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Abstract. The aim of this paper is to present some mathematical results
concerning the PCR system (Panic-Control-Reflex), which is a model for hu-
man behaviors during catastrophic events. This model has been proposed to
better understand and predict human reactions of individuals facing a brutal
catastrophe, in a context of an established increase of natural and industrial
disasters. After stating some basic properties, that is positiveness, bounded-
ness, and stability of the solutions, we analyze the transitional dynamic. We
then focus on the bifurcation that occurs in the system, when one behavioral
evolution parameter passes through a critical value. We exhibit a degeneracy
case of a saddle-node bifurcation, in a larger context of classical saddle-node bi-
furcations and saddle-node bifurcations at infinity, and we study the inhibition
effect of higher order terms.

Keywords. Bifurcation, stability, catastrophic event, mathematical modeling,
panic.

§1. Introduction

Aristotle used to think that the brain does not play any particular role in the process of adopting a certain
behavior [10]. He pretended that its action was only devoted to the control of some basic organic functions.
Nowadays, the knowledge of the brain has widely improved. Biologists and neuroscientists have understood
that some regions of the brain are dedicated to some particular behaviors, or decisions that are to be made by
an individual facing a non normal event, and particularly a catastrophic event [17], [5], [13].

The PCR system (Panic-Control-Reflex) is a model which was built to better predict the human behaviors
during catastrophic events [23], [20]. Dividing into three groups of behaviors a population affected by a disaster,
the model takes into account the links between the different behavior phases, distinguishing evolution processes
and imitation phenomena. The catastrophic events can have a natural origin (tsunami, earthquakes, fires...), or
can correspond to an industrial disaster (nuclear blast, factory explosion...). We consider only sudden disasters,
with no alert to the population. The complete PCR system integrates some mortality terms and some domino
effect terms. Indeed, in this paper, we shall focus on a situation with a constant population. [23] and [20]
clarify the initial choices made to build the model, which present similarities with epidemiological models [15],
[16], [22], [19], [26] or prey-predator models [14], [21]. They precise the form of the imitation functions chosen
to model the emotion contagion phenomenon, that can act symmetrically [11], [9], whose flow depends on the
relative proportions on each behavior sub group. Some numerical simulations are also shown, as a first step in
the validation process of the model, confronted to rare available data [2], [25].

In this paper, we shall present some mathematical results of the qualitative study of the PCR system,
giving a rigorous frame to numerical simulations. It will occasionally be a necessity to simplify the form of the
equations in the PCR system, considering that modeling is a difficult task which implies a constant dilemma
between, on the first hand, the desire to take into account numerous phenomena to approach reality, or at least
the perception that we have from, and on the other hand, the obligation to propose a simple model that can
be studied with a qualitative point of view [22].

The outline is the following. In the first section, we will recall some basics about the PCR system, presenting
its components and parameters, and we will prove the positiveness and the boundedness of the solutions, which
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are obvious properties to be satisfied by a population dynamic model. Then, we shall study the asymptotic
stability of the trivial equilibrium, using Poincaré-Lyapunov classical methods, and the transitional dynamic
of the system, that presents an attractive node. The last section is devoted to the analysis of the bifurcation
identified when some evolution parameter passes through a critical value, exhibiting a larger context of saddle-
node bifurcations in which the solutions evolve. Finally, we study the inhibition effect of higher order terms.

§2. Problem statement and preliminaries

2.1. PCR system

We consider the following system of ordinary differential equations, resulting from the modeling of human
behaviors during catastrophic events [23], [20]:

Ẋ = Φ(t, X) (1)

with Ẋ = dX
dt , X = (r, c, p, q, b)T ∈ R5 and Φ given by

Φ(t, X) =
(
Φi(t, X)

)T
, i ∈ {1, . . . , 5},

where the functions Φi are real valued functions defined on R× R5 by

Φ1(t, X) = γ(t)q
(

1− r

rm

)
− (B1 +B2)r + s1(t)c+ s2(t)p+ F (r, c)rc+G(r, p)rp

Φ2(t, X) = −ϕ(t)c(1− b) +B1r + C1p− C2c− s1(t)c− F (r, c)rc+H(c, p)cp
Φ3(t, X) = B2r − C1p+ C2c− s2(t)p−G(r, p)rp−H(c, p)cp

Φ4(t, X) = −γ(t)q
(

1− r

rm

)
Φ5(t, X) = ϕ(t)c(1− b)

.

The imitation functions F , G and H are real valued functions defined on R× R by

F (r, c) = −α1f1

(
r

c+ ε

)
+ α2f2

(
c

r + ε

)
G(r, p) = −δ1g1

(
r

p+ ε

)
+ δ2g2

(
p

r + ε

)
H(c, p) = µ1h1

(
c

p+ ε

)
− µ2h2

(
p

c+ ε

)
,

where ε is a positive number, and fi, gi, hi, i ∈ {1, 2}, real valued functions defined on R, with a decreasing
shape chosen to model the possibility that a behavior imitation can act symmetrically. Those functions satisfy
the property

0 ≤ fi(s) ≤ 1, 0 ≤ gi(s) ≤ 1, 0 ≤ hi(s) ≤ 1, ∀s ∈ R. (2)

In the last section, we will reduce the analysis to the case with constant imitation functions.
This model is a non linear, adimensional differential system, and the variables r, c, p, q and b denote

respectively the densities of people being in a reflex, control, panic, daily1 or back to daily behavior (see Figure
1 and Table 1). We will consider an initial time t0 ≥ 0, and an initial condition

(r(t0), c(t0), p(t0), q(t0), b(t0)) = (r0, c0, p0, q0, b0), (3)

that satisfies the properties {
r0 + c0 + p0 + q0 + b0 = 1
(r0, c0, p0, q0, b0) ∈ (R+)5 . (4)

We will often choose
(r(t0), c(t0), p(t0), q(t0), b(t0)) = (0, 0, 0, 1, 0), (5)

which corresponds to the situation when all the individuals are in a daily behavior before the beginning of the
disaster. In order to study the stability of the steady states, we will relax this initial condition when necessary.

1The letter q corresponds to the french word quotidien.
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Figure 1: Schema for the PCR system, showing the evolution parameters Bi and Ci, the imitation parameters
αi, δi and µi, and the domino effect parameters si, i ∈ {1, 2}. The beginning of the disaster and the return to
a daily behavior are respectively modeled by γ(t) and ϕ(t).

Figure 2: A possible shape for the functions γ and ϕ, that respectively model the beginning of the catastrophe
and the return to a daily behavior, in the case of an abrupt disaster and a smooth exit of catastrophe behaviors.

Remark 1. The sum of the 5 equations is null, which means that the considered population is constant. In
other words, this model does not take into account mortality rate, as mentioned in our introduction. However,
it is easy to enhance the system, adding linear terms on each equation to consider that a part of the population
affected by a brutal disaster is concerned with death. The qualitative study goes quite similar, and we have
chosen to focus in this paper on a constant population model.

