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Global Point-to-hyperplane ICP: Local and Global
Pose Estimation by Fusing Color and Depth

Fernando 1. Ireta Muiioz! and Andrew 1. Comport?

Abstract— RGB-D view registration has been widely studied
by the robotics and computer vision community. The well
known Iterative Closest Points (ICP) method and its variants
prevail for estimating the relative pose between sensors. How-
ever, the optimization is performed locally and by consequence
it can get trapped in local minima. Global registration methods
have been introduced as an approach to solve the local minima
problem by exploiting the geometric structure of SE(3), and
accelerated with local approaches. In this paper, a local hybrid
approach named Point-to-hyperplane ICP has been combined
with a global Branch and Bound strategy in order to estimate
the 6DOF (degrees of freedom) pose parameters. Registration
is performed by considering color and geometry at both, the
matching and the error minimization stages. Results in real and
synthetic environments demonstrate that the proposed method
can improve global registration under challenging conditions
such as partial overlapping and noisy datasets.

I. INTRODUCTION

A fundamental problem in RGB-D registration is estimat-
ing the pose that relates two sets of measurements obtained
by a moving sensor (or sensors) at different times. This view
registration problem has been investigated extensively by the
robotics and computer vision community and employed for
many applications such as 3D reconstruction, autonomous
navigation and visual SLAM.

When RGB-D sensors are employed, color and depth
can be registered simultaneously at a considerably high
frame-rate, by local registration methods that improve the
alignment between extended frames (RGB + Depth). Local
techniques, however, consider a small relative motion be-
tween the frames and a large overlap, leading to local minima
when the registered frames are not close enough. When a
small overlap is present between datasets, registration can
be performed using global approaches. Global registration
approaches can obtain rough alignments, regardless of the
initial pose between the frames. However, since they are
computationally expensive, global methods are often only
used to initialize local approaches. The combination of global
and local approaches guarantees however, the convergence of
the non-convex error function thereby dealing with the issue
of local minima.

Local RGB-D pose estimation from color and depth im-
ages have each been individually studied for image-based
and geometric-based approaches, respectively. In the case of
geometric approaches, the well known Point-to-point Itera-
tive Closest Point (ICP) [1] algorithm and its variants [24]
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have demonstrated a good performance for aligning 3D
pointclouds. In particular, the Point-to-plane and the Plane-
to-plane ICP strategies [4], [25] have been shown to improve
the robustness and convergence of the classic ICP algorithm.
On the other hand, image-based approaches can estimate the
pose by iteratively minimizing the photometric error [S]. Var-
ious prominent feature-based methods first extract geometric
information from the image before performing registration
over the geometric error. This requires, however, error prone
extraction of features. An alternative is found in direct meth-
ods, which perform registration based on image warping [5].
Finally, hybrid methods have demonstrated more robust and
accurate performance than image-based or geometric-based
methods alone. Hybrid approaches can obtain the main
advantages of image-based and geometric-based approaches
during the minimization process by minimizing both errors
simultaneously. Various hybrid methods are presented and
cited in [29], [15], [14]. Hybrid methods differ in how the
closest points are estimated and how the uncertainty factor
between color and depth is determined.

Global registration approach have been introduced to
obtain a coarse alignment between scan pairs that are not
roughly aligned. One of the simplest global approaches
consist in shifting the centroids of the pointclouds to the
origin of the coordinate system and statistical methods such
as the Principal Component Analysis (PCA) can estimate an
initial orientation by extracting strong patterns in a dataset.
The PCA algorithm has limitations for 3D registration, such
as a 180 degrees ambiguity or eigenvalues similar in value
(axes may switch). In the literature, global 3D pre-alignment
is usually performed by matching geometric features from
the scene. Extracted features can be useful to obtain a faster
initial alignment between the datasets, but it can require a
manual or an automatic selection of good correspondences
and a robust estimator to reject outliers (e.g. RANSAC).

