Guillaume Cantin 
email: guillaumecantin@mail.com
  
M A Aziz-Alaoui 
  
Nathalie Verdière 
  
Valentina Lanza 
  
Rodolphe Charrier 
  
Cyrille Bertelle 
  
Damienne Provitolo 
  
Edwige Dubos-Paillard 
  
Mathematical modeling of human behaviors during catastrophic events: stability and bifurcations

Keywords: Bifurcation, stability, catastrophic event, mathematical modeling, panic

come   L'archive ouverte pluridisciplinaire

§1. Introduction

Aristotle used to think that the brain does not play any particular role in the process of adopting a certain behavior [START_REF] Gross | Aristotle on the brain[END_REF]. He pretended that its action was only devoted to the control of some basic organic functions. Nowadays, the knowledge of the brain has widely improved. Biologists and neuroscientists have understood that some regions of the brain are dedicated to some particular behaviors, or decisions that are to be made by an individual facing a non normal event, and particularly a catastrophic event [START_REF] Noto | Médecine de catastrophe[END_REF], [START_REF] Crocq | La psychologie des catastrophes et les blessés psychiques[END_REF], [START_REF] Laborit | La légende des comportements[END_REF].

The PCR system (Panic-Control-Reflex) is a model which was built to better predict the human behaviors during catastrophic events [START_REF] Verdière | Mathematical modeling of human behaviors during catastrophic events[END_REF], [START_REF] Provitolo | Les comportements humains en situation de catastrophe : de l'observation à la modélisation conceptuelle et mathématique[END_REF]. Dividing into three groups of behaviors a population affected by a disaster, the model takes into account the links between the different behavior phases, distinguishing evolution processes and imitation phenomena. The catastrophic events can have a natural origin (tsunami, earthquakes, fires...), or can correspond to an industrial disaster (nuclear blast, factory explosion...). We consider only sudden disasters, with no alert to the population. The complete PCR system integrates some mortality terms and some domino effect terms. Indeed, in this paper, we shall focus on a situation with a constant population. [START_REF] Verdière | Mathematical modeling of human behaviors during catastrophic events[END_REF] and [START_REF] Provitolo | Les comportements humains en situation de catastrophe : de l'observation à la modélisation conceptuelle et mathématique[END_REF] clarify the initial choices made to build the model, which present similarities with epidemiological models [START_REF] Murray | Mathematical Biology. II Spatial Models and Biomedical Applications[END_REF], [START_REF] Murray | Mathematical Biology I: An Introduction[END_REF], [START_REF] Thieme | Mathematics in population biology[END_REF], [START_REF] Provitolo | Un exemple d'effets de dominos : la panique dans les catastrophes urbaines[END_REF], [START_REF] Zhou | Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity[END_REF] or prey-predator models [START_REF] Mukherjee | Persistence in a prey-predator system with disease in the prey[END_REF], [START_REF] Roy | Analysis of prey-predator three species fishery model with harvesting including prey refuge and migration[END_REF]. They precise the form of the imitation functions chosen to model the emotion contagion phenomenon, that can act symmetrically [START_REF] Hatfield | Emotional contagion[END_REF], [START_REF] George | Premières impressions. L'essentiel Cerveaux et Psycho: Les émotions au pouvoir Science[END_REF], whose flow depends on the relative proportions on each behavior sub group. Some numerical simulations are also shown, as a first step in the validation process of the model, confronted to rare available data [START_REF] Boyd | Psychological reactions of disaster victims[END_REF], [START_REF] Vermeiren | Psychologie des foules: éléments de compréhension et de prévention en situation de catastrophe collective[END_REF].

In this paper, we shall present some mathematical results of the qualitative study of the PCR system, giving a rigorous frame to numerical simulations. It will occasionally be a necessity to simplify the form of the equations in the PCR system, considering that modeling is a difficult task which implies a constant dilemma between, on the first hand, the desire to take into account numerous phenomena to approach reality, or at least the perception that we have from, and on the other hand, the obligation to propose a simple model that can be studied with a qualitative point of view [START_REF] Thieme | Mathematics in population biology[END_REF].

The outline is the following. In the first section, we will recall some basics about the PCR system, presenting its components and parameters, and we will prove the positiveness and the boundedness of the solutions, which are obvious properties to be satisfied by a population dynamic model. Then, we shall study the asymptotic stability of the trivial equilibrium, using Poincaré-Lyapunov classical methods, and the transitional dynamic of the system, that presents an attractive node. The last section is devoted to the analysis of the bifurcation identified when some evolution parameter passes through a critical value, exhibiting a larger context of saddlenode bifurcations in which the solutions evolve. Finally, we study the inhibition effect of higher order terms. §2. Problem statement and preliminaries

PCR system

We consider the following system of ordinary differential equations, resulting from the modeling of human behaviors during catastrophic events [START_REF] Verdière | Mathematical modeling of human behaviors during catastrophic events[END_REF], [START_REF] Provitolo | Les comportements humains en situation de catastrophe : de l'observation à la modélisation conceptuelle et mathématique[END_REF]:

Ẋ = Φ(t, X) (1) 
with Ẋ = dX dt , X = (r, c, p, q, b) T ∈ R 5 and Φ given by Φ(t, X) = Φ i (t, X) T , i ∈ {1, . . . , 5}, where the functions Φ i are real valued functions defined on R × R 5 by

                     Φ 1 (t, X) = γ(t)q 1 - r r m -(B 1 + B 2 )r + s 1 (t)c + s 2 (t)p + F (r, c)rc + G(r, p)rp Φ 2 (t, X) = -ϕ(t)c(1 -b) + B 1 r + C 1 p -C 2 c -s 1 (t)c -F (r, c)rc + H(c, p)cp Φ 3 (t, X) = B 2 r -C 1 p + C 2 c -s 2 (t)p -G(r, p)rp -H(c, p)cp Φ 4 (t, X) = -γ(t)q 1 - r r m Φ 5 (t, X) = ϕ(t)c(1 -b) .
The imitation functions F , G and H are real valued functions defined on R × R by

F (r, c) = -α 1 f 1 r c + + α 2 f 2 c r + G(r, p) = -δ 1 g 1 r p + + δ 2 g 2 p r + H(c, p) = µ 1 h 1 c p + -µ 2 h 2 p c + ,
where is a positive number, and f i , g i , h i , i ∈ {1, 2}, real valued functions defined on R, with a decreasing shape chosen to model the possibility that a behavior imitation can act symmetrically. Those functions satisfy the property 0

≤ f i (s) ≤ 1, 0 ≤ g i (s) ≤ 1, 0 ≤ h i (s) ≤ 1, ∀s ∈ R. (2) 
In the last section, we will reduce the analysis to the case with constant imitation functions. This model is a non linear, adimensional differential system, and the variables r, c, p, q and b denote respectively the densities of people being in a reflex, control, panic, daily 1 or back to daily behavior (see Figure 1 and Table 1). We will consider an initial time t 0 ≥ 0, and an initial condition