The parameters of the PCR system are the real coefficients rm > 0 (reflex behavior maximum size), Bi > 0,
Ci ≥ 0, i ∈ {1, 2} (evolution coefficients), αi ≥ 0, δi ≥ 0, µi ≥ 0, i ∈ {1, 2} (interaction coefficients involved in
the functions F , G and H), si ≥ 0, i ∈ {1, 2} (domino effect coefficients), which can also be built in a periodic
form in order to model a succession of disasters. For more convenience, we introduce the vector of parameters

Λ =
(
rm, B1, B2, C1, C2, s1, s2, α1, α2, δ1, δ2, µ1, µ2

)
,

and its domain D = (R+∗)3 × (R+)10.

Remark 2. The functions γ and ϕ respectively model the beginning of the disaster and the return to a daily
behavior (see Figure 2). Their shape can be adapted to various scenarios and they satisfy γ(t) = ϕ(t) = 1 for t

3



Function Notation
Daily behaviors q(t)
Reflex behaviors r(t)
Control behaviors c(t)
Panic behaviors p(t)
Back to daily behaviors b(t)
Beginning of the disaster γ(t)
Return to a daily behavior ϕ(t)
Imitation functions F, G, H
Parameter Notation
Evolution from reflex to control B1
Evolution from reflex to panic B2
Evolution from panic to control C1
Evolution from control to panic C2
Imitation between reflex and control α1, α2
Imitation between reflex and panic δ1, δ2
Imitation between panic and control µ1, µ2
Domino effect s1, s2
Reflex behavior maximum size rm

Table 1: Notations for the main functions and parameters in the PCR system.

sufficiently large. Furthermore, ϕ and γ are supposed to be increasing functions.

It will sometimes be more convenient, for technical reasons, to consider the four equations system

Ẋ = Ψ(t, X), X = (r, c, p, q)T ,

whose equations read

ṙ = γ(t)q
(

1− r

rm

)
− (B1 +B2)r + s1(t)c+ s2(t)p+ F (r, c)rc+G(r, p)rp

ċ = −ϕ(t)c(r + c+ p+ q) +B1r + C1p− C2c− s1(t)c− F (r, c)rc+H(c, p)cp
ṗ = B2r − C1p+ C2c− s2(t)p−G(r, p)rp−H(c, p)cp

q̇ = −γ(t)q
(

1− r

rm

) . (6)

This system is simply obtained by substituting r + c + p + q by 1 − b, considering that the total population
r + c+ p+ q + b is constant, equal to 1, from the moment that the initial condition satisfies property (4). The
initial condition corresponding to (0, 0, 0, 1, 0) becomes :(

r(t0), c(t0), p(t0), q(t0)
)

= (0, 0, 0, 1). (7)

2.2. Positiveness and boundedness

The first proposition guarantees the positiveness of the solutions. We then prove that they lie in a compact set
(see Figure 3).

Proposition 1. We consider the Cauchy problem (1)-(3). For any value of the parameters Λ ∈ D, there exists
a unique maximal solution. Furthermore, its components are non negative.

Proof. The existence and uniqueness of a maximal solution is guaranteed by the fundamental Cauchy-Lipschitz
theorem, as the function Φ is regular. We have to prove that the components are non negative. We first consider
q(t), and integrate the fourth equation in system (1):

q(t) = q(t0)e−
∫ t
t0
γ(s)(1−r(s)/rm)ds

, (8)

which directly implies q(t) > 0 for all t ≥ t0 if q(t0) > 0, and q(t) = 0 for all t ≥ t0 if q(t0) = 0. Then, we
suppose that there exists θ > t0 such that :(

r(θ), c(θ), p(θ), b(θ)
)
6∈]0, +∞[4,
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and we consider
t1 = inf

{
θ > t0 ;

(
r(θ), c(θ), p(θ), b(θ)

)
6∈]0, +∞[4

}
.

If
(
r(t1), c(t1), p(t1), b(t1)

)
=
(
0, c̄, p̄, b̄

)
, with c̄ > 0, p̄ > 0 and b̄ > 0, then

ṙ(t1) = γ(t1)q(t1) + s1(t1)c(t1) + s2(t1)p(t1) > 0.

We can here invoke the simple following real analysis lemma, whose proof can be made with a simple Taylor
expansion of order 1.

Lemma 1. Let f be a real valued function defined on a non empty interval ]a, b[⊂ R. We suppose that f
is differentiable on ]a, b[, and that there exists c ∈]a, b[ such that f(x) > 0 for all x ∈]a, c[, f(c) = 0, and
f(x) < 0 for all x ∈]c, b[. Then df

dt (c) ≤ 0.

The function r satisfies the hypothesis of the lemma, but ṙ(t1) > 0, which yields a contradiction. The other
cases are treated in the same way.

Corollary 1. For any value of the parameters Λ ∈ D, the compact set [0, 1]5 is invariant under the flow
induced by the PCR system (1) and the initial condition (3).

Figure 3: Several orbits of the PCR system for various values of the parameters B1, B2, C1, C2, and the same
initial condition (0, 0, 0, 1, 0), projected in the (r, c, p) space. The solutions lie in the compact set [0, 1]5.

Proof. We have already remarked that the total population r + c+ p+ q + b is constant. Since we suppose the
initial condition to satisfy (r + c + p + q + b)(t0) = 1, we directly conclude that the solution is global and lies
within the compact set [0, 1]5.

2.3. Critical points

We conclude this section with the research of the critical points of the PCR system (1). To that aim, we solve

Φ
(
t,X

)
= 0,∀t ≥ t0.

Some basic algebraic computations produce the following result. For all values of the parameters Λ ∈ D,

O(0, 0, 0, 0, 1)

is a critical point, that we will call trivial equilibrium in what follows. If C1 > 0, or if s2 > 0, it is the only
equilibrium point. Else if C1 = s2 = 0, then for all p ∈ [0, 1], Pp̄

(
0, 0, p̄, 0, 1 − p̄

)
is another critical point,

that we will name persistence of panic.
The parameters C1 and s2 appear in a particular role, letting the panic behavior in a plug, when approaching

zero. In the next section, we will study the stability of the trivial equilibrium. The analysis of the stability of
Pp̄ will be postponed to section §5.. As the linearization of the PCR system leads to one zero eigenvalue, this
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stability is tightly linked to a bifurcation that occurs in the system when C1 vanishes. The research of the
center manifold will highlight the role of the total population r+ c+ p+ q involved in the disaster, that can be
considered as a potential. The Lyapunov function used in the next section was built with an energy point of
view that confirms this potential role.

§3. Stability of the trivial equilibrium

In this section, we study the stability of the trivial equilibrium. The next proposition states for its local stability.
We then focus in detail on the orbit of the PCR system (1) stemming from the initial condition (0, 0, 0, 1, 0),
in which all the individuals affected by the catastrophic event are in a daily behavior before the disaster.

Proposition 2. For any value of the parameters Λ ∈ D, the equilibrium point O is locally stable.