A global registration method that pre-selects correspon-
dences by using the Fast Point Feature Histogram (FPFH)
is presented in [30]. This method obtains a fast alignment
by aligning only good pre-computed correspondences in the
iterative loop without using a local approach for refinement.
Approaches that use both, global and local registration with
extracted features, can be found in [12], [7], [18], and
application to RGB-D registration can be found in [8]. [12]
performs registration by finding a so-called model graph,
which contains a connection between correct matches. A
global approach named Super 4PCS [20] uses a sub-sampling
type strategy to extract coplanar 4-points sets, which are
assumed to remain invariant under rigid motion. The 4-



point sets are created in all scan pairs and the algorithm
finds all equivalent 4-points in between. An approach based
on the Branch-and-bound (BnB) method is proposed in [7].
The method is improved by finding potential corresponding
points based on performing integral operations on the under-
lying shape. In [18], the transformation is globally estimated
by maximizing the correlation between extended Gaussian
images (EGIs) in the Fourier domain. The method uses the
convolution of the spherical harmonics of the EGIs and the
rotational Fourier transform as features to estimate rotation.
The translation is found similarly by employing fast Fourier
transform. A RGB-D application is found in [8], the global
estimation is found by minimizing the correspondences of
extracted linear edges along creases and contours in depth
images.

Methods that do not require any feature detection, such as
the Branch and Bound algorithm [17], can be employed to
estimate the pose by exploring and sub-dividing all rotational
and translational space as in [10], [2], [12], [22], [28], [3],
[26]. These methods, however, are vulnerable to outliers and
partial overlap. Various methods like [10], [2], [22] consider
pure rotation for the BnB method since the translation
is known apriori or the clouds have sufficient overlap to
be estimated by the local approach. In [22], the rotation
space is sub-divided in its quaternion representation and the
translation is estimated by variants of local approaches [11].
An optimized version of [10] has been presented in [2]. Both
strategies use the axis-angle representation to parametrize
a solid radius-m sphere for rotations. The BnB method
sub-divides the sphere by using an octree data structure,
where the optimal global solution is found by bounding the
generated subsets. Strategies such as [28], [3], [26] have
extended the exploration of the transformation space by
subdividing the rotational and translational space together.
These methods differ in:

» how the SE(3) space is sub-divided (branching).
o how the upper and lower bounds are computed.

As in [10], the Go-ICP [28] and GOGMA [3] algorithms
propose an axis-angle representation to sub-divide the SO(3)
space, where an inner BnB search structure is included to
explore the translational space. Whilst Go-ICP minimizes the
L, norm of the Point-to-point residual error, GOGMA uses a
Gaussian mixture alignment (GMA), which is less sensitive
to partial overlap. Both methods estimate the uncertainty
radius for rotation and translation, which is the key for
estimating the lower bounds of the error function. The
computational cost is linear with the size of datasets and it is
improved by a subsampling stage. Recently, a more efficient
method has been proposed in [26]. The method follows the
same pipeline of minimizing the L, norm of the residual
errors, but the BnB exploration decouples the rotational
and translational space via the use of surface normals. The
distribution of the surface normals are modeled as a von-
Mises-Fisher mixture model (vMF-MM) for rotation and as
a Gaussian Mixture Model for translation.

However, to the best of our knowledge, global and local

approaches in the literature have been estimating the pose
by considering only 2D and 3D geometry. In this paper, a
method that also integrates color as an available criteria in
both, matching and error minimization stages, is proposed.
The method combines a variant of the BnB method presented
in [28] in higher dimensions with hybrid approaches [15],
[19] as the local refinement. The proposed method has been
applied in a visual SLAM and dense mapping setting, where
mistracking is a common failure mode due to incorrect
estimations of the pose or small overlap between acquired
frames. Results in both, real and synthetic environments,
will demonstrate that 3D global methods can be extended to
RGB-D global pose estimation and accelerate convergence.

The article is structured as follows: In Section II, a brief
introduction is given about how global and local approaches
can estimate the pose and how both strategies can improve
registration. Particularly, iterative registration between the
BnB algorithm and local ICP approaches will be explained in
this Section. The proposed Point-to-hyperplane ICP approach
will be presented in Section III. In this Section it will be
demonstrated how the global registration can be improved
when color is considered as an available criterion for the
minimization process by using hybrid approaches as the
local refinement. Finally, results in both, real and simulated
environment, will be shown in Section IV.

