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E.N.S. de Cachan / €.N.R.S. / Université Paris 6
61 avenue du Président Wilson, F~94235 Cachan Cedex, France.

Introduction

The aim of this paper is to derive the ultimate tensile strength during fatigue loading of
fiber—reinforced ceramic—matrix composites. Two different phenomena arise as a consequence of
fatigue loading. First, wear may take place at the fiber/matrix interface [1]. Second, fiber
embrittlement can occur at intermediate temperatures [2] as a result of oxidation. At room
temperature, however, only the first phenomenon takes place. Estimate of the effect of cyclic
loading on the ultimate tensile strength is possible when the influence of interfacial wear is included
in the model. It is shown that the ultimate strength is defined by means of a shear strength map

with three different regimes.

Ultimate Tensile Strength

The ultimate tensile strength properties of fiber-reinforced ceramic-matrix composites
(CMC's) are usually dictated by the strength of the fibers. The fibers exhibit a statistical variation
of strength that obeys a two—parameter Weibull law. Provided the fibers are subject to global load



sharing, the load transmitted from each failed fiber is shared equally among the intact fibers, the
ultimate tensile strength is then scaled by a characteristic strength [3] S according to

Bypg = S, F(m),  with S™1 = (1)
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where f is the fiber volume fraction, m the shape parameter, S, the stress scale parameter, Lya
gauge length, T the interfacial shear resistance, and R the fiber radius. The function F depends
upon the shape parameter m and whether localization happens or not before the peak stress [4-6].

To assess the ultimate tensile strength, the function F is given by [4]

1/(m+1)
m+1

F(m) = (m—+7) = (2.1)

and to calculate the localization tensile strength, the function F can be written as [6]

. =%(a}ﬁ)1/(m+1){l+exp(~ ,’n%)} (2.2)

Eqn. (1) shows that the interfacial shear resistance T is a key parameter. If wear is involved, it is

expected that T decreases as the number of cycles increases.

hear Str {volution

When push-pull experiments are performed on CMC's, it is known that the first cycle is

often the most damaging in reducing of shear stress [1]. Therefore, following the first reversal of
sliding, the frictional shear stress is assumed (o decrease from T, to T The density of matrix

cracks is defined by a crack spacing 2L. Upon first loading to a maximum stress &, a friction
length 2L, is reached (L, < L) over which the shear strength is equal to 7, (Fig. 1).

Upon unloading to 0-AG = RG a shear stress reversal occurs over a length Ly, for which
the interfacial shear strength is equal to T_. Upon reloading to G there is shear stress reversal over
the length Ly}, for which the interfacial shear strength is still T_; together with o, sliding evolves
from LFO to LFI' for which the interfacial shear stress is Ty As the number of cycles N increases,

there is an increase of L’F(N+1) and L’U(N+1) givenby (N2 1)
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composite). So that the following expressions can be expressed as a function of accumulated

number of cycles (N = 0)
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with y= , 0<7y< 1. The case y = 0 does not deal with fatigue wear. The case y=1is
ToH s
trivial to study and can be desctibed by an arithmetic sequence instead of a geometric one for Ly
and LUN‘
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Fig. 1 : Stress profile in the matrix. Depiction of the three different cases.
The symbol ~\_ denotes the slope of a pointed straight line.

The stress profile in the matrix is plotted in Fig. 1. Provided subcritical crack propagation
does not exist, there is no further matrix cracking under cyclic loading conditions. However, fiber



breakage may occur since the longitudinal stress in the fibers increases as a result of wear. In the

following, we will neglect this phenomenon.
There are three cases to be considered. In case #1, L > LFN' the condition for matrix

cracking saturation is not reached. For case #2, LUN <L< LFN, matrix cracking saturation occurs
and the friction characteristics involve 1, and t_. For case #3, Ly, > L, matrix cracking saturation

takes place but the friction characteristics only involve T_. To characterize the features of the shear

stress profile, when N > 0, an equivalent shear stress ’C*(N) is defined by

(1-DR,0,, (Lpy)
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where o, (z) is the tensile stress in the matrix (Fig. 1). This equivalent shear stress is the key
parameter used to determine the fatigue properties. The evolution of the latter is given by
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from which the shear stress map shown in Fig. 2 can be obtained. When N =0, ‘c*(()) =T, since
p g 0

no reversal occured. On the other hand, when N = +eo, since Y < 1, the maximum value of
'c*(oo) =1,( 1-y)/(1=yR) and the minimum value of 1*(m) = 7. This last result shows that T_, can
only be reached if saturation takes place during cycling (L < L) and complete reversal occurs at
least one cycle over a length L (L < LUM).

To determine the ultimate tensile strength when saturation is not reached at the end of N
cycles, it is necessary to know the value of the shear stress ‘c*‘c(N) at cracking saturation. It is
greater than the value ’E*(N) obtained when L > LFN’ since the friction length increases further
under subsequent monotonic loading with a shear stress equal to T, over a range
Lyn<z< L, «(N), where L <attN) denotes the average crack spacing at saturation (Fig. 3). It is
worth noting that L_, (N) is different from the average crack spacing at saturation under monotonic
load conditions obtained by computing Ly, = L. The quantity L atN) also depends upon the
number of cycles since cracking occurs only in areas in the matrix where the stresses become
higher than the maximum cyclic stress E_ o/E, and these areas become smaller as the number of



cycles increases. Therefore, by definition, the value of the shear stress 't*'C(N) depends upon the

number of cycles.
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Fig. 2 : Shear stress map after cycling whent_/1,=02,R = 0.
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Fig. 3 : Depiction of the three different cases to determine the ultimate strength,
The symbol \_y denotes the slope of a pointed straight line.

As a consequence, the boundary between case #1 and case #2 is altered owing to the fact
that T(N) = T*(N). A shear stress map to determine the fatigue ultimate tensile strength is plotted in

Fig. 4 using the following results when N >0
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This map is useful for deriving the ultimate fatigue strength according to Egn. (1). Under
monotonic loading conditions, the value of T in Eqn. (1) is taken equal to T, whereas under cyclic

loading conditions, it is taken equal to T(N). It is worth noting that these results include directly the

amplitude effect by the presence of the load ratio R.

& 1 ol LR (L T A T
g TN / N

" T T —8— N=+400
Cg - 08 # O |--5--0<N<+os,
2 06 Ge--na-cta after cycling
2o O e
Et{ 04 [ s, | @ - O<N<too
= & N
E  02f - .
S i
Z 0 ORI P (ST R L [ A ST SLI [ ST YR W |

0 0.5 1 1.5 2

Normalized Stress, (l—f)EmcR f/ 2fETOL

Fig. 4 : Shear stress map when t_ /1) = 0.2,R=0.
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