Proof. To study the local stability of O, we consider the 4 equations PCR system (6) presented in subsection
(2.1.),

Ẋ = Ψ(t, X)

with X = (r, c, p, q)T , and we introduce O∗, the projection of O in R4, whose coordinates are (0, 0, 0, 0). We
consider the function V defined by

V (t, X) = 1
2(r + c+ p+ q)2,

with X = (r, c, p, q) ∈ R4, and t ∈ [t0, +∞[. It is clear that V is definite positive. Furthermore, its orbital
derivative is given by

V̇
(
t, X(t)

)
=
(
r(t) + c(t) + p(t) + q(t)

)(
ṙ(t) + ċ(t) + ṗ(t) + q̇(t)

)
= −ϕ(t)c(t)

(
r(t) + c(t) + p(t) + q(t)

)2
,

so V̇ is semi definite negative. Hence, the Lyapunov theorem guarantees that the critical point O∗ is locally
stable. Since the solution of the 5 equations system (1) lies in the hyperplane of equation r+ c+ p+ q+ b = 1,
we can conclude that O is also locally stable.

After stating the local stability of the critical point O∗, we are now going to study in detail the orbit of
system (6) stemming from the initial condition (7), which cannot be considered as being close to O∗. This study
leads us to a global result about the asymptotic behavior of the solution, which is not surprising, considering
the dissipative character of the PCR system (6). Indeed, assume for the sake of simplicity that γ(t) = ϕ(t) = 1
for all t ≥ t0 (see Remark 2), and that the imitation terms αi, δi, µi, i ∈ {1, 2} are null. Then the divergence
is given by

div Ψ(t, X) =
4∑
i=1

∂Ψi

∂xi

≤ −B1 −B2 − C1 − C2 − s1 − s2 < 0.

Yet it is well known that dynamical systems admitting a negative divergence often exhibit attractors [6]. We
continue with two lemmas that clarify the behavior of the components c and q, whose convergence is determined
by the action of ϕ and γ respectively.

Lemma 2. Let c denote the control behavior component of the solution of the PCR system (6). Then

lim
t→+∞

c(t) = 0.

Proof. We have seen before that

d(r + c+ p+ q)
dt (t) = −ϕ(t)c(t)(r + c+ p+ q)(t),

for all t ≥ t0. The positiveness of ϕ, c and r+c+p+q then guarantees that r+c+p+q is a decreasing function
on [t0, +∞[. As it is also positive, it converges to a non negative limit `. Let us suppose that ṙ+ ċ+ ṗ+ q̇ does
not converge to 0. As (ṙ+ ċ+ ṗ+ q̇)(t) < 0 for all t ≥ t0, it follows that a real positive number η can be found,
such that

(ṙ + ċ+ ṗ+ q̇)(t) ≤ −η,

for all t ≥ t0. Integrating from t0 to t yields

(r + c+ p+ q)(t)− (r + c+ p+ q)(t0) ≤ −η(t− t0),
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which produces a contradiction, as
lim

t→+∞
−η(t− t0) = −∞,

while
lim

t→+∞
(r + c+ p+ q)(t) = `.

Consequently, we have
lim

t→+∞
ϕ(t)c(t)(r + c+ p+ q)(t) = 0.

We recall that ϕ(t) = 1 for t sufficiently large, so if ` = 0, then r + c + p + q converges to 0, and obviously c
also does. If ` > 0, then c must converge to 0, and this achieves the proof.

Lemma 3. We assume that rm = 1. Let q denote the daily behavior component of the solution of the PCR
system (6) stemming from the initial condition (0, 0, 0, 1). Then there exist β > 0, k > 0 and τ > 0 such that

q(t) ≤ ke−βt,

for all t ≥ t0 + τ .

Remark 3. At the cost of technical arguments, the hypothesis rm = 1 can be partially ignored, provided some
sufficient conditions for r to stay in the compact interval [0, rm], that is B1 +B2 ≥ α2 +δ2. The next proposition
achieves the study of the asymptotic convergence of the solution of the PCR system. Once again, the parameter
C1 appears in a particular role. We choose to focus on a situation without interaction neither domino effects,
so we assume the parameters si, αi, δi and µi, i ∈ {1, 2} to be null, and we again fix rm = 1. Nonetheless, the
effect of higher order terms will be studied in section §5..

Proof. We first examine the behavior of r when approaching the upper boundary of the compact interval [0, 1].
Indeed, if there exists θ > 0 such that r(θ) = 1, then necessarily

c(θ) = p(θ) = q(θ) = 0,

thus
ṙ(θ) = −B1 −B2 < 0.

As r(t0) = 0, this excludes the possibility r(θ) = 1. A similar reasoning excludes the possibility

lim
t→+∞

r(t) = 1.

Consequently, there exists β > 0 such that
r(t) ≤ 1− β

for all t ≥ t0. Afterwards, we consider τ > 0 such that γ(t) = 1 for all t ≥ t0 + τ . Thus

q̇(t) = −q(t)
(
1− r(t)

)
for all t ≥ t0 + τ . We write

q(t) = q(τ)e−
∫ t
τ

(1−r(s))ds

≤ q(τ)e−
∫ t
τ
βds

≤ ke−βt

for all t ≥ τ , with k = q(τ)eβτ .

Proposition 3. Let consider the PCR system with the following assumptions on the parameters:{
si = αi = δi = µi = 0, i ∈ {1, 2}
rm = 1

.

If C1 > 0, then the orbit stemming from the initial condition (0, 0, 0, 1) converges to O∗.
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Proof. The hypothesis on the parameters allow us to consider the following sub system of two equations,
separating r and q from the rest of the system,{

ṙ(t) = −(B1 +B2)r(t) + γ(t)q(t)
(
1− r(t)

)
q̇(t) = −γ(t)q(t)

(
1− r(t)

) . (9)

It can be rewritten
ẋ(t) = Ax(t) +B(t)x(t) + ψ(t, x), (10)

with x = (r, q)T , and A, B(t) two squared matrices whose coefficients are

A =
(
−B1 −B2 1

0 −1

)
, B(t) =

(
0 γ(t)− 1
0 −γ(t) + 1

)
,

and ψ defined by

ψ(t) =
(
−γ(t)q(t)r(t)
γ(t)q(t)r(t)

)
.

Let S(t) denote the fundamental matrix of the linear system ẋ = Ax. As A has negative eigenvalues −1 and
−B1 −B2, we know from the theory of linear differential systems, that there exist ξ > 0 and C > 0 such that

‖S(t)‖ ≤ Ce−ξ(t−t0),

where ‖x‖ =
2∑
i=1
|xi| for all x = (x1, x2)T ∈ R2. We write system (10) as an integral equation

x(t) = S(t)x(t0) +
∫ t

t0

S(t− s+ t0)
[
B(s)x(s) + ψ(s, x(s))

]
ds.