II. GLOBAL AND LOCAL APPROACHES FOR
POSE ESTIMATION

Global pose estimation approaches can obtain a pre-
alignment without making assumptions about the relative
initial pose or the overlap ratio between datasets. Global
approaches are often employed to initialize local approaches,
which refine the convergence. Recently, the BnB method has
been used in collaboration with the ICP algorithm to improve
3D registration. Whilst the BnB algorithm provides a glob-
ally optimal solution by exploring the entire transformation
space (all feasible solutions), the ICP algorithm refines the
local alignment (optimal solution). The proposed approach
in this paper is based on the Go-ICP algorithm, which only
considers 3D registration. However, a generalized framework
of the Global BnB method and local ICP approaches will
be introduced here and subsequently extended to higher
dimensions. For the purposes of this paper, global registration
strategies based on BnB methods, which subdivide the SE(3)
transformation space, will be considered.

The minimization of the sum of least squared error L;
objective function will be considered:

N
E(T(x)) =) ¢ (1)
i=1

where each e; error metric refers to the N correspondences
between two measurement sets, which are acquired at dif-
ferent views (they can be transformed via the function f(-)),
as:

e =M — f(M;,x) eRPVieN )

A nD-vector M; € R" (n-dimensional) is defined here as a
vector that contain all the measurements obtained by the



sensor (or sensors) at the i —th point. The superscript *
will be used throughout this paper to identify the mea-
surements that were obtained first (reference dataset). The
homogeneous pose matrix T(x) € R¥* = (R(x),t(x)) €
SE(3) can be decomposed in the rotational R(x) € SO(3)
and translational t(x) € R? components, which depend on a
minimal parametrization of the linear and angular velocity
x = [v,®]", respectively. Both components are related via
the exponential map as T(x) = ™A, with the operator [IA
as:

[x]p = [[“g 8} ()

where [-],, is the skew symmetric matrix operator.

The 6 DOF pose parameter X can be estimated by min-
imizing the error function (2). Two cases can be found
while estimating the pose: If the rotation and translation are
known (case 1), then the correspondences can be estimated
or if correspondences are known (case 2), then the rotation
and translation can be estimated. In any case, (2) becomes
solvable. However, erroneous alignments can be obtained
when wrong correspondences are found (vulnerability to
outliers). Local minima are problematic for local estimation
approaches. Despite this, local approaches are usually faster
than global approaches and they can obtain robust alignments
if the datasets are close enough. On the other hand, when a
BnB method is used, only a rough alignment can be obtained
between frames due to the fact that an extensive exploration
of the SE(3) transformation space is prohibitively inefficient
and memory consuming. The aim of fusing global and
local methods for registration can be seen at this point:
The non-convex function (1) can be optimally solved if
the BnB method and the ICP algorithm work together. In
order to guarantee convergence and avoid local minima, each
method can be initialized with the result of the other until
convergence (See Fig. 1).

In order to introduce how the global BnB and local ICP
approaches find the transformation T(x) that minimizes (1), a
6DOF pose estimation framework for each will be introduced
separately.

A. Local registration framework

Geometric-based or photometric-based pose estimation
have been widely studied. Since they share much similarity
in estimating the unknown pose parameter x € R® in (2), they
can be performed using a non-linear iteratively re-weighted
least squares (IRLS) method. Generally, the IRLS method
encompasses the following stages:

1) Acquire a set of measurements (e.g. color and depth in

case of RGB-D sensors) at two different viewpoints.

2) Transform the current measurements onto the reference

measurements using the current pose estimate.

3) Find correspondences between the transformed and the

reference measurement vectors.

4) Minimize the weighted error function and estimate a

pose update and repeat to 2) until convergence.