(r(t 0 ), c(t 0 ), p(t 0 ), q(t 0 ), b(t 0 )) = (r 0 , c 0 , p 0 , q 0 , b 0 ), (3) 
that satisfies the properties

r 0 + c 0 + p 0 + q 0 + b 0 = 1 (r 0 , c 0 , p 0 , q 0 , b 0 ) ∈ (R + ) 5 . ( 4 
)
We will often choose (r(t 0 ), c(t 0 ), p(t 0 ), q(t 0 ), b(t 0 )) = (0, 0, 0, 1, 0), [START_REF] Crocq | La psychologie des catastrophes et les blessés psychiques[END_REF] which corresponds to the situation when all the individuals are in a daily behavior before the beginning of the disaster. In order to study the stability of the steady states, we will relax this initial condition when necessary. Remark 1. The sum of the 5 equations is null, which means that the considered population is constant. In other words, this model does not take into account mortality rate, as mentioned in our introduction. However, it is easy to enhance the system, adding linear terms on each equation to consider that a part of the population affected by a brutal disaster is concerned with death. The qualitative study goes quite similar, and we have chosen to focus in this paper on a constant population model.

q(t) r(t) c(t) p(t) b(t) γ(t) ϕ(t) B1 s1 αi B2 s2 δi C2 C1 µi
The parameters of the PCR system are the real coefficients r m > 0 (reflex behavior maximum size), B i > 0, C i ≥ 0, i ∈ {1, 2} (evolution coefficients), α i ≥ 0, δ i ≥ 0, µ i ≥ 0, i ∈ {1, 2} (interaction coefficients involved in the functions F , G and H), s i ≥ 0, i ∈ {1, 2} (domino effect coefficients), which can also be built in a periodic form in order to model a succession of disasters. For more convenience, we introduce the vector of parameters

Λ = r m , B 1 , B 2 , C 1 , C 2 , s 1 , s 2 , α 1 , α 2 , δ 1 , δ 2 , µ 1 , µ 2 ,
and its domain D = (R + * ) 3 × (R + ) 10 .
Remark 2. The functions γ and ϕ respectively model the beginning of the disaster and the return to a daily behavior (see Figure 2). Their shape can be adapted to various scenarios and they satisfy γ(t) = ϕ(t) = 1 for t sufficiently large. Furthermore, ϕ and γ are supposed to be increasing functions.

It will sometimes be more convenient, for technical reasons, to consider the four equations system Ẋ = Ψ(t, X), X = (r, c, p, q) T , whose equations read

                 ṙ = γ(t)q 1 - r r m -(B 1 + B 2 )r + s 1 (t)c + s 2 (t)p + F (r, c)rc + G(r, p)rp ċ = -ϕ(t)c(r + c + p + q) + B 1 r + C 1 p -C 2 c -s 1 (t)c -F (r, c)rc + H(c, p)cp ṗ = B 2 r -C 1 p + C 2 c -s 2 (t)p -G(r, p)rp -H(c, p)cp q = -γ(t)q 1 - r r m . ( 6 
)
This system is simply obtained by substituting r + c + p + q by 1 -b, considering that the total population r + c + p + q + b is constant, equal to 1, from the moment that the initial condition satisfies property (4). The initial condition corresponding to (0, 0, 0, 1, 0) becomes : r(t 0 ), c(t 0 ), p(t 0 ), q(t 0 ) = (0, 0, 0, 1). ( 7)

Positiveness and boundedness

The first proposition guarantees the positiveness of the solutions. We then prove that they lie in a compact set (see Figure 3).

Proposition 1. We consider the Cauchy problem (1)- [START_REF] Carr | Applications of centre manifold theory[END_REF]. For any value of the parameters Λ ∈ D, there exists a unique maximal solution. Furthermore, its components are non negative.

Proof. The existence and uniqueness of a maximal solution is guaranteed by the fundamental Cauchy-Lipschitz theorem, as the function Φ is regular. We have to prove that the components are non negative. We first consider q(t), and integrate the fourth equation in system (1):

q(t) = q(t 0 )e - t t 0 γ(s)(1-r(s)/rm)ds , ( 8 
)
which directly implies q(t) > 0 for all t ≥ t 0 if q(t 0 ) > 0, and q(t) = 0 for all t ≥ t 0 if q(t 0 ) = 0. Then, we suppose that there exists θ > t 0 such that :

r(θ), c(θ), p(θ), b(θ) ∈]0, +∞[ 4 ,
and we consider

t 1 = inf θ > t 0 ; r(θ), c(θ), p(θ), b(θ) ∈]0, +∞[ 4 .
If r(t 1 ), c(t 1 ), p(t 1 ), b(t 1 ) = 0, c, p, b , with c > 0, p > 0 and b > 0, then ṙ(t 1 ) = γ(t 1 )q(t 1 ) + s 1 (t 1 )c(t 1 ) + s 2 (t 1 )p(t 1 ) > 0.

We can here invoke the simple following real analysis lemma, whose proof can be made with a simple Taylor expansion of order 1. Proof. We have already remarked that the total population r + c + p + q + b is constant. Since we suppose the initial condition to satisfy (r + c + p + q + b)(t 0 ) = 1, we directly conclude that the solution is global and lies within the compact set [0, 1] 5 .

Critical points

We conclude this section with the research of the critical points of the PCR system (1). To that aim, we solve Φ t, X = 0, ∀t ≥ t 0 . Some basic algebraic computations produce the following result. For all values of the parameters Λ ∈ D, O(0, 0, 0, 0, 1) is a critical point, that we will call trivial equilibrium in what follows. If C 1 > 0, or if s 2 > 0, it is the only equilibrium point. Else if C 1 = s 2 = 0, then for all p ∈ [0, 1], P p 0, 0, p, 0, 1 -p is another critical point, that we will name persistence of panic.

The parameters C 1 and s 2 appear in a particular role, letting the panic behavior in a plug, when approaching zero. In the next section, we will study the stability of the trivial equilibrium. The analysis of the stability of P p will be postponed to section §5. . As the linearization of the PCR system leads to one zero eigenvalue, this stability is tightly linked to a bifurcation that occurs in the system when C 1 vanishes. The research of the center manifold will highlight the role of the total population r + c + p + q involved in the disaster, that can be considered as a potential. The Lyapunov function used in the next section was built with an energy point of view that confirms this potential role. §3.

Stability of the trivial equilibrium

In this section, we study the stability of the trivial equilibrium. The next proposition states for its local stability. We then focus in detail on the orbit of the PCR system (1) stemming from the initial condition (0, 0, 0, 1, 0), in which all the individuals affected by the catastrophic event are in a daily behavior before the disaster. Proposition 2. For any value of the parameters Λ ∈ D, the equilibrium point O is locally stable.

Proof. To study the local stability of O, we consider the 4 equations PCR system (6) presented in subsection (2.1. ), Ẋ = Ψ(t, X)

with X = (r, c, p, q) T , and we introduce O * , the projection of O in R 4 , whose coordinates are (0, 0, 0, 0). We consider the function V defined by

V (t, X) = 1 2 (r + c + p + q) 2 , with X = (r, c, p, q) ∈ R 4 , and t ∈ [t 0 , +∞[. It is clear that V is definite positive. Furthermore, its orbital derivative is given by V t, X(t) = r(t) + c(t) + p(t) + q(t) ṙ(t) + ċ(t) + ṗ(t) + q(t) = -ϕ(t)c(t) r(t) + c(t) + p(t) + q(t) 2 ,
so V is semi definite negative. Hence, the Lyapunov theorem guarantees that the critical point O * is locally stable. Since the solution of the 5 equations system (1) lies in the hyperplane of equation r + c + p + q + b = 1, we can conclude that O is also locally stable.

