracking am{ fiber breakage The associated forces to the damage variables modeling
sliding are

_ oy
= 90
=T (90)
where d = {d,; d,; d,,} and y correspond to the energy release rate densities due to sliding. The

associated forces to the anelastic strains are

x=-

P (91)

and represent the back stresses in the sliding zone.

5.2.2
Evolution laws

5.2.2.1

1D evolution law of a CMC

The aim of this section is to derive the evolution laws from a 1D analysis. Postmortem analysis of
broken specimens indicates the presence of arrays of microcracks in the matrix accompanied by
debonding or friction at the fiber/matrix interface. Hutchinson and Jensen {37] and Evans et al. [38]
have analyzed the behavior of a unidirectional CMC in tension by considering the unit cell shown

in Fig. 4, when matrix cracking of spacing 2L is accompanied by sliding at the interface over

a debond length 2I,. The micromechanics can predict the 1D macroscopic stress-strain response
shown in Fig. 6. The microcracks are usually aligned with the principal stress or strain directions. By
studying a cracked panel with crack of length 2a in a cell of area 4L W (Fig. 2), the reduction in stiffness
may be estimated. If the initial behavior of the elementary cell is isotropic, and the Young’s modulus
is E, as shown earlier, the stiffness loss depends on the crack density defined as na*/4L W. By
assuming plane stress conditions, and that the crack density is so small that crack interaction can

be neglected, a first approximation for the reduced elastic modulus E can be written as (see Sect. 2)

1
= ——=1-D. (92)
7ca
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In the case of constituents with different elastic properties, D depends upon the elastic properties of
the two constituents, as well as the ratios /W and a/L. The stress/strain relationship becomes

_ g
" 1-D

= E§, (93)

where ¢ is the stress on a microscopic level, & and £ are the macroscopic stress and strain, respectively.
The model illustrated in Fig,. 4 is now analyzed and uses an analytic approach which follows the
thermodynamic developments summarized in Sect. 2. This is done by calculating the internal

elastic density ¢/° in the unit cell [44] caused by debonding and sliding at the interface. The first

al

¢ Fig. 6. Stress, &, versus strain, g during a loading-unloading-
reloading sequence




step consists in moving the unbroken part (u) with respect to the broken part (b) with no external
load by an amount A over a length I; (Fig. 7). The displacement A gives rise to a self-balanced
linear stress field along a length [, in parts (b) and (u). By integration over [, and then by
averaging over the total length L, the elastic energy density associated with this process is given by

2 fE,(1— f)E, (A1
S b u F
_2SE(—IE(ANTe 94
v 3 E I/ L ¢4
As shown in Eq. (59), the crack opening displacement A induces an irreversible strain o expressed as
fE,A |
Sl 95
“=TFT (95)

The second step consists of an elastic loading of the damaged system so that the elastic energy density
is given by

Y =3E(1 —D)(Z —a)’ (96)

The total elastic energy density is the sum of the two elements of the energy densities so that

= 2

For convenience, the energy density can be expressed in a more compact form by using state variables
which are the total strain &, the damage variable D modeling the loss of stiffness due to the cracking
mechanism, the damage variable d = fE, I./(1 — f)E,L which defines the size of the slip zone related
to the crack spacing, and the crack opening strain a. The elastic energy density in terms of the

new internal variables is

o
w=%E(1—D>(é—a)2+%E<g>- (58)
The forces associated with the state variables (¢, D, d, o) are respectively given by
0
6=-—f_—=E(1—D)(E—a), (99)
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where & is the applied stress, Y is the energy released rate available to form matrix cracks, y the energy
release rate available for interface debonding and X is the back-stress induced by the slipping
mechanism.

In the present approach the growth laws of the state variables (D, d, 2) are established from
macroscopic quantities measured in the course of unloading and reloading experiments. To this end,
use is made of the solution [44] of the response of the unit cell (Fig. 4) when subjected to an
unloading/reloading cycle during which the magnitude of the shear stress remains constant.

The expressions obtained from the analysis for the residual stress p, and the internal variables
D, d, « in terms of the macroscopic quantities shown in Fig. 6 are given respectively by

—py [ [mt20E N\ . o
= -1 — 8. —208), 103
E ( 40¢ (By = &, = 208) (103)
¢ D—& D—208
D=_Ms'"—f, (104)
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ey 106
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where — p,E/E, is the thermal mismatch residual stress in the broken layer, &, is the inelastic strain
upon complete unloading, ¢ is the maximum hysteresis loop width, E is the Young’s modulus of
the composite, &,(7,,) is the maximum applied strain (stress), D and D are, respectively, the microscopic
and macroscopic damage associated with matrix cracking, d is the damage related to interface
debonding and a is the inelastic strain at the current state point. Eq. (106) is only valid for monotonic
loading conditions.