Given a particular sensor modality, methods in the litera-
ture essentially differ in how the closest points are estimated

ICP BnB ICP
+0.67 sec

Initial Pose

+3.35sec

+2.68 sec

Total Elapsed time : 6.7 seconds

= BnB

— ICP

20
31.82

15424.4 (Initial error)

0.00044
(Final
error)

125 —> 5
Iterations

l— 123 —>

Explorations Iterations

Fig. 1. TIterations and elapsed time of Go-ICP 3D registration (Read
Section II-C for implementation details). A subset of the cloud was extracted
and transformed with a random pose. It can be seen on the top that a local
minima is reached in the first trial of ICP. The BnB bypasses the local
minima and obtains a closer solution, which is again refined by the ICP
algorithm. The cost function evolution is represented on the bottom.

and how the error function is minimized (step 3 and 4,
respectively). For the purposes of this paper, the pose update
is estimated by using a robust ICP algorithm (as in classic
Go-ICP [28]). The given non-linear error in (1) is minimized
by using the Gauss-Newton approach, which iteratively com-
putes the unknown pose parameter as:

x=—J"WJ)~'J Wee R )

where J is the Jacobian matrix obtained by taking the
derivative of the error function (2), and the weight matrix
W contains the weights p; obtained by a M-estimation [13].
The pose T(x) is updated at each iteration as T < TT(x)
until convergence.

B. Global registration framework

The BnB algorithm is used to solve non-convex problems
by searching the complete space of solutions for the best
solution. Variants of the BnB method have been employed for
3D registration. In order to provide a generalized framework
for pose estimation using only the BnB algorithm, the
following stages can be established:

1) Subdivide the transformation space into subspaces.

2) Transform the current measurement vector and esti-
mate correspondences w.r.t. the reference measurement
vector by using the centroid coordinates of each sub-
space.

3) Evaluate the upper-bounds and lower-bounds for all
live subspaces.

4) Discard subspaces from the live subspaces by a search
strategy, which selects the next subspace to process.

5) Repeat to 2) if a branching is performed before bound-
ing the error, or to 1) if a branching is performed after
bounding the error, until convergence.
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Fig. 2.

Parametrization of the SE(3) space and subcubes. The rotation space can be represented in a m-sphere within a cube of 27 length (See text for

more detailed information) (a) and a 3D cube half side-length / for translation (c). An example of an octree branching is presented in (b) and (d). The
subspace candidates that may contain the global solution are colored, its correspondent subspace is represented in (a) and (d).

Global registration methods can differ in how branching,
bounding and subspace searching are performed. In the
following, all three components will be briefly introduced.

Branching the SE(3) space: All branching rules in the
context of BnB can be seen as a subdivision of the search
space through the addition of constraints. The subdivision
method can be performed before or after bounding the error
function (the strategies are so-called eager and lazy BnB,
respectively). The difference is that eager BnB subdivides the
transformation space as soon as new subspaces are available
(branching is performed first), whilst lazy BnB subdivides
the subspace if necessary (bounds are evaluated first). In
this paper, a lazy-BnB pipeline with a nested 6D branching
strategy is employed. A nested BnB strategy performs an
inner translation BnB after evaluating live subspaces for
the rotational space. This is less memory consuming than
estimating a direct 6D space BnB.

Similarly to [28] and [3], an octree structure is employed
in this paper to subdivide the rotation and translation spaces.
Rotation space is parametrized using the axis-angle repre-
sentation as a vector r = a# € R? where 7 is the axis and
o is the angle. Therefore, the rotational SO(3) space can be
represented in a solid sphere of radius 7 [10]. The translation
space can be represented as a constrained cube C; = [, 1],
within which it is assumed that the optimal translation will
be found. Similarly, the 7-sphere can be circumscribed in a
3D cube C, =[x, 7]>. Each generated sub-cube Cr; CCr
and C;; C C; represents a search state with possible solutions
to (2) (See Fig. 2).

Bounding the error function: The bounding function
is the fundamental component of the BnB. The upper and
lower bounds of (1) are estimated for each generated sub-
space within Cg and C;, and they are determined from the
residual (2). For this paper, the optimal registration error was
computed as:

& =M} — £(T(x),M)) 5)

ei = max ((M; — f(T(x),My)) — (Y&, +¥),0)  (6)

where ¢; and e; are the upper and lower bounds, respectively.