After stating the local stability of the critical point O * , we are now going to study in detail the orbit of system (6) stemming from the initial condition [START_REF] Faria | Normal Forms for Retarded Functional Differential Equations and Applications to Bogdanov-Takens Singularity[END_REF], which cannot be considered as being close to O * . This study leads us to a global result about the asymptotic behavior of the solution, which is not surprising, considering the dissipative character of the PCR system [START_REF] Dang-Vu | Bifurcations et chaos: une introduction à la dynamique contemporaine avec des programmes en Pascal[END_REF]. Indeed, assume for the sake of simplicity that γ(t) = ϕ(t) = 1 for all t ≥ t 0 (see Remark 2), and that the imitation terms α i , δ i , µ i , i ∈ {1, 2} are null. Then the divergence is given by div

Ψ(t, X) = 4 i=1 ∂Ψ i ∂x i ≤ -B 1 -B 2 -C 1 -C 2 -s 1 -s 2 < 0.
Yet it is well known that dynamical systems admitting a negative divergence often exhibit attractors [START_REF] Dang-Vu | Bifurcations et chaos: une introduction à la dynamique contemporaine avec des programmes en Pascal[END_REF]. We continue with two lemmas that clarify the behavior of the components c and q, whose convergence is determined by the action of ϕ and γ respectively.

Lemma 2. Let c denote the control behavior component of the solution of the PCR system (6). Then

lim t→+∞ c(t) = 0.
Proof. We have seen before that

d(r + c + p + q) dt (t) = -ϕ(t)c(t)(r + c + p + q)(t),
for all t ≥ t 0 . The positiveness of ϕ, c and r + c + p + q then guarantees that r + c + p + q is a decreasing function on [t 0 , +∞[. As it is also positive, it converges to a non negative limit . Let us suppose that ṙ + ċ + ṗ + q does not converge to 0. As ( ṙ + ċ + ṗ + q)(t) < 0 for all t ≥ t 0 , it follows that a real positive number η can be found, such that ( ṙ + ċ + ṗ + q)(t) ≤ -η, for all t ≥ t 0 . Integrating from t 0 to t yields

(r + c + p + q)(t) -(r + c + p + q)(t 0 ) ≤ -η(t -t 0 ),
which produces a contradiction, as

lim t→+∞ -η(t -t 0 ) = -∞, while lim t→+∞ (r + c + p + q)(t) = .
Consequently, we have lim

t→+∞ ϕ(t)c(t)(r + c + p + q)(t) = 0.
We recall that ϕ(t) = 1 for t sufficiently large, so if = 0, then r + c + p + q converges to 0, and obviously c also does. If > 0, then c must converge to 0, and this achieves the proof.

Lemma 3. We assume that r m = 1. Let q denote the daily behavior component of the solution of the PCR system [START_REF] Dang-Vu | Bifurcations et chaos: une introduction à la dynamique contemporaine avec des programmes en Pascal[END_REF] stemming from the initial condition (0, 0, 0, 1). Then there exist β > 0, k > 0 and τ > 0 such that q(t) ≤ ke -βt , for all t ≥ t 0 + τ .

Remark 3. At the cost of technical arguments, the hypothesis r m = 1 can be partially ignored, provided some sufficient conditions for r to stay in the compact interval

[0, r m ], that is B 1 +B 2 ≥ α 2 +δ 2 .
The next proposition achieves the study of the asymptotic convergence of the solution of the PCR system. Once again, the parameter C 1 appears in a particular role. We choose to focus on a situation without interaction neither domino effects, so we assume the parameters s i , α i , δ i and µ i , i ∈ {1, 2} to be null, and we again fix r m = 1. Nonetheless, the effect of higher order terms will be studied in section §5. . Proof. We first examine the behavior of r when approaching the upper boundary of the compact interval [0, 1]. Indeed, if there exists θ > 0 such that r(θ) = 1, then necessarily

c(θ) = p(θ) = q(θ) = 0, thus ṙ(θ) = -B 1 -B 2 < 0.
As r(t 0 ) = 0, this excludes the possibility r(θ) = 1. A similar reasoning excludes the possibility lim t→+∞ r(t) = 1.

Consequently, there exists β > 0 such that r(t) ≤ 1 -β for all t ≥ t 0 . Afterwards, we consider τ > 0 such that γ(t) = 1 for all t ≥ t 0 + τ . Thus

q(t) = -q(t) 1 -r(t)
for all t ≥ t 0 + τ . We write

q(t) = q(τ )e - t τ (1-r(s))ds ≤ q(τ )e - t τ βds ≤ ke -βt
for all t ≥ τ , with k = q(τ )e βτ .

Proposition 3. Let consider the PCR system with the following assumptions on the parameters:

s i = α i = δ i = µ i = 0, i ∈ {1, 2} r m = 1 .
If C 1 > 0, then the orbit stemming from the initial condition (0, 0, 0, 1) converges to O * .

Proof. The hypothesis on the parameters allow us to consider the following sub system of two equations, separating r and q from the rest of the system,

ṙ(t) = -(B 1 + B 2 )r(t) + γ(t)q(t) 1 -r(t) q(t) = -γ(t)q(t) 1 -r(t) . ( 9 
)
It can be rewritten ẋ(t) = Ax(t) + B(t)x(t) + ψ(t, x), [START_REF] Gross | Aristotle on the brain[END_REF] with x = (r, q) T , and A, B(t) two squared matrices whose coefficients are

A = -B 1 -B 2 1 0 -1 , B(t) = 0 γ(t) -1 0 -γ(t) + 1 ,
and ψ defined by

ψ(t) = -γ(t)q(t)r(t) γ(t)q(t)

r(t) .

Let S(t) denote the fundamental matrix of the linear system ẋ = Ax. As A has negative eigenvalues -1 and -B 1 -B 2 , we know from the theory of linear differential systems, that there exist ξ > 0 and C > 0 such that

S(t) ≤ Ce -ξ(t-t0) , where x = 2 i=1 |x i | for all x = (x 1 , x 2 ) T ∈ R 2 .
We write system (10) as an integral equation

x(t) = S(t)x(t 0 ) + t t0 S(t -s + t 0 ) B(s)x(s) + ψ(s, x(s)) ds.
The previous lemma guarantees that

q(t) ≤ ke -βt γ(t) = 1 ,
for all t ≥ t 0 + τ with τ > 0, k > 0 and β > 0. Let t 1 = t 0 + τ . We obtain

x(t) ≤ Ce -ξ(t-t1) + t t1
Ce -ξ(t-s) ψ(s, x(s)) ds

≤ Ce -ξ(t-t1) + t t1 Ce -ξ(t-s) |q(s)| |r(s)| ds ≤ Ce -ξ(t-t1) + t t1
Ce -ξ(t-s) ke -βs x(s) ds thus

e ξ(t-t1) x(t) ≤ C + t t1
Ce ξ(s-t1) x(s) ke -βs ds which produces, using Gronwall's inequality

e ξ(t-t1) x(t) ≤ Ce t t 1
Cke -βs ds and finally

x(t) ≤ Ce -ξ(t-t1) e -k C β e -βt
for all t ≥ t 1 . Hence we can conclude that x(t) converges to 0. Finally, we consider the following sub system

ċ(t) = B 1 r(t) -C 2 c(t) + C 1 p(t) -ϕ(t)c(t)(r + c + p + q)(t) ṗ(t) = B 2 r(t) + C 2 c(t) -C 1 p(t) . ( 11 
)
We have previously shown that r(t), c(t) and q(t) converge to 0, and (r + c + p + q)(t) converges to , so p(t) converges to , and consequently ṗ(t) also converges to a finite limit, which is necessarily 0 (we recall that if f is a real valued smooth function defined on R, such that f (t) converges to a finite limit 1 , while ḟ (t) converges to a finite limit 2 , then necessarily 2 = 0). If C 1 > 0, we obtain 0 = -C 1 thus = 0.

