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The stress—strain behavior of ceramic—matrix composites (CMCs) is often non~linear. The
loading of such composites results in two independent damage mechanisms: fiber failure and
matrix cracking. Furthermore, the fibers are supposed to be subject to global load sharing,
whereby the load transmitted from each failed fiber is shared equally among the intact fibers. Some
aspects of the associated fiber failure stochastics have already been addressed [1-4]. The results
usually overestimate the ultimate tensile strength observed experimentally. Moreover, the non—
linearity is overestimated as well [5]. In this paper, the problem is analyzed in the light of results
related to strain localization [6]: by strain localization we mean the localization of fiber breakage
and fiber pull-out into one plane of matrix crack.



Expression of the Ultimate Tensile Strength

A composite with a saturation density of matrix cracks is considered, spacing L, withina
unit cell of length L. The length Ly, is the recovery length and refers to the longest fiber Lg/2)

that can be pulled out and cause a reduction in the load carrying capacity. The recovery length is
thus related to the reference tensile stress T in unbroken fibers by

LR = (1)

where T is the interfacial shear resistance, and R the fiber radius.

If the fibers exhibit a statistical variation of strength that obeys a two—parameter law, then
the probability that a fiber would break anywhere within the recovery length L, at or below a

reference stress T can be written as

T m+1
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where S is the characteristic strength [7], m the shape parameter, S the stress scale parameter,
and L, a reference length.

The average tensile stress & applied to the composite is related to the reference stress T by
oM =fT { I - PF(T)} + Opp(T) = Op(T) + Opp(T) 3)

where Gpp(T) denotes that component of the stress provided by failed fibers as they pull out from
the matrix. It has been shown that Gp(T) is an increasing function and then saturates [8]. A first
approximation [1] is given by Opp(T) = £ T P(T) / 2.

In Fig. 1, the contributions of the two mechanisms, viz. fiber breakage and fiber pull-out,
are plotted when m = 4. It is worth noting that the contribution of the unbroken fibers, Syr(T),

reaches a maximum value prior to reaching the ultimate point. This result shows that a softening



mechanism on a microscale takes place prior to the softening mechanism on a macroscale. This
decrease leads to a loss of uniqueness and localization on a microscale beyond that point.
Since GUF(T) decreases, there are two alternatives. The first one, referred to as

homogeneous solution, corresponds to the case where fiber breakage continues to evolve
uniformly in the whole specimen. This is only possible if the strains can be prescribed over the
whole specimen. The second one, referred to as localized solution, consists in elastic unloading of
the unbroken fibers in one part of the specimen, and further fiber breakage in the other part (whose
size is on the order of the characteristic length SC =RS /7). This localized solution appears as soon
as the overall strain cannot be controlled on a microscopic scale. Otherwise, the homogeneous
solution is the only solution to this problem. Consequently Eqn. (3) after the localization point
corresponds to the homogeneous solution, which usually cannot be reached.

The applied stress level corresponding to the onset of localization will be referred to as
localization tensile strength, and will be denoted by aLTS' In most cases, this stress level

corresponds to the ultimate tensile strength of a CMC, The aim of the remainder of this Section is
to derive this stress level and to compare it with the ultimate tensile strength given by the

homogeneous solution.
In fiber—reinforced composites, broken fibers cannot control the strains: only unbroken
fibers within the recovery length control the strains. As soon as Gyy(T) reaches a maximum, the

overall strains cannot be controlled on a microscale. Therefore, a localized solution appears when
6;(T) achieves its maximum. The localization tensile strength of the composite is thus given by
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where TL is the value of the stress in the unbroken fibers when EUF(T) achieves its maximum. At

localization, the tangent modulus at the onset of localization on a microscale is still positive
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By using the previous approximation of the pull-out stress, the localization tensile strength
becomes
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On the other hand, the ultimate tensile strength, corresponding to the response of the

homogeneous solution, is given by

GUTS = Max{a(T); T=0} )
This equation cannot be solved analytically. A first order solution of the ultimate tensile strength is
given by [1]
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In Fig. 2, the ultimate tensile strength is compared with the localization tensile strength for
different values of m. It is worth noting that in terms of stress levels, the two strengths are very
close. However, in terms of failure strains, and ductility, the two differ more significantly (Fig. 1).
More importantly, as mentioned earlier, the tangent modulus is equal to zero when the ultimate
tensile strength is reached whereas it is still positive when the localization on a microscale sets in.
In the following, the tensile strength derived from Eqn. (8) is compared with the localization tensile
strength given by Egn. (6) in the case of carbon—matrix composites.

mpari with E iment

Experiments performed on two carbon—matrix composites (material A and C) reinforced
by SiC (Nicalon) fibers [9] are summarized in Table 1: Lg =25 mm, R =6.5 pm. The
predictions agree well with expeciments (Table 2). In particular, in these experiments, the stress—
strain response does not show that the tangent modulus at the ultimate is vanishing. This is
consistent with Eqn. (§): the onset of localization on a microscale sets in when the tangent modulus
is still positive. This last result has been observed in various fiber—reinforced composites [5].



EXPERIMENTAL RESULTS

Material f So (MPa) m T (MPa) |Gpg (MPa)
A 0.2 1165 4.5 10 290
C 0.2 1140 4.5 14 345

Table 1: Experimental results for carbon—matrix composites.

PREDICTIONS

Material 8 g (MP2) | By (MPa)
A 295 310

C 310 325

Table 2: Predictions of the tensile strength for carbon—matrix composites.
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Figure 1: Nommalized stresses, G/ fS , O/ S, Spp/ fS_ vs. normalized strain, T/ S .
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Figure 2: Normalized tensile strengths, 6 1 / £S., Syypg / £S, V8. Weibull parameter, m.