The lower bound is derived by considering a mathematical
concept called uncertainty radius ¥ = Yg, + y; in terms of
the angle metric [10], [28]. It examines the uncertainty region
of a point M; perturbed by an arbitrary rotation R;(x) €
Cr or a translation t;(x) € C; corresponding to the center

fR@M)  fRCoM)  fE0)M)

FRG),My)

(a) Rotational space

(b) Translational space

Fig. 3.  Uncertainty radius at a point centered in T(x). a) Rotation
uncertainty radius Y, and b) Translation uncertainty radius y; are estimated
by the half-side length subcube circumscribed in a sphere.

of the cubes with half-side length 7. and 7, respectively.
These uncertainty regions Cg and C; are enclosed in a n-
dimensional sphere centered at f(T;(x),M;) and estimated
separately for rotation and translation as is shown in Fig. 3,
where T(x)" = (R(x)",t(x)") runs over all rotations and
translations, and represented by points in the cubes. The
maximum length of the uncertainty radius is obtained by
considering the maximum distance between two transforma-
tions and it can be extended to higher dimensions with the
following lemma, which summarizes the uncertainty radius
in n-dimensions:

Lemma 2.1: Given a nD-point M;, a half side length T,
rotation cube C, and a a half side length T; translation cube
G;, centered at T(x), then VR (x) € Cg and Vt;(x) € C;,

[1£ (60" Mi) = f (t;(x). My) [ S VDT =y, (D)

1/ (R;(%)*, M) — f(R;(x), My)|| < min(v/nDT,,7) =y, (8)

An important point from (8), is that the angle distance is less
than the Euclidean distance in the angle-axis representation.
Therefore, the maximum distance between two rotations
cannot be bigger than the maximum angle 8 < v/37, [10]. In
the 3D case, the respective radius Yg, and y; are integrated
into the error function to estimate the lower bound. The
uncertainty radius for rotation can be estimated as follows:

[ [IRGM; —R;M;|| (V31
Y, = 2sin (12 |IM[| = 2sin Tr |M[| (9)
By observing that the translation cube can be inscribed in

a sphere, the uncertainty radius for translation is simply
estimated as:

v =M+ £(0)) = (M +£(0)| = V3, (10)
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Fig. 4. Point-to-hyperplane ICP registration. The method can perform

the RGB-D registration without estimating a tuning parameter between
color and depth [15] and it considers the color as a criterion to find the
correspondences.

Searching a global solution: There are three main
strategies for exploring generated subspaces and selecting
those which may contain an optimal solution in the BnB
algorithm: Best-first, breadth-first and depth-first strategies.
These strategies mainly differ in the priority provided to a
subspace to be evaluated. In this paper, a best-first search
is employed. The best-first strategy always selects the sub-
spaces with the lowest bound, where no extra bound calcula-
tions take place after getting the optimal solution. The BnB
searching stops when the difference between the globally
minimal error e¢; and the lower bound e; of the current
subspace is less than an established threshold (e; —e; < €)
or when the remaining subspaces are small enough (upper
bound is smaller than the globally minimal error: e; > ¢;).

C. Integrating local registration in global registration

Combining BnB with ICP for registration allows to avoid
local minima along with more accurate and robust align-
ments. In the classic BnB algorithm, an ICP method is
used to refine alignment if the upper bound is smaller than
the current best error (e; < ¢;). In this paper, the Point-to-
hyperplane ICP is used while evaluating the rotation bounds
in the nested BnB search. An example of 3D registration is
shown in Fig 1. The BnB updates the upper bounds with the
current best error e; obtained by ICP. By performing this,
more subspaces can be discarded for the BnB search. The
BnB provides a subspace with a better solution which is
refined by the local approach.

III. POINT-TO-HYPERPLANE GLOBAL ICP FOR
RGB-D POSE ESTIMATION

When RGB-D registration is performed, hybrid methods
can be employed to simultaneously minimize the error
generated between measurements. The proposed method in
this paper follows the pipeline shown in Section II, but the
point-to-hyperplane ICP method is considered to refine the
pose estimates obtained by the BnB strategy presented in
Section II-B. The proposed hybrid method (Fig. 4) has the
advantage that it is invariant to the uncertainty between color
and depth [14] and it can obtain robust and faster conver-
gence than classic approaches while maintaining the benefits
of the geometric and photometric methods. According to the
following lemma, the tuning parameter is omitted since the
method is invariant to it.