Remark 4.

The geographical meaning of this asymptotic stability resides in the fact that numerous observations record a return of all the affected individuals to a daily behavior after the disaster. In other words, this qualitative result represents a new step in the validation process of the PCR system. §4. Transitional dynamic

The dynamic of the PCR system is governed by many parameters. In this section, we show that the function ϕ, that models the return to a daily behavior, plays an important role, by emptying the control behavior sub population c. To that aim, we consider a time interval [t 1 , t 2 ] on which

γ(t) = 1 ϕ(t) = 0 (12) 
that we consider as the transitional phase of the PCR system. Consequently, the unknown function b, that models the sub group of individuals who return to a daily behavior, can be eliminated from system [START_REF] Blows | Bifurcation at infinity in polynomial vector fields[END_REF]. Furthermore, as previously, we choose to focus on a situation without interaction effects, so we assume:

α i = 0, µ i = 0, δ i = 0, i ∈ {1, 2},
and we again put r m = 1. Finally, we study the following differential system

         ṙ = q (1 -r) -(B 1 + B 2 )r + s 1 c + s 2 p ċ = B 1 r + C 1 p -C 2 c -s 1 c ṗ = B 2 r -C 1 p + C 2 c -s 2 p q = -q (1 -r) . ( 13 
)
Proposition 4. The transitional dynamic of the PCR system defined by ( 12) and ( 13) exhibits an attractive equilibrium point.

This attractive point is depicted in Figures 4 and5. Figure 4 shows several orbits of the PCR system, projected in the (r, c, p) space, for some varying initial conditions, whereas Figure 5 presents each component of the solution stemming from the initial condition (0, 0, 0, 1, 0) for a given set of parameters, during the transitional phase (t 1 ≤ t ≤ t 2 ), and after the transitional phase (t ≥ t 2 ). Proof. We first look for the critical points of system [START_REF] Laborit | La légende des comportements[END_REF], which are given by

         q (1 -r) -(B 1 + B 2 )r + s 1 c + s 2 p = 0 B 1 r + C 1 p -C 2 c -s 1 c = 0 B 2 r -C 1 p + C 2 c -s 2 p = 0 -q (1 -r) = 0 .
As the sum r + c + p + q is constant, equal to 1, we obtain Some basic computations lead to the solution

     1 -(2 + B 1 + B 2 )r + (s 1 -1)c + (s 2 -1)p + r 2 + rc + rp = 0 B 1 r + C 1 p -C 2 c -s 1 c = 0 B 2 r -C 1 p + C 2 c -s 2 p = 0 . ( 14 
) (a) (b)
               r * = C 1 s 1 + C 2 s 2 + s 1 s 2 N c * = B 1 s 2 + C 1 B 1 + C 1 B 2 N p * = B 1 C 2 + B 2 C 2 + B 2 s 1 N , where N = C 1 s 1 + C 2 s 2 + s 1 s 2 + B 1 s 2 + C 1 B 1 + C 1 B 2 + B 1 C 2 + B 2 C 2 + B 2 s 1 , that satisfies r * + c * + p * = 1.
The Jacobian matrix of system [START_REF] Mukherjee | Persistence in a prey-predator system with disease in the prey[END_REF], evaluated in (r * , c * , p * ), admits three eigenvalues

                 λ 1 = -B 1 -B 2 -C 1 -C 2 -s 1 -s 2 + √ ∆ 2 λ 2 = -B 1 -B 2 -C 1 -C 2 -s 1 -s 2 - √ ∆ 2 λ 3 = -(B 1 C 1 + B 1 C 2 + B 1 s 1 + B 2 C 1 + B 2 C 2 + B 2 s 1 ) N , with ∆ = B 2 1 + 2B 1 B 2 -2B 1 C 1 -2B 1 C 2 + 2B 1 s 1 -2B 1 s 2 + B 2 2 -2B 2 C 1 -2B 2 C 2 -2B 2 s 1 + 2B 2 s 2 + C 2 1 + 2C 1 C 2 -2C 1 s 1 + 2C 1 s 2 + C 2 2 + 2C 2 s 1 -2C 2 s 2 + s 2 1 -2s 1 s 2 + s 2 2 .
The stability of (r * , c * , p * ) is given by the sign of λ 1 , λ 2 and λ 3 . Obviously, we have λ 3 < 0 and λ 2 < 0. Furthermore, the sum and the product of λ 1 and λ 2 are given by

λ 1 + λ 2 = -(B 1 + B 2 + C 1 + C 2 + s 1 + s 2 ) λ 1 λ 2 = B 1 C 1 + B 1 C 2 + B 1 s 2 + B 2 C 1 + B 2 C 2 + B 2 s 1 + C 1 s 1 + C 2 s 2 + s 1 s 2
so we also have λ 1 < 0. This demonstrates that the non trivial critical point (r * , c * , p * ) is an attractive node for system [START_REF] Mukherjee | Persistence in a prey-predator system with disease in the prey[END_REF]. Finally, as the sum r + c + p + q is constant, equal to 1, (r * , c * , p * , 0) is also an attractive equilibrium point for system [START_REF] Laborit | La légende des comportements[END_REF].

The latter proof uses a linearization method, that produces negative eigenvalues, whatever the values of the parameters are. It means that the stability of the transitional dynamic is structural. In particular, it is independent of the asymptotic behavior of the solution towards one or another equilibrium point.

Remark 5. We have previously mentioned that a succession of disasters could be modeled by choosing a periodic form for the domino effect parameters s 1 and s 2 . In that case, it can be shown that the transitional dynamic reveals the existence of an attractive cycle whose diameter increases with the intensity of the catastrophic events. After this transitional dynamic, the emptying role of the function ϕ(t) takes place, and the attractive cycle vanishes. This analysis of domino effect will be presented in a forthcoming paper. §5. Bifurcation analysis in a reduced case

Reduction to center manifold and calculation of normal form

The research of the equilibrium points exhibits a particular role for the parameter C 1 , that lets new equilibrium points appear when tending to 0. In that case, numerical experiments show a persistence of panic behavior (see Figure 6). In this section, we shall study the dynamic related to the parameter C 1 , by stating a local equation of the center manifold [START_REF] Carr | Applications of centre manifold theory[END_REF], [START_REF] Perko | Differential equations and dynamical systems[END_REF], [START_REF] Kuznetsov | Elements of Applied Bifurcation Theory[END_REF], [START_REF] Dang-Vu | Bifurcations et chaos: une introduction à la dynamique contemporaine avec des programmes en Pascal[END_REF], [START_REF] Faria | Normal Forms for Retarded Functional Differential Equations and Applications to Bogdanov-Takens Singularity[END_REF], [START_REF] Faria | Normal Forms for Retarded Functional Differential Equations with Parameters and Applications to Hopf Bifurcation[END_REF]. We will momentarily consider positive or negative values of the parameters, in order to establish a complete mathematical analysis.

