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The problem of parameter estimation is considered for the twostate telegraph process, observed in white Gaussian observation noise. An online one-step Maximum Likelihood Estimator (MLE) process is constructed, using a preliminary Method of Moments (MM) estimator. The obtained estimation procedure is shown to be asymptotically normal and efficient in the large sample regime.

Introduction

In this work we address the problem of estimating the unknown transition rates λ and µ of a continuous time stationary Markov chain Y (t) , 0 ≤ t ≤ T with two states, y 1 and y 2 , and transition matrix ( -λ λ µ -µ

) .

Trajectory of the chain is observed in a white noise and the unknown twodimensional parameter ϑ = (λ, µ) is to be estimated from the observations 1 X T = (X (t) , 0 ≤ t ≤ T ), generated by the equation dX(t) = Y (t) dt + dW (t), subject to X 0 , [START_REF] Bickel | Asymptotic normality of the maximum likelihood estimator for general hidden Markov models[END_REF] where the initial condition X (0) = X 0 is independent of the standard Wiener process W (t), 0 ≤ t ≤ T . We will assume that ϑ ∈ Θ = (c 0 , c 1 ) × (c 0 , c 1 ) for some known constants 0 < c 0 < c 1 .

Our goal is to construct an online estimator process ϑ ⋆ T = ( ϑ ⋆ t,T , 0 < t ≤ T

) which, on one hand, is easy to compute, and on the other hand, is asymptotically optimal in an appropriate sense, as T → ∞. The construction is carried out in two steps. First we introduce a learning interval [ 0, T δ ] with δ ∈ ( 1 2 , 1) and propose a T δ 2 -consistent preliminary estimator using the Method of Moments. Then we improve it up to asymptotic efficiency with the help of a slightly modified one-step MLE procedure.

Observation models, such as the one studied in this paper, are called Hidden Markov Models (HMM) or partially observed systems. HMMs have been extensively studied in the discrete time setup; see, for example, [START_REF] Elliott | Hidden Markov Models[END_REF], [START_REF] Bickel | Asymptotic normality of the maximum likelihood estimator for general hidden Markov models[END_REF], [START_REF] Cappé | Inference in Hidden Markov Models[END_REF] and the references therein. In particular, asymptotic normality of various estimators in the different settings have been established. Asymptotic theory for continuous time models seems to be less explored. Nonlinear filtering and parameter estimation problems for partially observed continuous time Markov chains are considered, for example, in [START_REF] Elliott | Hidden Markov Models[END_REF]. Identification problems of partially observed linear processes were studied in, e.g., [START_REF] Kutoyants | Parameter Estimation for Stochastic Processes[END_REF], [START_REF] Dembo | Parameter estimation for partially observed continuous time processes via the EM algorithm[END_REF], [START_REF] Zeitouni | Exact filters for the estimation of the number of transitions of finite-state continuous time Marcov processes[END_REF], [START_REF] Kutoyants | Identification of Dynamical Systems with Small Noise[END_REF]. The problem of asymptotically efficient estimation for continuous time telegraph process observed on a discrete grid was studied in [START_REF] Iacus | Estimation for discretly observed telegraph process[END_REF].

The problem, closest in spirit to ours, is addressed in [START_REF] Chigansky | Maximum likelihood estimation for hidden Markov models in continuous time[END_REF], where parameter estimation is considered in the case of hidden finite-state Markov process with continuous time observations. It proves consistency, asymptotic normality and asymptotic efficiency of the MLE under appropriate conditions, which may not be easy to check in general. The case of two-state hidden telegraph process under consideration appears in [START_REF] Chigansky | Maximum likelihood estimation for hidden Markov models in continuous time[END_REF] as an example with onedimensional parameter (ϑ = λ = µ).

The one-step MLE-process proposed here is based on the so-called Fisher scoring method. Let us briefly recall its main elements in the case of i.i.d. observations X n = (X 1 , . . . , X n ), sampled from the density f (ϑ, x). Suppose that we have a √ n-consistent estimator θn , i.e., √ n ( θn -ϑ ) is bounded in probability. Then the estimator ϑ ⋆ n ϑ ⋆ n = θn + I ( θn