The previous lemma guarantees that {
q(t) ≤ ke−βt

γ(t) = 1
,

for all t ≥ t0 + τ with τ > 0, k > 0 and β > 0. Let t1 = t0 + τ . We obtain

‖x(t)‖ ≤ C̃e−ξ(t−t1) +
∫ t

t1

C̃e−ξ(t−s) ‖ψ(s, x(s))‖ ds

≤ C̃e−ξ(t−t1) +
∫ t

t1

C̃e−ξ(t−s) |q(s)| |r(s)|ds

≤ C̃e−ξ(t−t1) +
∫ t

t1

C̃e−ξ(t−s)ke−βs ‖x(s)‖ ds

thus
eξ(t−t1) ‖x(t)‖ ≤ C̃ +

∫ t

t1

C̃eξ(s−t1) ‖x(s)‖ ke−βsds

which produces, using Gronwall’s inequality

eξ(t−t1) ‖x(t)‖ ≤ C̃e
∫ t
t1
C̃ke−βsds

and finally
‖x(t)‖ ≤ C̃e−ξ(t−t1)e

−kC̃
β e−βt

for all t ≥ t1. Hence we can conclude that x(t) converges to 0. Finally, we consider the following sub system{
ċ(t) = B1r(t)− C2c(t) + C1p(t)− ϕ(t)c(t)(r + c+ p+ q)(t)
ṗ(t) = B2r(t) + C2c(t)− C1p(t)

. (11)

We have previously shown that r(t), c(t) and q(t) converge to 0, and (r + c + p + q)(t) converges to `, so p(t)
converges to `, and consequently ṗ(t) also converges to a finite limit, which is necessarily 0 (we recall that if f
is a real valued smooth function defined on R, such that f(t) converges to a finite limit `1, while ḟ(t) converges
to a finite limit `2, then necessarily `2 = 0). If C1 > 0, we obtain 0 = −C1` thus ` = 0.

Remark 4. The geographical meaning of this asymptotic stability resides in the fact that numerous observations
record a return of all the affected individuals to a daily behavior after the disaster. In other words, this qualitative
result represents a new step in the validation process of the PCR system.
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§4. Transitional dynamic

The dynamic of the PCR system is governed by many parameters. In this section, we show that the function
ϕ, that models the return to a daily behavior, plays an important role, by emptying the control behavior sub
population c. To that aim, we consider a time interval [t1, t2] on which{

γ(t) = 1
ϕ(t) = 0

(12)

that we consider as the transitional phase of the PCR system. Consequently, the unknown function b, that mod-
els the sub group of individuals who return to a daily behavior, can be eliminated from system (1). Furthermore,
as previously, we choose to focus on a situation without interaction effects, so we assume:

αi = 0, µi = 0, δi = 0, i ∈ {1, 2},

and we again put rm = 1. Finally, we study the following differential system
ṙ = q (1− r)− (B1 +B2)r + s1c+ s2p

ċ = B1r + C1p− C2c− s1c

ṗ = B2r − C1p+ C2c− s2p

q̇ = −q (1− r)

. (13)

Proposition 4. The transitional dynamic of the PCR system defined by (12) and (13) exhibits an attractive
equilibrium point.

This attractive point is depicted in Figures 4 and 5. Figure 4 shows several orbits of the PCR system,
projected in the (r, c, p) space, for some varying initial conditions, whereas Figure 5 presents each component of
the solution stemming from the initial condition (0, 0, 0, 1, 0) for a given set of parameters, during the transitional
phase (t1 ≤ t ≤ t2), and after the transitional phase (t ≥ t2).

Figure 4: Numerical results projected in the (r, c, p) space for the simplified system (13), showing a stable
equilibrium in the transitional dynamic of the PCR system.

Proof. We first look for the critical points of system (13), which are given by
q (1− r)− (B1 +B2)r + s1c+ s2p = 0
B1r + C1p− C2c− s1c = 0
B2r − C1p+ C2c− s2p = 0
−q (1− r) = 0

.

As the sum r + c+ p+ q is constant, equal to 1, we obtain
1− (2 +B1 +B2)r + (s1 − 1)c+ (s2 − 1)p+ r2 + rc+ rp = 0
B1r + C1p− C2c− s1c = 0
B2r − C1p+ C2c− s2p = 0

. (14)
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(a)

(b)

Figure 5: Transitional dynamic in the PCR system. A delay introduced in the function ϕ (a), lets a transitional
equilibrium appear among the 3 sub groups of behaviors (b).

Some basic computations lead to the solution

r∗ = C1s1 + C2s2 + s1s2

N

c∗ = B1s2 + C1B1 + C1B2

N

p∗ = B1C2 +B2C2 +B2s1

N

,

where
N = C1s1 + C2s2 + s1s2 +B1s2 + C1B1 + C1B2 +B1C2 +B2C2 +B2s1,

that satisfies r∗ + c∗ + p∗ = 1.
The Jacobian matrix of system (14), evaluated in (r∗, c∗, p∗), admits three eigenvalues

λ1 = −B1 −B2 − C1 − C2 − s1 − s2 +
√

∆
2

λ2 = −B1 −B2 − C1 − C2 − s1 − s2 −
√

∆
2

λ3 = −(B1C1 +B1C2 +B1s1 +B2C1 +B2C2 +B2s1)
N

,

with

∆ = B2
1 + 2B1B2 − 2B1C1 − 2B1C2 + 2B1s1 − 2B1s2 +B2

2 − 2B2C1 − 2B2C2 − 2B2s1 + 2B2s2 + C2
1

+ 2C1C2 − 2C1s1 + 2C1s2 + C2
2 + 2C2s1 − 2C2s2 + s2

1 − 2s1s2 + s2
2.

10



The stability of (r∗, c∗, p∗) is given by the sign of λ1, λ2 and λ3. Obviously, we have λ3 < 0 and λ2 < 0.
Furthermore, the sum and the product of λ1 and λ2 are given by

λ1 + λ2 = −(B1 +B2 + C1 + C2 + s1 + s2)
λ1λ2 = B1C1 +B1C2 +B1s2 +B2C1 +B2C2 +B2s1 + C1s1 + C2s2 + s1s2

so we also have λ1 < 0. This demonstrates that the non trivial critical point (r∗, c∗, p∗) is an attractive node
for system (14). Finally, as the sum r + c + p + q is constant, equal to 1, (r∗, c∗, p∗, 0) is also an attractive
equilibrium point for system (13).

The latter proof uses a linearization method, that produces negative eigenvalues, whatever the values of
the parameters are. It means that the stability of the transitional dynamic is structural. In particular, it is
independent of the asymptotic behavior of the solution towards one or another equilibrium point.

Remark 5. We have previously mentioned that a succession of disasters could be modeled by choosing a periodic
form for the domino effect parameters s1 and s2. In that case, it can be shown that the transitional dynamic
reveals the existence of an attractive cycle whose diameter increases with the intensity of the catastrophic events.
After this transitional dynamic, the emptying role of the function ϕ(t) takes place, and the attractive cycle
vanishes. This analysis of domino effect will be presented in a forthcoming paper.

§5. Bifurcation analysis in a reduced case

5.1. Reduction to center manifold and calculation of normal form

The research of the equilibrium points exhibits a particular role for the parameter C1, that lets new equilibrium
points appear when tending to 0. In that case, numerical experiments show a persistence of panic behavior (see
Figure 6). In this section, we shall study the dynamic related to the parameter C1, by stating a local equation
of the center manifold [3], [18], [12], [6], [7], [8]. We will momentarily consider positive or negative values of the
parameters, in order to establish a complete mathematical analysis.