Figure 6: Numerical results in the (r, p) plane, showing a bifurcation when the evolution parameter C 1 passes through 0. For C 1 > 0, the solution converges to the trivial equilibrium. For C 1 = 0, a persistence of panic suddenly occurs. For C 1 < 0, the solution leaves the compact set [0, 1] 5 and diverge to infinity.

As mentioned in our introduction, we reduce the analysis to the case of constant imitation functions, that is:

F (r, c) = k 1 , G(r, p) = k 2 , H(c, p) = k 3 ,
where

k 1 , k 2 , k 3 ∈ [-1, 1]
. Furthermore, as we study the asymptotic behavior of the PCR system, we assume

γ(t) = ϕ(t) = 1, ∀t ≥ T,
for a given T > 0. Substituting t -T by t, we can without loss of generality replace the study in [t 0 , +∞[. Finally, we consider the following system

         ṙ = -(B 1 + B 2 )r + q(1 -r) + k 1 rc + k 2 rp ċ = B 1 r -c(r + c + p + q) -C 2 c + C 1 p -k 1 rc + k 3 cp ṗ = B 2 r + C 2 c -C 1 p -k 2 rp -k 3 cp q = -q(1 -r) ( 15 
)
The Jacobian matrix J, evaluated in (0, 0, 0, 0) and C 1 = 0, reads

J =     -B 1 -B 2 0 0 1 B 1 -C 2 0 0 B 2 C 2 0 0 0 0 0 -1     . ( 16 
)
Its characteristic polynomial is

χ J (λ) = λ(1 + λ)(C 2 + λ)(B 1 + B 2 + λ). Assuming C 2 = 1, B 1 + B 2 = 1 and C 2 = B 1 + B 2 ,
we can conclude that J admits 4 eigenvalues 0, -1, -C 2 and -B 1 -B 2 . As J has one zero eigenvalue, we are going to search for a local equation of the center manifold in a neighborhood of C 1 = 0. The next proposition gives an equation of the center manifold in a neighborhood of C 1 = 0.

Proposition 5. Assume C 2 = 1, B 1 + B 2 = 1 and C 2 = B 1 + B 2 .
Then the Jacobian matrix J of system [START_REF] Murray | Mathematical Biology. II Spatial Models and Biomedical Applications[END_REF] can be written in a diagonal form with eigenvalues

λ 1 < λ 2 < λ 3 < λ 4 = 0.
Moreover, in a neighborhood of C 1 = 0, there exist new coordinates (x, y, z, w) such that the PCR system ( 15) is given by

         ẋ = λ 1 x + ... ẏ = λ 2 y + ... ż = λ 3 z + ... ẇ = C1 λ3 w 2 1 + O(w) . ( 17 
)
We refer the refer to the appendix for the complete proof of this proposition. The change of coordinates involved in the diagonalization of the matrix J highlights the particular role played by the total population involved in the disaster, that is w = r + c + p + q, that we have previously considered in order to build a Lyapunov function. The next proposition states for the local stability of the equilibrium points P p. Proposition 6. Assume C 1 = 0. Then the equilibrium points P p of the PCR system [START_REF] Murray | Mathematical Biology. II Spatial Models and Biomedical Applications[END_REF] are locally stable, but not asymptotically stable.

Proof. The local stability follows from the form of the last equation in system [START_REF] Noto | Médecine de catastrophe[END_REF], in which all the terms vanish when C 1 = 0.

The equation of the center manifold shows that in a neighborhood of C 1 = 0, the PCR system is topologically equivalent to the following differential system:

         ẋ = -x ẏ = -y ż = -z ẇ = εw 2 , ( 18 
)
where ε = -C 1 .

Remark 6.

As there is an infinite number of critical points in the case C 1 = 0, a natural question is to find which one is attempted by the solution, considering a fixed initial condition. We are now going to study the dynamic of the normal form exhibited in the local equation of the center manifold [START_REF] Noto | Médecine de catastrophe[END_REF]. To that aim, we consider the following 2 dimension dynamical system

ẇ = α + εw 2 v = -v (19) 
with parameters α and ε. The first parameter is naturally introduced to avoid a systematic degeneracy [START_REF] Kuznetsov | Elements of Applied Bifurcation Theory[END_REF], while the second parameter ε corresponds to the parameter -C 1 in the PCR system. Figure 7 shows different phase portraits for the system [START_REF] Provitolo | Un exemple d'effets de dominos : la panique dans les catastrophes urbaines[END_REF] according to both parameters α and ε. The gray zone in the diagram corresponds to the region of the parameter C 1 in the PCR system. To understand the bifurcation that suddenly causes the emergence of an infinite number of critical points, we have to find the equilibrium points in system [START_REF] Provitolo | Un exemple d'effets de dominos : la panique dans les catastrophes urbaines[END_REF], by solving

ε = -C 1 α ∞ ∞
α + εw 2 = 0 -v = 0 .
The only critical points are for v = 0. If α × ε > 0, there is not any critical point. If α × ε < 0, there are two critical points given by w

= ± -α ε , v = 0.
One is a saddle, the other one being a node. They collapse if ε is fixed and α tends to 0, forming a classical saddle-node bifurcation. If α is fixed and ε tends to 0, they are pushed to infinity and merge in a degenerate way. This bifurcation can be seen on a cylinder, by rolling the (ε, w) plane (see Figure 8). It can also be studied on the Poincaré sphere S 2 (see Figure 9), where the points at the infinity in the (w, v) plane are projected on the equator, on which antipodal points are naturally identified [START_REF] Perko | Differential equations and dynamical systems[END_REF], [START_REF] Blows | Bifurcation at infinity in polynomial vector fields[END_REF]. The co-dimension 2 degeneracy caused by α = ε = 0 accounts for the persistence of panic exhibited in the PCR system (see Figure 10).

Remark 7.

The computation of the Lyapunov exponents [START_REF] Chen | Feedback control of lyapunov exponents for discrete-time dynamical systems[END_REF], [START_REF] Dang-Vu | Bifurcations et chaos: une introduction à la dynamique contemporaine avec des programmes en Pascal[END_REF], well known as a measure of sensibility of the solution to the initial condition confirms this behavior (see Figure 11). Indeed, for C 1 > 0, the Lyapunov exponents are negative. If C 1 = 0, the maximum Lyapunov exponent is null. If C 1 < 0, it is even positive, which does not mean chaos, since the orbits of the PCR system [START_REF] Murray | Mathematical Biology. II Spatial Models and Biomedical Applications[END_REF] leave the compact set [0, 1] 5 (see Figure 6).