) -1 n -1 n ∑ j=1 ḟ ( θn , X j ) f ( θn , X j )
is asymptotically efficient. Here dot stands for the derivative w.r.t. ϑ and I (ϑ) is the Fisher information. This estimator was proposed by Fisher in [START_REF] Fisher | Theory of statistical estimation[END_REF] and studied by Le Cam [START_REF] Cam | On the asymptotic theory of estimation and testing hypotheses[END_REF]. It is also known that the preliminary estimator can have convergence rate slower than √ n, see [START_REF] Robinson | The stochastic difference between econometric statistics[END_REF] and references there in. Newton-Raphson multi-step estimators were introduced in [START_REF] Kamatani | Hybrid multi-step estimators for stochastic differential equations based on sampled data[END_REF] in parameter estimation problems for diffusion processes with discrete time observations. Note that the Newton-Raphson procedure is very close to one-step estimation device. In particular, it was shown in [START_REF] Kamatani | Hybrid multi-step estimators for stochastic differential equations based on sampled data[END_REF] that multi-step Newton-Raphson procedure allows to improve convergence rate of the preliminary estimator up to asymptotic efficiency. The preliminary estimator there is constructed using all available observations. Let us now illustrate the basic idea behind our MLE-process in this classical discrete time setup. Suppose that θN is a preliminary estimator constructed by the first N =

[ n δ ] observations X N = (X 1 , . . . , X N ) with δ ∈ ( 1 2 , 1 
)

. Then the one-step MLE-process ϑ ⋆ k,n , N ≤ k ≤ n is given by the following expression

ϑ ⋆ k,n = θN + I k ( θN ) -1 k -1 k ∑ j=N +1 ḟ ( θN , X j ) f ( θN , X j ), N ≤ k ≤ n,
where I k (ϑ) is the empirical Fisher information matrix

I k (ϑ) = 1 k k ∑ j=N +1 ḟ (ϑ, X j ) ḟ (ϑ, X j ) * f (ϑ, X j ) 2 .
Here a * denotes transpose of a vector (or a matrix) a. For any τ ∈ (0, 1) and

k = [nτ ] we have √ k ( ϑ ⋆ k,n -ϑ ) =⇒ N ( 0, I (ϑ) -1 )
as n → ∞. Therefore this estimator-process is asymptotically efficient for all τ ∈ (0, 1]. Remark that its calculation is much simpler than the calculation of the exact MLE.

The MLE-process for the partially observed system (1) with observations X T = (X t , 0 ≤ t ≤ T ), proposed in this paper, uses the preliminary estimator θT δ based on the observations X

T δ = ( X t , 0 ≤ t ≤ T δ ) over the initial learn- ing interval [ 0, T δ ] with δ ∈ ( 1 2 , 1)
and is carried out following the similar construction in [START_REF] Kutoyants | On multi-step MLE-processes for ergodic diffusion[END_REF] (see also [START_REF] Kutoyants | On approximation of the backward stochastic differential equation. Small noise, large samples and high frequency cases[END_REF]).

Problem statement and auxiliary results

Let us start with description of the MLE for the model under consideration. By the innovation theorem (see [START_REF] Liptser | Statistics of Random Processes[END_REF], Theorem 7.12), the stochastic process (1) admits the representation

dX t = m (t, ϑ) dt + d Wt , subject to X 0 , 0 ≤ t ≤ T, where m (t, ϑ) is the conditional expectation m (t, ϑ) = E ϑ [ Y (t) |F X t ] = y 1 P ϑ ( Y (t) = y 1 |F X t ) + y 2 P ϑ ( Y (t) = y 2 |F X t ) .
Here F X t is the σ-algebra of events generated by the observations up to time t, i.e., F X t := σ (X t , 0 ≤ s ≤ t) and Wt , 0 ≤ t ≤ T is the innovation Wiener process. Let us denote

π (t, ϑ) = P ϑ ( Y (t) = y 1 |F X t ) , P ϑ ( Y (t) = y 2 |F X t ) = 1 -π (t, ϑ) .
Then

m (t, ϑ) = y 2 + (y 1 -y 2 ) π (t, ϑ) .
The random process π (t, ϑ) , 0 ≤ t ≤ T satisfies the following equation (see [START_REF] Liptser | Statistics of Random Processes[END_REF], Theorem 9.1 and equation (9.23) therein)

dπ (t, ϑ) = [µ -(λ + µ) π (t, ϑ) +π (t, ϑ) (1 -π (t, ϑ)) (y 2 -y 1 ) (y 2 + (y 1 -y 2 ) π (t, ϑ))] dt + π (t, ϑ) (1 -π (t, ϑ)) (y 1 -y 2 ) dX t . ( 2 
)
Denote by

{ P (t)
ϑ , ϑ ∈ Θ } the family of measures, induced by the process 1) on the space of realizations C [0, t] (continuous functions on [0, t]) for different values of the parameter. These measures are equivalent and the likelihood ratio function