(a) (b)

Fig. 5. Uncertainty region of 3D hybrid points M; = [x; y; [;]T. The
different metric between color and geometric points, which are perturbed by
a transformation T(x), creates an uncertainty n-paraboloid (a). It is assumed
that an uncertainty radius cannot be properly estimated from this. Therefore,
the geometric and photometric measurements can be normalized to maintain
a unitary half-sphere in n-dimensions (b).

Lemma 3.1: The integrated error ey in j—th dimension
is invariant to the relative scale A if it is minimized by a
Point-to-hyperplane method.

=N; T (M — f(M;,x)) = AN; T (M} — f(M;,x))

Therefore, the error function shown in (2) can be replaced

with the following error function:

ey, =N (M'—MY) e R" (11)
where M7 denotes corresponding matches found between the
reference and the transformed current measurements. M}” is
the measurement vector transformed by the warping function
w(+), which projects a reference measurement vector onto the
current reference frame. For the experiments in this paper,
each 3D point will be associated with a unique intensity value
LasMi=[x yi = I]'. N e R* are the 4D normals of
the reference measurements.

Upper and lower bounds cannot be easily extended to
higher dimensions by analyzing (11). The challenge lies
in how the uncertainty radius of a n-sphere is obtained
for lower bounds. Shown in (7) and (8), the uncertainty
regions in n-dimensions centered at f(T;(x),M;) can be
computed. However, the different scale between 3D Eu-
clidean points and intensities changes the n-sphere into a
n-paraboloid. To analyze the uncertainty radius for color
and depth, a 3D scenario will be considered instead of the
full 4D vector. Consider a 3D hybrid measurement vector
as: M; = Alx; y; L)', where A = diag(Av, Ay, ) is the
uncertainty factor. The equation of a 3D sphere is given by
x% +y? + 72 = d* which can be represented as a particular
case of an ellipsoid as: ,% + ;;—22 + é—zz =1, where the length
of the semi axes (A,B,C) is equal. For the hybrid 3-vector,

+ F+ ¢ M’ =1, A% = B?> # C?. Furthermore, the color axis
1s constralned by the minimum and maximum intensities (0-
255), which constrain the ellipsoid to a paraboloid centered at
the intensity value /; as is shown in Fig. 5. I;l the 4D case, the
hyper-ellipsoid can be written as: 1:;[—2’% +1:: +¥ @ + 1;[’ =1,
where A,B,C and D are affected by A = (4g, 7L1) In order
to use a similar bounding by considering the uncertainty
radius, the data are normalized. The normalization of the



TABLE I
AVERAGES IN TIME (MILISECONDS), NUMBER OF ITERATIONS FOR CONVERGENCE, RELATIVE POSE ERROR (RPE) AND ABSOLUTE TRAJECTORY

ERROR (ATE). THE AVERAGE TIME SHOWN DOES NOT CONSIDER THE COMPUTATION OF THE NORMALS OR MATCHING STAGE. THE NUMBER OF

TIMES THAT THE METHOD GOT TRAPPED IN LOCAL MINIMA IS SHOWN AS A RATIO #localminima(Lmin) [#key frames(KF). A RGB-D KEYFRAME WAS

SELECTED AT EVERY n —th FRAME IN THE SEQUENCE WHICH IS SHOWN BELOW THE SEQUENCE NAME ALONG WITH THE NUMBER OF TOTAL OF
RGB-D FRAMES IN THE SEQUENCE AS n — frames/total — frames.

ATE (m) AVERAGE :

Sequence  Method  pyiop MEAN  Time(sec)  #lterations  ARF
G-P2PI 0.125 0.111 0.376 28.20 6/150

I-ESM  0.145 0.119 0.455 30.50 12/150

Ivr/raj0 H-NA-1 0.028 0.026 0.566 44.24 7/150
H-A-2-1 0.046 0.042 1.017 77.51 1/150

(10/1508) H-A-A-2  0.086 0.077 2.428 61.66 1/150
GGICP  0.028 0.026 0.486 42.32 1/150

G-P2P1 0.110 0.090 0.265 19.40 12/96

I-ESM  0.119 0.096 0.346 20.63 16/96

Ivr/irajl H-NA-1 0.035 0.031 0.446 3224 11/96
H-A-A-1 0.062 0.053 0.773 55.07 9/96