Figure 6: Numerical results in the (r, p) plane, showing a bifurcation when the evolution parameter C1 passes
through 0. For C1 > 0, the solution converges to the trivial equilibrium. For C1 = 0, a persistence of panic
suddenly occurs. For C1 < 0, the solution leaves the compact set [0, 1]5 and diverge to infinity.

As mentioned in our introduction, we reduce the analysis to the case of constant imitation functions, that
is:

F (r, c) = k1, G(r, p) = k2, H(c, p) = k3,

where k1, k2, k3 ∈ [−1, 1]. Furthermore, as we study the asymptotic behavior of the PCR system, we assume

γ(t) = ϕ(t) = 1, ∀t ≥ T,

for a given T > 0. Substituting t− T by t, we can without loss of generality replace the study in [t0, +∞[.
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Finally, we consider the following system
ṙ = −(B1 +B2)r + q(1− r) + k1rc+ k2rp

ċ = B1r − c(r + c+ p+ q)− C2c+ C1p− k1rc+ k3cp

ṗ = B2r + C2c− C1p− k2rp− k3cp

q̇ = −q(1− r)

(15)

The Jacobian matrix J , evaluated in (0, 0, 0, 0) and C1 = 0, reads

J =


−B1 −B2 0 0 1

B1 −C2 0 0
B2 C2 0 0
0 0 0 −1

 . (16)

Its characteristic polynomial is

χJ(λ) = λ(1 + λ)(C2 + λ)(B1 +B2 + λ).

Assuming C2 6= 1, B1 +B2 6= 1 and C2 6= B1 +B2, we can conclude that J admits 4 eigenvalues 0, −1, −C2
and −B1−B2. As J has one zero eigenvalue, we are going to search for a local equation of the center manifold
in a neighborhood of C1 = 0. The next proposition gives an equation of the center manifold in a neighborhood
of C1 = 0.

Proposition 5. Assume C2 6= 1, B1 +B2 6= 1 and C2 6= B1 +B2. Then the Jacobian matrix J of system (15)
can be written in a diagonal form with eigenvalues

λ1 < λ2 < λ3 < λ4 = 0.

Moreover, in a neighborhood of C1 = 0, there exist new coordinates (x, y, z, w) such that the PCR system (15)
is given by 

ẋ = λ1x+ ...

ẏ = λ2y + ...

ż = λ3z + ...

ẇ = C1
λ3
w2(1 +O(w)

) . (17)

We refer the refer to the appendix for the complete proof of this proposition. The change of coordinates
involved in the diagonalization of the matrix J highlights the particular role played by the total population
involved in the disaster, that is

w = r + c+ p+ q,

that we have previously considered in order to build a Lyapunov function. The next proposition states for the
local stability of the equilibrium points Pp̄.

Proposition 6. Assume C1 = 0. Then the equilibrium points Pp̄ of the PCR system (15) are locally stable, but
not asymptotically stable.

Proof. The local stability follows from the form of the last equation in system (17), in which all the terms vanish
when C1 = 0.

The equation of the center manifold shows that in a neighborhood of C1 = 0, the PCR system is topologically
equivalent to the following differential system: 

ẋ = −x
ẏ = −y
ż = −z
ẇ = εw2

, (18)

where ε = −C1.

Remark 6. As there is an infinite number of critical points in the case C1 = 0, a natural question is to find
which one is attempted by the solution, considering a fixed initial condition. Table 2 shows numerical results
for the persistence of panic p̄ for different values of the parameters B1, B2 and C2. The other parameters
(αi, δi, µi, i ∈ {1, 2} and C1) are supposed to be null. It seems that an increase of B1 induces a decrease of
p̄, while an increase of C2 or B2 exacerbates this persistence. In the next section, we will study in detail the
inhibition effect of the imitation parameter µ1.
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B1 = 0.5 B1 = 0.7
B2 C2 p̄
0.2 0.1 0.70550
0.2 0.2 0.84365
0.3 0.1 0.74474
0.3 0.2 0.86674
0.4 0.1 0.77494
0.4 0.2 0.88409

B2 C2 p̄
0.2 0.1 0.69018
0.2 0.2 0.83984
0.3 0.1 0.72252
0.3 0.2 0.85823
0.4 0.1 0.74885
0.4 0.2 0.87294

Table 2: Numerical results for the persistence of panic p̄ under a variation of the parameters B1, B2 and C2.

We are now going to study the dynamic of the normal form exhibited in the local equation of the center
manifold (17). To that aim, we consider the following 2 dimension dynamical system{

ẇ = α+ εw2

v̇ = −v
(19)

with parameters α and ε.

ε = −C1

α

∞

∞

Figure 7: Bifurcation diagram for system ẇ = α + εw2, v̇ = −v showing phase portraits in the (w, v) plane.
The gray zone, on the left of ε axis, corresponds to the possible values of parameter C1 in the PCR system.
The infinite number of equilibrium points occurring for α = ε = 0 accounts for the persistence of panic in the
model.

The first parameter is naturally introduced to avoid a systematic degeneracy [12], while the second parameter
ε corresponds to the parameter −C1 in the PCR system. Figure 7 shows different phase portraits for the system
(19) according to both parameters α and ε. The gray zone in the diagram corresponds to the region of the
parameter C1 in the PCR system. To understand the bifurcation that suddenly causes the emergence of an
infinite number of critical points, we have to find the equilibrium points in system (19), by solving{

α+ εw2 = 0
−v = 0

.

The only critical points are for v = 0. If α × ε > 0, there is not any critical point. If α × ε < 0, there are two
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critical points given by

w̄ = ±
√
−α
ε
, v̄ = 0.

One is a saddle, the other one being a node. They collapse if ε is fixed and α tends to 0, forming a classical
saddle-node bifurcation. If α is fixed and ε tends to 0, they are pushed to infinity and merge in a degenerate
way. This bifurcation can be seen on a cylinder, by rolling the (ε, w̄) plane (see Figure 8). It can also be studied
on the Poincaré sphere S2 (see Figure 9), where the points at the infinity in the (w, v) plane are projected on
the equator, on which antipodal points are naturally identified [18], [1]. The co-dimension 2 degeneracy caused
by α = ε = 0 accounts for the persistence of panic exhibited in the PCR system (see Figure 10).

Remark 7. The computation of the Lyapunov exponents [4], [6], well known as a measure of sensibility of
the solution to the initial condition confirms this behavior (see Figure 11). Indeed, for C1 > 0, the Lyapunov
exponents are negative. If C1 = 0, the maximum Lyapunov exponent is null. If C1 < 0, it is even positive,
which does not mean chaos, since the orbits of the PCR system (15) leave the compact set [0, 1]5 (see Figure
6).

It also shows that the solution of the PCR system lies in a larger context of saddle-node bifurcations, that
could lead to instability. Indeed, the solution evolves on a fragile ridge, and a small perturbation of the system,
caused by an external phenomenon, or an inherent variation of one parameter, could on one side provoke an
unexpected asymptotic behavior of the solution.