It also shows that the solution of the PCR system lies in a larger context of saddle-node bifurcations, that could lead to instability. Indeed, the solution evolves on a fragile ridge, and a small perturbation of the system, caused by an external phenomenon, or an inherent variation of one parameter, could on one side provoke an unexpected asymptotic behavior of the solution. Remark 8. The persistence of panic p has to be apprehended with precaution. The geographical observations can record in some specific situations a difficult return to a daily behavior, with a longer panic behavior duration. But a stricto sensu persistence is not an established, observed phenomenon, except in the cases with a large mortality [START_REF] Crocq | La psychologie des catastrophes et les blessés psychiques[END_REF]. Indeed, it does not mean that the parameter C 1 cannot be chosen with a zero value. The interaction parameters that act in parallel with C 1 also play a decisive role, as we are going to show in the next section.

Another point of view is to write system (19) as a gradient system

       v = - ∂V ∂v ẇ = - ∂V ∂w , with potential V (w, v) = -αw - ε 3 w 3 + 1 2 v 2 .
Figure 12 shows the corresponding bifurcation surface, which is a fold with a degeneracy around 0. The section of this surface by a vertical plane of equation ε = ε 0 (ε 0 = 0) corresponds to a saddle-node bifurcation shown in Figure 8(a), while the section by a plane of equation α = α 0 (α 0 = 0) is related to Figure 8 

Inhibition of panic

In this section, we shall study the effect of the imitation process between panic and control behaviors, that acts in parallel with the evolution process. We have previously mentioned (see Table 2) that the persistence of panic, that occurs when C 1 is null, could change when other evolution parameters vary. Table 3 shows numerical results for the persistence of panic p for various increasing values of µ 1 .

Here, we focus our attention on the variation of the persistence of panic under a perturbation of the imitation parameter µ 1 , which means that we only consider imitation from panic behavior to control behavior. Thus, we put α i = δ i = 0, i ∈ {1, 2}, µ 2 = 0, and we just write µ instead of µ 1 , in order to lighten our notations. As in the previous section, we study the asymptotic behavior of the solution, thus γ(t) = ϕ(t) = 1, for all t ≥ t 0 . We recall that the function h 1 involved in the imitation term between panic and control behaviors satisfies the property (2) presented in section §2. :

0 ≤ h 1 (s) ≤ 1, ∀s ∈ R.
Indeed, we reduce the analysis to the case h 1 (s) = k for all s ∈ R, where k denotes a real constant between 0 and 1. Finally, we consider the following dynamical system, in which µ is seen as a perturbation parameter: 3: Numerical results for the persistence of panic under a variation of the imitation parameter µ 1 . The values of the other parameters are: B 2 = 0.3, C 2 = 0.1. An increase of µ 1 inhibits the persistence of panic.

                     ṙ = -(B 1 + B 2 )r + q 1 - r r m ċ = B 1 r -C 2 c -c(1 -b) + µkcp ṗ = B 2 r + C 2 c -µkcp q = -q 1 - r r m ḃ = c(1 -b) , ( 20 
)
B 1 = 0.4 B 1 = 0.
where (r, c, p, q, b) ∈ R 5 and t ≥ t 0 . We are interested in the solutions passing through (0, 0, 0, 1, 0) at t = t 0 , and we would like to compare the panic components p µ and p µ * of two solutions obtained for two different values µ > µ * of the imitation parameter. To that aim, we fix µ * and introduce ν > 0 such that µ = µ * + ν. Proposition 7. Assume ν > 0 is sufficiently small and µ * ∈ [0, 1]. Let p µ and p µ * denote respectively the panic components of the solutions of system [START_REF] Provitolo | Les comportements humains en situation de catastrophe : de l'observation à la modélisation conceptuelle et mathématique[END_REF] obtained for µ and µ * . Then

p µ * (t) ≥ p µ (t), ∀t ≥ t 0 .
Once again, we refer the reader to the appendix for the complete proof, that is based on an expansion method. This expansion method can be used to study the effect of other parameters on the persistence of panic. For instance, an increase of the parameter δ 1 , which models the imitation process from reflex behavior to panic behavior, accentuates the persistence of panic. At the opposite, a change of the parameters α 1 , α 2 , which model imitation between reflex and control, does not affect this persistence. Figure 13 shows the control exerted by an increase of the imitation parameter µ 1 , while Figure 14 illustrates the effect of the imitation parameter δ 1 . In the case C 1 > 0, when panic does not persist, this inhibition effect can be used to accelerate the convergence of p to 0. Finally, Figure 15 shows a bifurcation diagram for the PCR system, taking into account the bifurcation effect of parameter C 1 , and the inhibition effect of parameter µ 1 .

Remark 9. The effect of the imitation parameters α i , δ i , µ i , i ∈ {1, 2}, comforts the initial choices made in the modeling. The only consideration of evolution process from panic behavior to control behavior is not sufficient. The emotion contagion phenomena have to be taken into account, in a non neglected proportion. When C 1 = 0, there is a infinite number of equilibrium points. The height of each point decreases under an increase of the inhibition parameter µ 1 . For C 1 > 0, the greater µ 1 is, the faster the trajectories converge to 0. §6.

Conclusion

The mathematical results presented in this paper represent a new step in the qualitative validation of the PCR system, as a model of human behaviors during catastrophic events. The positiveness and the boundedness are the first properties required for a population dynamic model. They are now rigorously proved.

The study of the equilibrium points shows the particular role played by the evolution parameter C 1 from panic behavior to control behavior. When the evolution acts in a fluidity context, that is C 1 > 0, the return of all individuals to a daily behavior is guaranteed. When at the opposite this evolution is blocked (C 1 = 0), a persistence of panic occurs, that can fortunately be inhibited by an increase of the imitation parameter µ 1 that acts in parallel. Roughly speaking, the model can evolve towards two possible states. The first one is a successful state, with a global return of the population to tranquility, whereas the second one is a problematic state, with a plug in the panic behavior sub group.

The transitional dynamic highlights the decisive emptying role of the function ϕ(t): before its action, which models the return to a daily behavior, a structurally stable equilibrium takes place among the 3 behaviors sub groups, whatever the asymptotic equilibrium the solution converges to. During that transitional phase, periodic phenomena can occur if a succession of catastrophic events is also taken into account in the model.

Finally, the analysis of the bifurcation provoked when the evolution parameter C 1 passes through 0, made by stating a local equation of the center manifold, highlights the potential role of the total population involved in the catastrophe mechanism, and shows that the solution of the PCR system lies in a larger context of saddlenode bifurcations, near a degeneracy isolated case that accounts for the possible persistence of panic. Interaction process can affect this persistence in a positive way, when individuals in a panic behavior imitate individuals in a reflex or control behavior, or in a negative way, when at the opposite, imitation increases the flow towards panic behavior. so J can be written in a diagonal form. We write J = P DP -1 with

P =     g 1 g 2 0 0 g 3 g 4 -1 0 1 g 5 1 1 0 1 0 0     , D =     -B 1 -B 2 0 0 0 0 -1 0 0 0 0 -C 2 0 0 0 0 0     ,
where the coefficients g i , 1 ≤ i ≤ 5 are given by

                           g 1 = (B1+B2)(B1+B2-C2)
B1C2-B2(B1+B2-C2)

g 2 = 1 B1+B2-1 g 3 = -B1(B1+B2) B1C2-B2(B1+B2-C2) g 4 = B1 (B1+B2-1)(C2-1) g 5 = -B2 B1+B2-1 - C2B1 (B1+B2-1)(C2-1)
, and satisfy g 1 + g 3 + 1 = 0 g 2 + g 4 + g 5 + 1 = 0 .