(10/965) H-A-A-2  0.113 0.081 2.165 54.96 6/96
GGICP  0.035 0.031 0.368 30.59 4/96

G-P2P1  0.040 0.038 0.409 32.03 6/88

I-ESM  0.040 0.038 0.490 33.05 9/88

Ivr/iraj2 H-NA-1 0.028 0.026 0.417 30.65 0/88
H-A-A-1 0.527 0.492 0.938 69.81 1/88

(10/880) H-A-A-2  0.787 0.748 2.112 54.16 4/88
GGICP  0.018 0.017 0.337 29.38 0/88

G-P2P1  0.771 0.729 0.376 28.20 8/124

I-ESM  0.815 0.777 0.455 30.50 13/124

Ivr/traj3 H-NA-A 0.264 0.229 0.688 47.09 6/124
H-A-A-1 0.368 0.353 1.191 90.47 4/124

(10/1240)  H-A-A-2 0.763 0.721 3.068 77.03 4/124
GGICP  0.231 0.218 0.642 46.27 2/124

measurements allows to keep a half n-sphere volume (n- IV. RESULTS

paraboloid with same length in all axes), instead of a n-
ellipsoid. On the other hand, it is well known [23] that
a n-sphere decrease its volume after the 5-th dimension.
Therefore, it is considered that an inscribed n-cube in the
n-sphere may not properly represent the uncertainty radius.
For the experiments of this paper, a normalized 4-vector M
was considered. Therefore, the uncertainty radius of a 4-
dimensional space with a maximum aperture angle 8 = /Nt
(N =4) can be defined here as:

YR, = 2sin (%) || M|
Y =21
which are employed in (6) to estimate the 4D lower bounds.

The minimization of the upper and lower bounds in 4
dimensions can be chosen as:

(12)

N
E(T(x)) = Zmax (eHi,O)2 (13)
i=1
N
E(T(x)) = ) max(en, — (yr, +¥).0)"  (14)
i=1

where ey, is the error function in (11).

For purposes of this paper, the 4D BnB method was used
to initialize the Point-to-hyperplane ICP approach when a
local minima is found. The fusion of both methods can
improve the convergence rate for global registration while
obtaining robust alignments. The results of the proposed
Global Point-to-hyperplane ICP (GP2HPI1) method are shown
in the following Section.

In order to evaluate the GP2HPI algorithm, three exper-
iments were performed: 1) Registration of pairs of RGB-
D frames with a large initial transformation between them.
2) Keyframe visual odometry and 3) RGB-D global regis-
tration of keyframes with small overlap. A multi-resolution
pyramid was employed to improve computational efficiency
(resolution 160 x 120 at the top). Rejection of outliers was
handled with M-estimation [13]. For the matching stage,
two strategies were tested: a 6-dimensional kd-tree [21] for
local approaches and the Distance Transform [6] strategy for
BnB. The method was compared among geometric-based,
photometric-based and hybrid error functions which differ in
how the tuning parameter A = (Ag,A;) is estimated. Consider
the following error function:

W:(&wmfwﬁww)€R4

A1) (4>

where P} € RR3 is the warped 3D point and I" is the warped
intensity. P € R® and I are the correspondences. The
variants of the hybrid methods will be identified as follows:

1) G-P2PI. Geometric Point-to-plane (4; = 0) [4].

2) I-ESM. Direct-method (Ag = 0) [5].

3) H-NA-A. 1) + 2) + non adaptive lambda [19].

4) H-A-A-1. 1) + 2) + adaptive lambda [27].

5) H-A-A-2. 1) + 2) + adaptive lambda [16].

For purposes of this paper, the photometric term is mini-
mized by the Efficient Second Order minimization (ESM).
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Fig. 6. Examples of the Absolute Trajectory Error evaluation obtained by the Point-to-Hyperplane method combined with the BnB method. The benchmarck
datasets [9] were used and a keyframe was chosen at each 10th frame of the sequence. It can be observed that closer estimations w.r.t. the groundtruth
can be obtained with a refinement with the Point-to-hyperplane as the local approach while avoiding a mistracking problem.