α

w

(a)

ε

w

α < 0

(b)

ε
w

0∞

(c)

Figure 8: Bifurcation diagrams. (a) Classical saddle-node bifurcation diagram. (b) Saddle-node bifurcation at
the infinity. (c) Saddle-node bifurcation at the infinity, seen on a cylinder, by rolling the (ε, w̄) plane.

Remark 8. The persistence of panic p̄ has to be apprehended with precaution. The geographical observations can
record in some specific situations a difficult return to a daily behavior, with a longer panic behavior duration.
But a stricto sensu persistence is not an established, observed phenomenon, except in the cases with a large
mortality [5]. Indeed, it does not mean that the parameter C1 cannot be chosen with a zero value. The interaction
parameters that act in parallel with C1 also play a decisive role, as we are going to show in the next section.

Another point of view is to write system (19) as a gradient system
v̇ = −∂V

∂v

ẇ = −∂V
∂w

,

with potential
V (w, v) = −αw − ε

3w
3 + 1

2v
2.

Figure 12 shows the corresponding bifurcation surface, which is a fold with a degeneracy around 0. The
section of this surface by a vertical plane of equation ε = ε0 (ε0 6= 0) corresponds to a saddle-node bifurcation
shown in Figure 8(a), while the section by a plane of equation α = α0 (α0 6= 0) is related to Figure 8(b).
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(a) (b) (c)

(d)

Figure 9: Phase portraits of system ẇ = α + εw2, v̇ = −v, on the Poincaré sphere S2, with α = 1, showing
the saddle-node bifurcation at the infinity. When ε passes through 0, the saddle and the node are pushed to
antipodal points of the equator and finally vanish for ε > 0. (a) ε = −0.5. (b) ε = −0.01. (c) ε = −0.0001. (d)
ε = +0.5.

0

0

C1

p

Figure 10: Bifurcation diagram for the PCR system. The infinite number of equilibrium points appearing for
C1 = 0 corresponds to a saddle-node degeneracy.

5.2. Inhibition of panic

In this section, we shall study the effect of the imitation process between panic and control behaviors, that
acts in parallel with the evolution process. We have previously mentioned (see Table 2) that the persistence of
panic, that occurs when C1 is null, could change when other evolution parameters vary. Table 3 shows numerical
results for the persistence of panic p̄ for various increasing values of µ1.

Here, we focus our attention on the variation of the persistence of panic under a perturbation of the imitation
parameter µ1, which means that we only consider imitation from panic behavior to control behavior. Thus, we
put

αi = δi = 0, i ∈ {1, 2}, µ2 = 0,

and we just write µ instead of µ1, in order to lighten our notations. As in the previous section, we study the
asymptotic behavior of the solution, thus

γ(t) = ϕ(t) = 1,

for all t ≥ t0. We recall that the function h1 involved in the imitation term between panic and control behaviors

15



Figure 11: Numerical results for the Lyapunov exponents of the PCR system under a variation of the parameter
C1.

Figure 12: Surface of co-dimension 2 bifurcation in system ẇ = α + εw2, v̇ = −v. The tear in the origin
corresponds to the degeneracy exhibited in the PCR system. The dotted part of the surface indicates the
unstable equilibrium points. The section of this surface by a vertical plane of equation ε = ε0 corresponds to
a classical saddle-node bifurcation, while the section by a plane of equation α = α0 is related to a saddle-node
bifurcation at the infinity.

satisfies the property (2) presented in section §2.:

0 ≤ h1(s) ≤ 1, ∀s ∈ R.

Indeed, we reduce the analysis to the case h1(s) = k for all s ∈ R, where k denotes a real constant between 0
and 1. Finally, we consider the following dynamical system, in which µ is seen as a perturbation parameter:

ṙ = −(B1 +B2)r + q

(
1− r

rm

)
ċ = B1r − C2c− c(1− b) + µkcp

ṗ = B2r + C2c− µkcp

q̇ = −q
(

1− r

rm

)
ḃ = c(1− b)

, (20)
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B1 = 0.4 B1 = 0.7
µ1 p̄
0.0 0.76178
0.1 0.64451
0.2 0.49784
0.3 0.37016
0.4 0.28922

µ1 p̄
0.0 0.72252
0.1 0.61713
0.2 0.48676
0.3 0.36852
0.4 0.28856

Table 3: Numerical results for the persistence of panic under a variation of the imitation parameter µ1. The
values of the other parameters are: B2 = 0.3, C2 = 0.1. An increase of µ1 inhibits the persistence of panic.

where (r, c, p, q, b) ∈ R5 and t ≥ t0. We are interested in the solutions passing through (0, 0, 0, 1, 0) at t = t0,
and we would like to compare the panic components pµ and pµ∗ of two solutions obtained for two different
values µ > µ∗ of the imitation parameter. To that aim, we fix µ∗ and introduce ν > 0 such that µ = µ∗ + ν.

Proposition 7. Assume ν > 0 is sufficiently small and µ∗ ∈ [0, 1]. Let pµ and pµ∗ denote respectively the
panic components of the solutions of system (20) obtained for µ and µ∗. Then

pµ∗(t) ≥ pµ(t), ∀t ≥ t0.

Once again, we refer the reader to the appendix for the complete proof, that is based on an expansion
method. This expansion method can be used to study the effect of other parameters on the persistence of panic.
For instance, an increase of the parameter δ1, which models the imitation process from reflex behavior to panic
behavior, accentuates the persistence of panic. At the opposite, a change of the parameters α1, α2, which model
imitation between reflex and control, does not affect this persistence. Figure 13 shows the control exerted by an
increase of the imitation parameter µ1, while Figure 14 illustrates the effect of the imitation parameter δ1. In
the case C1 > 0, when panic does not persist, this inhibition effect can be used to accelerate the convergence of
p to 0. Finally, Figure 15 shows a bifurcation diagram for the PCR system, taking into account the bifurcation
effect of parameter C1, and the inhibition effect of parameter µ1.

Remark 9. The effect of the imitation parameters αi, δi, µi, i ∈ {1, 2}, comforts the initial choices made
in the modeling. The only consideration of evolution process from panic behavior to control behavior is not
sufficient. The emotion contagion phenomena have to be taken into account, in a non neglected proportion.

(a) (b) (c)

(d)

Figure 13: Numerical results showing the inhibition of the persistence of the panic behavior under an increase
of the imitation parameter µ1. The values of the other parameters are: C1 = 0, B1 = B2 = C2 = 0.2,
αi = δi = 0.1, i ∈ {1, 2}, s1 = s2 = 0, µ2 = 0.1. (a) µ1 = 0.1. (b) µ1 = 0.3. (c) µ1 = 0.5. (d) µ1 = 0.7.
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(a) (b) (c)

(d)

Figure 14: Numerical results showing the increase of the persistence of the panic behavior under an increase of
the imitation parameter δ1. The values of the other parameters are: C1 = 0, B1 = 0.1, B2 = 0.01, C2 = 0.2,
αi = µi = 0.1, i ∈ {1, 2}, s1 = s2 = 0, δ2 = 0.1. (a) δ1 = 0.1. (b) δ1 = 0.4. (c) δ1 = 0.7. (d) δ1 = 0.95.