By performing a series of unloading/reloading cycles, the internal variables can be determined
from experiment using Egs. (103-106). The residual stress p, is calculated from Eq. (103), and it is
a test of the effectiveness of the model that the same value of the residual stress is obtained for each
loading sequence. The values of D and d are given by applying Eqgs. (104) and (105), respectively.
The information is now available to complete the calculation for Eq. (106). The corresponding
associated forces are given by Egs. (99-102). The relationship between the internal variables and
the associated quantities can then be investigated. It is this method which is proposed to model the
behavior of the CMC laminate (44].

5.2.2.2

Indentification of a 2D evolution law of a CMC

The identification procedure is performed on a [0/90], laminate architecture of CMCs. The first step
is to define all the internal state variables needed to model the material behavior. The three strain
variables, {¢,, £, &,,}» are given either from experiment or as input from a FE calculation. The four
damage variables, i.e. {D},,, D\, Df, D'} are used to define the change in the elastic properties, where
D,, is matrix-cracking damage, and fiber breakage damage is D,. Assuming the damage evolution
laws, D,,(Y,,) and D,(Y ), are functions of the associated forces Y, and Y, respectively, then only
two evolution laws, one for each mechanism, are sufficient to compute the four components of damage.
The three damage variables, {d, ; d,; d,,}, define the sliding distances, with d,, or d,, being associated
with sliding in the fiber directions, and d , associated with shear sliding. Consequently, only two
evolution laws are needed, d,,(y) or d,,(y), and d ,(y).

For the same reasons, two evolution laws for the inelastic strains, «,, (X) or «,,(X), and a,(X) give
the evolution of the three inelastic strains, {o,,, a,,,,,}. In conclusion, the model has 13 state variables,
three of which are strain inputs and the remaining ten micromechanical state variables are derived
from six evolution laws,

The second step is to define the relevant tests required to identify the growth of the six state variables.
This is achieved from unloading tests performed at regular intervals and measuring the macroscopic
inelastic strain upon complete unloading, Z,, the macroscopic damage, of the composite, D, and the
maximum hysteresis loop width, 52 (Fig. 6). Using Eqs. (88-91), the internal states can be calculated.



When tension is applied at 45 degrees on a [0/90], layered composite, only matrix cracking occurs.
The macroscopic damage, D%, is related to the microscopic damage variables taking place in the
matrix alone, {D%; D }. Moreover, the loading condition is such that the two damage variables,

D and D¥,, have the same value. Therefore, the evolutionlaw, D,,(Y ,,), is directly given by the evolution
of the macroscopic damage of the composite D*.

The evolution law of the damage variable associated with fiber breakage, D,(Y/), is found from
measurement of the macroscopic damage, D®, in a tension test at 0 degrees on the [0/90], composite.
This has been compensated by the contribution of matrix cracking which may be calculated from
the results of the first test. Similarly, the evolution laws of the state variables related to sliding, «,, (X)
or «,,(X), and 4,,(y) or d22 (v), are known from the evolution of the macroscopic inelastic strain upon
complete unloading, %, the macroscopic damage of the composite, D", and the maximum hysteresis
lopp width, 82, using m1cromechan1cs relations (103-106)

= - 1) (% — &30 —208™), (107)
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(110)

where p° is proportional to the residual stress in the broken part of the 0 degree layer. Finally, returning
to the results of the tension test at 45 degrees on a [0/90], layered composite, the evolution laws of
the state variables related to sliding, «,,(X) and d ,(y) are given by the following relationships

similar to those calculated by the micromechanical analysis:

do_ &R i

4 gB_2p¥ )
d, &%

@, =—2—H_, (112)
2 lJrd12
2

In this analysis, it can be noticed that the residual stress — p}° in the tensile direction is equal to
zero, and, therefore, &} = 268*, which leads to the above results.

In summary, only two tests, on the same architecture, enable us to extract all six evolution laws
that define the behavior of the material as shown in [45] on experiments performed on SiC/SiC
specimens [46].

6

Condlusions

CDM has grown out of the need to predict the behavior of engineering components composed of
materials whose properties degrade because of damage. The traditional approach, which is now well
established as a design procedure, has been formulated with only minimal attention to the internal
mechanisms occuring in the material. In the above presentation, the formulation of classical

CDM has been extended so that the description of the physical mechanisms which cause damage

can be included. This approach has the advantage that the studies of material scientists are integrated
into a formulation retaining the proven advantages of CDM. The illustrative examples of the application
of the procedure is concerned with the properties of CMC which can suffer matrix cracking and
fiber/matrix sliding resulting in a loss of stiffness, the appearance of inelastic deformations, as well

as hysteresis loops.
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