We compute the inverse of P and obtain

P -1 =     1 g1 0 0 -g2 g1 0 0 0 1 -(1+g1) g1 -1 0 g 2 + g 4 + g2 g1 1 1 1 1     .
Let R = (r, c, p, q) T and X = (x, y, z, w) T . We have R = P X and X = P -1 R. After some basic computations, we get the following system: Proof of proposition 7. The main idea of the demonstration is to find an expansion of the solution of system [START_REF] Provitolo | Les comportements humains en situation de catastrophe : de l'observation à la modélisation conceptuelle et mathématique[END_REF], in a Taylor series according to the parameter ν = µ -µ * . We divide system [START_REF] Provitolo | Les comportements humains en situation de catastrophe : de l'observation à la modélisation conceptuelle et mathématique[END_REF] into two sub systems

       ṙ = -(B 1 + B 2 )r + q 1 - r r m q = -q 1 - r r m ,

Figure 1 :

 1 Figure1: Schema for the PCR system, showing the evolution parameters B i and C i , the imitation parameters α i , δ i and µ i , and the domino effect parameters s i , i ∈ {1, 2}. The beginning of the disaster and the return to a daily behavior are respectively modeled by γ(t) and ϕ(t).

Figure 2 :

 2 Figure 2: A possible shape for the functions γ and ϕ, that respectively model the beginning of the catastrophe and the return to a daily behavior, in the case of an abrupt disaster and a smooth exit of catastrophe behaviors.

Lemma 1 .Corollary 1 .

 11 Let f be a real valued function defined on a non empty interval ]a, b[⊂ R. We suppose that f is differentiable on ]a, b[, and that there exists c ∈]a, b[ such that f (x) > 0 for all x ∈]a, c[, f (c) = 0, and f (x) < 0 for all x ∈]c, b[. Then df dt (c) ≤ 0. The function r satisfies the hypothesis of the lemma, but ṙ(t 1 ) > 0, which yields a contradiction. The other cases are treated in the same way. For any value of the parameters Λ ∈ D, the compact set [0, 1] 5 is invariant under the flow induced by the PCR system (1) and the initial condition (3).

Figure 3 :

 3 Figure 3: Several orbits of the PCR system for various values of the parameters B 1 , B 2 , C 1 , C 2 , and the same initial condition (0, 0, 0, 1, 0), projected in the (r, c, p) space. The solutions lie in the compact set [0, 1] 5 .

Figure 4 :

 4 Figure 4: Numerical results projected in the (r, c, p) space for the simplified system (13), showing a stable equilibrium in the transitional dynamic of the PCR system.

Figure 5 :

 5 Figure 5: Transitional dynamic in the PCR system. A delay introduced in the function ϕ (a), lets a transitional equilibrium appear among the 3 sub groups of behaviors (b).

Figure 7 :

 7 Figure 7: Bifurcation diagram for system ẇ = α + εw 2 , v = -v showing phase portraits in the (w, v) plane.The gray zone, on the left of ε axis, corresponds to the possible values of parameter C 1 in the PCR system. The infinite number of equilibrium points occurring for α = ε = 0 accounts for the persistence of panic in the model.

Figure 8 :

 8 Figure 8: Bifurcation (a) Classical saddle-node bifurcation diagram. (b) Saddle-node bifurcation at the infinity. (c) Saddle-node bifurcation at the infinity, seen on a cylinder, by rolling the (ε, w) plane.

  Figure12shows the corresponding bifurcation surface, which is a fold with a degeneracy around 0. The section of this surface by a vertical plane of equation ε = ε 0 (ε 0 = 0) corresponds to a saddle-node bifurcation shown in Figure8(a), while the section by a plane of equation α = α 0 (α 0 = 0) is related to Figure 8(b).

Figure 9 : 1 pFigure 10 :

 9110 Figure 9: Phase portraits of system ẇ = α + εw 2 , v = -v, on the Poincaré sphere S 2 , with α = 1, showing the saddle-node bifurcation at the infinity. When ε passes through 0, the saddle and the node are pushed to antipodal points of the equator and finally vanish for ε > 0. (a) ε = -0.5. (b) ε = -0.01. (c) ε = -0.0001. (d) ε = +0.5.

Figure 11 :

 11 Figure 11: Numerical results for the Lyapunov exponents of the PCR system under a variation of the parameter C 1 .

Figure 12 :

 12 Figure 12: Surface of co-dimension 2 bifurcation in system ẇ = α + εw 2 , v = -v. The tear in the origin corresponds to the degeneracy exhibited in the PCR system. The dotted part of the surface indicates the unstable equilibrium points. The section of this surface by a vertical plane of equation ε = ε 0 corresponds to a classical saddle-node bifurcation, while the section by a plane of equation α = α 0 is related to a saddle-node bifurcation at the infinity.

Figure 13 :

 13 Figure 13: Numerical results showing the inhibition of the persistence of the panic behavior under an increase of the imitation parameter µ 1 . The values of the other parameters are: C 1 = 0, B 1 = B 2 = C 2 = 0.2, α i = δ i = 0.1, i ∈ {1, 2}, s 1 = s 2 = 0, µ 2 = 0.1. (a) µ 1 = 0.1. (b) µ 1 = 0.3. (c) µ 1 = 0.5. (d) µ 1 = 0.7.

Figure 14 : 1 p µ 1 Figure 15 :

 141115 Figure 14: Numerical results showing the increase of the persistence of the panic behavior under an increase of the imitation parameter δ 1 . The values of the other parameters are: C 1 = 0, B 1 = 0.1, B 2 = 0.01, C 2 = 0.2, α i = µ i = 0.1, i ∈ {1, 2}, s 1 = s 2 = 0, δ 2 = 0.1. (a) δ 1 = 0.1. (b) δ 1 = 0.4. (c) δ 1 = 0.7. (d) δ 1 = 0.95.