C1

p̄

µ1

Figure 15: Bifurcation diagram for the PCR system. The varying parameters are C1 and µ1; p̄ denotes the
persistence of panic. The section of this diagram by the plane of equation µ1 = 0 is related to Figure 10. When
C1 = 0, there is a infinite number of equilibrium points. The height of each point decreases under an increase
of the inhibition parameter µ1. For C1 > 0, the greater µ1 is, the faster the trajectories converge to 0.

§6. Conclusion

The mathematical results presented in this paper represent a new step in the qualitative validation of the PCR
system, as a model of human behaviors during catastrophic events. The positiveness and the boundedness are
the first properties required for a population dynamic model. They are now rigorously proved.

The study of the equilibrium points shows the particular role played by the evolution parameter C1 from
panic behavior to control behavior. When the evolution acts in a fluidity context, that is C1 > 0, the return
of all individuals to a daily behavior is guaranteed. When at the opposite this evolution is blocked (C1 = 0),
a persistence of panic occurs, that can fortunately be inhibited by an increase of the imitation parameter µ1
that acts in parallel. Roughly speaking, the model can evolve towards two possible states. The first one is a
successful state, with a global return of the population to tranquility, whereas the second one is a problematic
state, with a plug in the panic behavior sub group.

The transitional dynamic highlights the decisive emptying role of the function ϕ(t): before its action, which
models the return to a daily behavior, a structurally stable equilibrium takes place among the 3 behaviors sub
groups, whatever the asymptotic equilibrium the solution converges to. During that transitional phase, periodic
phenomena can occur if a succession of catastrophic events is also taken into account in the model.

Finally, the analysis of the bifurcation provoked when the evolution parameter C1 passes through 0, made
by stating a local equation of the center manifold, highlights the potential role of the total population involved
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in the catastrophe mechanism, and shows that the solution of the PCR system lies in a larger context of saddle-
node bifurcations, near a degeneracy isolated case that accounts for the possible persistence of panic. Interaction
process can affect this persistence in a positive way, when individuals in a panic behavior imitate individuals
in a reflex or control behavior, or in a negative way, when at the opposite, imitation increases the flow towards
panic behavior.
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Appendix

Proof of proposition 5. J admits 4 eigenvalues 0, −1, −C2 and −B1−B2. The associated eigenvectors are given
by

X0 =(0, 0, 1, 0)T

X−1 =
(

1
B1 +B2 − 1 ,

B1

(B1 +B2 − 1)(C2 − 1) ,
−B2

B1 +B2 − 1 −
C2B1

(B1 +B2 − 1)(C2 − 1) , 1
)T

X−C2 =(0, −1, 1, 0)T

X−B1−B2 =
(

(B1 +B2)(B1 +B2 − C2)
B1C2 −B2(B1 +B2 − C2) ,

−B1(B1 +B2)
B1C2 −B2(B1 +B2 − C2) , 1, 0

)T
so J can be written in a diagonal form. We write J = PDP−1 with

P =


g1 g2 0 0
g3 g4 −1 0
1 g5 1 1
0 1 0 0

 , D =


−B1 −B2 0 0 0

0 −1 0 0
0 0 −C2 0
0 0 0 0

 ,

where the coefficients gi, 1 ≤ i ≤ 5 are given by

g1 = (B1+B2)(B1+B2−C2)
B1C2−B2(B1+B2−C2)

g2 = 1
B1+B2−1

g3 = −B1(B1+B2)
B1C2−B2(B1+B2−C2)

g4 = B1
(B1+B2−1)(C2−1)

g5 = −B2
B1+B2−1 −

C2B1
(B1+B2−1)(C2−1)

,

and satisfy {
g1 + g3 + 1 = 0
g2 + g4 + g5 + 1 = 0

.

We compute the inverse of P and obtain

P−1 =


1
g1

0 0 −g2
g1

0 0 0 1
−(1+g1)

g1
−1 0 g2 + g4 + g2

g1

1 1 1 1

 .

Let R = (r, c, p, q)T and X = (x, y, z, w)T . We have R = PX and X = P−1R. After some basic
computations, we get the following system:

ẋ = λ1x+ P1(x, y, z) + wQ1(x, y, z)
ẏ = λ2y + P2(x, y, z)
ż = λ3z − C1

(
x− (1 + g2 + g4)y + z + w

)
+ w

(
− (1 + g1)x+ g4y − z

)
+ P3(x, y, z) + wQ2(x, y, z)

ẇ = −w
(
− (1 + g1)x+ g4y − z

) ,
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where P1, P2, P3 are homogeneous polynomials of degree 2 in x, y, z, and Q1, Q2 homogeneous polynomials of
degree 1 in x, y, z. We then look for a Taylor expansion of (x, y, z) in w and C1, around (w, C1) = (0, 0). So
we write {

x = h1, y = h2, z = h3

hi = aiC
2
1 + biC1w + ciw

2 + . . . , i ∈ {1, 2, 3}
.

A local equation of the center manifold is given by

Dh(w, C1)
[
λ4w + f

(
w, h(w,C1), C1

)]
= Bh(w, C1) + g

(
w, h(w,C1), C1

)
,

where

λ4 = 0, h = (h1, h2, h3)T

B = diag
(
−2, −1, −1

2
)

f
(
w, (x, y, z), C1

)
= −w

(
− (1 + g1)x+ g4y − z

)
and

g
(
w, (x, y, z), C1

)
= P1(x, y, z) + wQ1(x, y, z)

P2(x, y, z)
−C1

(
x− (1 + g2 + g4)y + z + w

)
+ w

(
− (1 + g1)x+ g4y − z

)
+ P3(x, y, z) + wQ2(x, y, z)

 .

We obtain

(b1C1 + 2c1w + ...)
(
− w

(
− (1 + g1)h1 − g4h2 − h3

))
= λ1h1 + P1(h1, h2, h3) + wQ1(h1, h2, h3) + . . .

(b2C1 + 2c2w + ...)
(
− w

(
− (1 + g1)h1 − g4h2 − h3

))
= λ2h2 + P2(h1, h2, h3) + . . .

(b3C1 + 2c3w + ...)
(
− w

(
− (1 + g1)h1 − g4h2 − h3

))
= λ3h3 − C1

(
w + h1 − (1 + g2 + g4)h2 + h3

)
+ w

(
− (1 + g1)h1 + g4h2 − h3

)
+ P3(h1, h2, h3) + wQ2(h1, h2, h3) + . . .

where the dots indicate terms of order higher than 3. An identification of the terms in C2
1 , C1w and w2 produces

a1 = b1 = c1 = 0
a2 = b2 = c2 = 0
a3 = c3 = 0
b3 = 1

λ3

,

thus h1 = h2 = 0 and h3 = C1
λ3
w + . . . . An induction reasoning allows us to compute higher order terms of the

form dnw
n with n ≥ 3, and to prove that their coefficients dn are null. Thus, we write

ẇ = C1

λ3
w2(1 + . . .