Experiment 1: A synthetic RGB-D frame was employed
as a reference and transformed. 100 Images were synthesized
by warping the reference image with a large random pose.
Initially, local methods could not obtain convergence or a
local minima was reached, but they could align the frames
when they were initialized with the solution obtained by
the BnB algorithm. The performance of local methods after
being initialized by the BnB is presented in Table II.

TABLE 1T
AVERAGES IN TIME AND IN NUMBER OF ITERATIONS UNTIL
CONVERGENCE FOR 100 SYNTHESIZED IMAGES AT RANDOM POSES.
THE RGB-D IMAGE WAS GENERATED FROM A SYNTHETIC
ENVIRONMENT, WHERE GAUSSIAN NOISE WAS ADDED. THE LOCAL
APPROACHES WERE INITIALIZED WITH THE BNB METHOD.

Method # Iterations | Time (sec)
1) G-P2PI [4] 154.34 1.8144
2) I-ESM [5] 144.12 1.6731
3) H-NA-A [19] 115.77 1.3472
4) H-A-A-1 [27] 140.32 1.6583
5) H-A-A-2 [16] 138.93 5.2731
6) GP2HPI [15] 100.56 1.0979

The Global BnB was computationally expensive for each
new position, obtaining an average of 223.9 seconds (the
maximum value registered was 546.2 sec and the minimum
was 3.25 sec) for 100 random poses. However, all 100
images converged to the true pose. The most computationally
demanding part was the exploration of sub-cubes in the BnB
algorithm and the time shown in Table II is the elapsed
time of the local method to get convergence after the BnB
initialization (non cumulative). It can be noted that many of
the compared strategies are improved since the BnB gives a
rough pre-alignment for these local approaches.

Experiment 2: Well known RGB-D Benchmarks [9] were
used to perform keyframe visual odometry. Keyframes are
manually selected from the sequences at every n—th frame.
The local methods initialize the registration. If the local
method cannnot obtain an optimal convergence, then it is
initialized with the BnB algorithm. In Table I, the Absolute
Trajectory Error and Relative Pose Error evaluation are
shown. They demonstrate that the initialization with BnB
improve the estimations. Less error is obtained w.r.t. other

local classic approaches by combining the local Point-to-
hyperplane ICP, which reduce the computational cost. The
time shown does not consider the computation of the normals
or the kd-tree, but time for convergence. It can be observed
that the local method can get trapped in local minima during
the registration process (less number of times for the Point-
to-hyperplane), which is avoided by calling the BnB method
to initialize the pose. Since less frames are employed for the
3D visual odometry, the representation of the environment
can be done by considering keyframes only.

Experiment 3: Pre-selected RGB-D frames were em-
ployed to generate 3D maps of closed loop sequences. The
keyframes have a small overlap between them and they are
globally aligned by using the Point-to-hyperplane strategy.
The method performs RGB-D registration by following the
sequence has in Experiment 2, but the alignment w.r.t.
the generated model is employed if the optimal solution
is not found. This can be referred as a frame-to-model
registration with the advantage that the model is generated
simultaneously. Normally, a frame cannot be aligned when
similar geometric and photometric properties are present in
the overlapping area. When the entire generated cloud is
considered, more correspondences can be found by using
the extended measurements (color + depth).

V. CONCLUSIONS

In this paper, a global Point-to-hyperplane ICP method
was proposed. The method was employed to improve RGB-
D registration by optimally minimizing over fused color and
depth measurements. The method combined the local Point-
to-hyperplane approach with a global Branch and Bound
method. The method is shown to handle the local minima
problem. The extension to 4 dimensions was considered and
it was noted that global methods based on an uncertainty
radius cannot be easily extended to higher dimensions due
to the fact that a n-sphere decreases its volume after di-
mension 5. However, the method demonstrated an improved
performance by considering 4 dimensions. As a future work,
more strategies to compute bounds will be explored and a
selection of keyframes strategy will be implemented.
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Fig. 7. Example of a 3D reconstruction (b) and (c) by considering only pre-
selected keyframes (a). The proposed method obtains close solutions w.r.t.
groundtruth. (d) The last image (frame 870) generates an error (d) since
it contains similar geometric and color features w.r.t. the previous frame
(800) but it can be fixed if the entire generated point cloud is considered
for global registration (e).
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