3 + 1 , C 1 w and w 2 a 1 = b 1 = c 1 = 0 a 2 = b 2 = c 2 = 0 a 3 = c 3 = 0 b 3 = 1 λ3, thus h 1 =C 1 λ 3 w 2 1 +

 31211223111 λ 1 x + P 1 (x, y, z) + wQ 1 (x, y, z) ẏ = λ 2 y + P 2 (x, y, z) ż = λ 3 z -C 1 x -(1 + g 2 + g 4 )y + z + w + w -(1 + g 1 )x + g 4 y -z + P 3 (x, y, z) + wQ 2 (x, y, z) ẇ = -w -(1 + g 1 )x + g 4 y -z , where P 1 , P 2 , P 3 are homogeneous polynomials of degree 2 in x, y, z, and Q 1 , Q 2 homogeneous polynomials of degree 1 in x, y, z. We then look for a Taylor expansion of (x, y, z) in w and C 1 , around (w, C 1 ) = (0, 0). So we writex = h 1 , y = h 2 , z = h 3 h i = a i C 2 1 + b i C 1 w + c i w 2 + . . . , i ∈ {1, 2, 3}.A local equation of the center manifold is given byDh(w, C 1 ) λ 4 w + f w, h(w, C 1 ), C 1 = Bh(w, C 1 ) + g w, h(w, C 1 ), C 1 ,whereλ 4 = 0, h = (h 1 , h 2 , h 3 ) T B = diag -2, -1, -1 2 f w, (x, y, z), C 1 = -w -(1 + g 1 )x + g 4 y -z and g w, (x, y, z), C 1 =   P 1 (x, y, z) + wQ 1 (x, y, z) P 2 (x, y, z) -C 1 x -(1 + g 2 + g 4 )y + z + w + w -(1 + g 1 )x + g 4 y -z + P 3 (x, y, z) + wQ 2 (x, y, z)   .We obtain(b 1 C 1 + 2c 1 w + ...) -w -(1 + g 1 )h 1 -g 4 h 2 -h 3 = λ 1 h 1 + P 1 (h 1 , h 2 , h 3 ) + wQ 1 (h 1 , h 2 , h 3 ) + . . . (b 2 C 1 + 2c 2 w + ...) -w -(1 + g 1 )h 1 -g 4 h 2 -h 3 = λ 2 h 2 + P 2 (h 1 , h 2 , h 3 ) + . . . (b 3 C 1 + 2c 3 w + ...) -w -(1 + g 1 )h 1 -g 4 h 2 -h 3 = λ 3 h 3 -C 1 w + h 1 -(1 + g 2 + g 4 )h 2 + h 3 + w -(1 + g 1 )h 1 + g 4 h 2 -h P 3 (h 1 , h 2 , h 3 ) + wQ 2 (h 1 , h 2 , h 3 ) + . . .where the dots indicate terms of order higher than 3. An identification of the terms in C 2 h 2 = 0 and h 3 = C1 λ3 w + . . . . An induction reasoning allows us to compute higher order terms of the form d n w n with n ≥ 3, and to prove that their coefficients d n are null. Thus, we write ẇ = . . . . The center manifold is consequently given in a neighborhood of C 1 1 x + ... ẏ = λ 2 y + ... ż = λ 3 z + ... ẇ = C1 λ3 w 2 1 + O(w) , and this achieves the proof.

  

Table 1 :

 1 Notations for the main functions and parameters in the PCR system.

	Function	Notation
	Daily behaviors	q(t)
	Reflex behaviors	r(t)
	Control behaviors	c(t)
	Panic behaviors	p(t)
	Back to daily behaviors	b(t)
	Beginning of the disaster	γ(t)
	Return to a daily behavior	ϕ(t)
	Imitation functions	F, G, H
	Parameter	Notation
	Evolution from reflex to control	B 1
	Evolution from reflex to panic	B 2
	Evolution from panic to control	C 1
	Evolution from control to panic	C 2
	Imitation between reflex and control α 1 , α 2
	Imitation between reflex and panic	δ 1 , δ 2
	Imitation between panic and control µ 1 , µ 2
	Domino effect	s 1 , s 2
	Reflex behavior maximum size	r m

Table 2

 2 

	B 1 = 0.5		B 1 = 0.7	
	B 2 C 2	p	B 2 C 2	p
	0.2 0.1 0.70550	0.2 0.1 0.69018
	0.2 0.2 0.84365	0.2 0.2 0.83984
	0.3 0.1 0.74474	0.3 0.1 0.72252
	0.3 0.2 0.86674	0.3 0.2 0.85823
	0.4 0.1 0.77494	0.4 0.1 0.74885
	0.4 0.2 0.88409	0.4 0.2 0.87294

shows numerical results for the persistence of panic p for different values of the parameters B 1 , B 2 and C 2 . The other parameters (α i , δ i , µ i , i ∈ {1, 2} and C 1 ) are supposed to be null. It seems that an increase of B 1 induces a decrease of p, while an increase of C 2 or B 2 exacerbates this persistence. In the next section, we will study in detail the inhibition effect of the imitation parameter µ 1 .

Table 2 :

 2 Numerical results for the persistence of panic p under a variation of the parameters B 1 , B 2 and C 2 .

The letter q corresponds to the french word quotidien.
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Appendix

Proof of proposition 5. J admits 4 eigenvalues 0, -1, -C 2 and -B 1 -B 2 . The associated eigenvectors are given by

The Poincaré expansion theorem [START_REF] Verhulst | Nonlinear differential equations and dynamical systems[END_REF] guarantees that the solution can be written as a Taylor series in ν. We then are looking for the first terms in that expansion. For more convenience, let (r, c, p, q, b), (r 0 , c 0 , p 0 , q 0 , b 0 ) denote respectively the solutions corresponding to the parameter values µ and µ * . We remark that the components r and q do not depend on ν, and write

A necessary condition for (c, p, b) to be a solution of system ( 21) is

An identification of the terms of order 0 in ν yields the following differential system, whose unknown functions are c 0 , p 0 and b 0 :

.

The same goes for terms of order 1:

.

We recall that the initial condition is fixed to (0, 0, 0, 1, 0). Thus c 0 (0) = p 0 (0) = b 0 (0) = 0 and c 1 (0) = p 1 (0) = b 1 (0) = 0. The initial condition also affects the derivatives as follows:

We compute the second derivatives of c 0 , p 0 , b 0 , which produces

, thus c0 (0) = B 1 , p0 (0) = B 2 and b0 (0) = 0. Similarly, we compute the derivatives of c 1 , p 1 , b 1 :

thus c1 (0) = p1 (0) = b1 (0) = 0. After some more computations, we finally obtain (4) (0) = b (4) (0) = 0 c (5) (0) = 6B 1 B 2 > 0, p (5) (0) = -6B 1 B 2 < 0, b (5) (0) = 0 b (6) (0) = 6B 1 B 2 > 0.

. Consequently, we have c 1 (t) > 0, p 1 (t) < 0 and b 1 (t) > 0 on a time interval [0, η[, with η > 0. To achieve the proof, we are going to show that η = +∞. To that aim, we examine three cases for b 1 (η), c 1 (η), p 1 (η) to leave the domain R + × R + × R -. We first assume b 1 (η) = 0, c 1 (η) > 0, p 1 (η) < 0, and obtain

which leads to a contradiction. Thus b 1 (t) > 0 for all t ≥ t 0 . Let us now suppose that c 1 (η) = 0, b 1 (η) > 0 and p 1 (η) < 0. As c 1 + p 1 + b 1 = 0 and µ * ∈ [0, 1], we obtain ċ1 (η) = c 0 (η) b 1 (η)(1 -µ * k) + p 0 (η) > 0, which yields one more time a contradiction. Thus c 1 (t) > 0 for all t ≥ t 0 . Finally, p 1 (η) = 0 implies c 1 (η) + p 1 (η) = 0, which is also excluded. Thus p 1 (t) < 0, for all t ≥ t 0 . Consequently, for ν sufficiently small, the panic component p µ * is greater than p µ , and this achieves the proof.