)
.

The center manifold is consequently given in a neighborhood of C1 = 0 by
ẋ = λ1x+ ...

ẏ = λ2y + ...

ż = λ3z + ...

ẇ = C1
λ3
w2(1 +O(w)

) ,

and this achieves the proof.

Proof of proposition 7. The main idea of the demonstration is to find an expansion of the solution of system
(20), in a Taylor series according to the parameter ν = µ− µ∗. We divide system (20) into two sub systems

ṙ = −(B1 +B2)r + q

(
1− r

rm

)
q̇ = −q

(
1− r

rm

) ,
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
ċ = B1r − C2c− c(1− b) + µ∗kcp+ νkcp

ṗ = B2r + C2c− µ∗kcp− νkcp
ḃ = c(1− b)

. (21)

The Poincaré expansion theorem [24] guarantees that the solution can be written as a Taylor series in ν. We then
are looking for the first terms in that expansion. For more convenience, let (r, c, p, q, b), (r0, c0, p0, q0, b0) de-
note respectively the solutions corresponding to the parameter values µ and µ∗. We remark that the components
r and q do not depend on ν, and write 

c = c0 + νc1 + ν2c2 + ...

p = p0 + νp1 + ν2p2 + ...

b = b0 + νb1 + ν2b2 + ...

.

A necessary condition for (c, p, b) to be a solution of system (21) is

ċ0 + νċ1 + ν2ċ2 + ... = B1r − C2(c0 + νc1 + ν2c2 + ...)− (c0 + νc1 + ν2c2 + ...)(1− b0 − νb1 − ν2b2 − ...)
+ µ∗k(c0 + νc1 + ...)(p0 + νp1 + ...)
+ νk(c0 + νc1 + ...)(p0 + νp1 + ...)

ṗ0 + νṗ1 + ν2ṗ2 + ... = B2r + C2(c0 + νc1 + ν2c2 + ...)
− µ∗k(c0 + νc1 + ...)(p0 + νp1 + ...)
− νk(c0 + νc1 + ...)(p0 + νp1 + ...)

ḃ0 + νḃ1 + ν2ḃ2 + ... = (c0 + νc1 + ν2c2 + ...)(1− b0 − νb1 − ν2b2 − ...)

An identification of the terms of order 0 in ν yields the following differential system, whose unknown functions
are c0, p0 and b0: 

ċ0 = B1r − C2c0 − c0(1− b0) + µ∗kc0p0

ṗ0 = B2r + C2c0 − µ∗kc0p0

ḃ0 = c0(1− b0)
.

The same goes for terms of order 1:
ċ1 = −C2c1 + c0b1 − c1(1− b0) + µ∗k(c0p1 + c1p0) + kc0p0

ṗ1 = C2c1 − µ∗(c0p1 + c1p0)− kc0p0

ḃ1 = −c0b1 + c1(1− b0)
.

We recall that the initial condition is fixed to (0, 0, 0, 1, 0). Thus c0(0) = p0(0) = b0(0) = 0 and
c1(0) = p1(0) = b1(0) = 0. The initial condition also affects the derivatives as follows:{

ṙ(0) = 1, q̇(0) = −1, ċ0(0) = ṗ0(0) = ḃ0(0) = 0
ċ1(0) = ṗ1(0) = ḃ1(0) = 0

.

We compute the second derivatives of c0, p0, b0, which produces
c̈0 = B1ṙ − C2ċ0 − ċ0(1− b0) + c0ḃ0 + µ∗k(ċ0p0 + c0ṗ0)
p̈0 = B2ṙ + C2ċ0 − µ∗k(ċ0p0 + c0ṗ0)
b̈0 = ċ0(1− b0)− c0ḃ0

,

thus c̈0(0) = B1, p̈0(0) = B2 and b̈0(0) = 0. Similarly, we compute the derivatives of c1, p1, b1:

c̈1 = −C2ċ1 + ċ0b1 + c0ḃ1 − ċ1(1− b0) + c1ḃ0 + k(ċ0p0 + c0ṗ0) + µ∗k(ċ0p1 + c0ṗ1 + ċ1p0 + c1ṗ0)
p̈1 = C2ċ1 − k(ċ0p0 + c0ṗ0)− µ∗k(ċ0p1 + c0ṗ1 + ċ1p0 + c1ṗ0)
b̈1 = −ċ0b1 − c0ḃ1 + ċ1(1− b0)− c1ḃ0

thus c̈1(0) = p̈1(0) = b̈1(0) = 0. After some more computations, we finally obtain
c(3)(0) = p(3)(0) = b(3)(0) = 0
c(4)(0) = p(4)(0) = b(4)(0) = 0
c(5)(0) = 6B1B2 > 0, p(5)(0) = −6B1B2 < 0, b(5)(0) = 0
b(6)(0) = 6B1B2 > 0.

.
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Consequently, we have c1(t) > 0, p1(t) < 0 and b1(t) > 0 on a time interval [0, η[, with η > 0. To achieve the
proof, we are going to show that η = +∞. To that aim, we examine three cases for

(
b1(η), c1(η), p1(η)

)
to

leave the domain R+ × R+ × R−. We first assume b1(η) = 0, c1(η) > 0, p1(η) < 0, and obtain

ḃ1(η) = c1(η)
(
1− b0(η)

)
> 0,

which leads to a contradiction. Thus b1(t) > 0 for all t ≥ t0. Let us now suppose that c1(η) = 0, b1(η) > 0 and
p1(η) < 0. As c1 + p1 + b1 = 0 and µ∗ ∈ [0, 1], we obtain

ċ1(η) = c0(η)
(
b1(η)(1− µ∗k) + p0(η)

)
> 0,

which yields one more time a contradiction. Thus c1(t) > 0 for all t ≥ t0. Finally, p1(η) = 0 implies c1(η) +
p1(η) = 0, which is also excluded. Thus p1(t) < 0, for all t ≥ t0. Consequently, for ν sufficiently small, the
panic component pµ∗ is greater than pµ, and this achieves the proof.
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pouvoir Science, 7, 2011.

[10] C. Gross. Aristotle on the brain. The Neuroscientist, 1(4):245–250, 1995.

[11] E. Hatfield, J. Cacioppo, and R. Rapson. Emotional contagion. Cambridge university press, 1994.

[12] Y. Kuznetsov. Elements of Applied Bifurcation Theory. Applied Mathematical Sciences. Springer New
York, 2004.

[13] H. Laborit. La légende des comportements. Flammarion, 1994.

[14] D. Mukherjee. Persistence in a prey-predator system with disease in the prey. Journal of Biological Systems,
11(01):101–112, 2003.

[15] J. Murray. Mathematical Biology. II Spatial Models and Biomedical Applications. Springer-Verlag New
York Incorporated, 2001.

[16] J. Murray. Mathematical Biology I: An Introduction. Springer, New York, NY, USA„ 2002.
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