X t = (X s , 0 ≤ s ≤ t) from (
L ( ϑ, X t ) = dP (t) ϑ dP (t) 0 ( X t ) , ϑ ∈ Θ, 0 < t ≤ T can be written as follows L ( ϑ, X t ) = exp {∫ t 0 m (s, ϑ) dX s - 1 2 ∫ t 0 m (s, ϑ) 2 ds } .
Here P (t) 0 is the measure corresponding to X t with Y (s) ≡ 0.
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The MLE-process θt , 0 < t ≤ T is any root of the equation

L ( θt , X t ) = sup ϑ∈Θ L ( ϑ, X t ) , 0 < t ≤ T. ( 3 
)
Asymptotic behavior of the MLE θT was studied in [START_REF] Chigansky | Maximum likelihood estimation for hidden Markov models in continuous time[END_REF]. It was shown that in the one-dimensional case

(d = 1, λ = µ = ϑ) the MLE θT is consistent, asymptotically normal √ T ( θT -ϑ ) =⇒ N ( 0, I (ϑ) -1 )
and asymptotically efficient. Here I (ϑ) is the Fisher information.

In our model the observations are given by ( 1) and the unknown parameter ϑ = (λ, µ) is to be estimated from the sample path X T = (X t , 0 ≤ t ≤ T ). We will construct an MLE-process ϑ ⋆ t,T , 0 < t ≤ T , such that for any fixed τ ∈ (0, 1] and t = τ T we have

√ t ( ϑ ⋆ t,T -ϑ ) =⇒ N ( 0, I (ϑ) -1 ) , T → ∞.
Here I (ϑ) is the corresponding Fisher information matrix. Recall that an estimator is asymptotically efficient if it is asymptotically normal with the limit covariance matrix I (ϑ) -1 . The family of measures in the statistical problem under consideration is locally asymptotically normal and therefore it can be shown that the latter implies asymptotic efficiency in the usual minimax sense (see [START_REF] Ibragimov | Statistical Estimation -Asymptotic Theory[END_REF]).

Note that the construction of the MLE-process θt , 0 < t ≤ T according to (3) and ( 2) is a computationally hard problem, because it requires solving the family of equations (2) for all ϑ ∈ Θ and equations (3) for all t ∈ (0, T ]. Computational complexity can be reduced as follows. First we construct an estimator θT = ( λT , μT ) by means of the Method of Moments (see (17) below) and show that it is √ T -consistent, that is,

E ϑ √ T ( θT -ϑ ) 2 ≤ C,
where the constant C > 0 does not depend on T . Then applying this estimator θT δ to the observations on the learning interval [ 0, T δ ] with 1 2 < δ < 1, we introduce the one-step MLE-process

ϑ ⋆ t,T = θT δ + t -1/2 I t ( θT δ ) -1 ∆ t ( θT δ , X t ) , T δ ≤ t ≤ T. ( 4 
)
Here the empirical Fisher information matrix satisfies

I t (ϑ) = 1 t ∫ t T δ ṁ (ϑ, s) ṁ (ϑ, s) * ds -→ I (ϑ) , as t → ∞, T δ = o (t) and ∆ t ( ϑ, X t ) = 1 √ t ∫ t T δ ṁ (ϑ, s) [dX s -m (ϑ, s) ds]
is the vector score-function process.

Computation of this MLE-process uses the solutions m (ϑ, t) and ṁ (ϑ, t) of the equation ( 2) and of the corresponding equation for ṁ (ϑ, t) only for one value of the parameter, namely for ϑ = θT δ . Solving the maximum likelihood equation ( 3) is avoided and the estimator ϑ ⋆ t,T can be easily calculated using (4). This is the main computational advantage of the proposed estimation procedure. On the other hand, as mentioned above, the estimator ϑ ⋆ t,T is asymptotically efficient and, in particular,

ϑ ⋆ T,T = ϑ ⋆ T satisfies √ T (ϑ ⋆ T -ϑ) =⇒ N ( 0, I (ϑ) -1
) , being therefore asymptotically equivalent to the exact MLE.

Hereafter we will use the following notations: the derivative w.r.t. parameter ϑ is denoted by a dot, ṁ (ϑ, t) stands for the column vector of the derivatives ṁλ (ϑ, t), ṁµ (ϑ, t).

Let us recall some relevant well known properties of the (stationary) telegraph process Y (t) , t ≥ 0.

1. The stationary distribution of the process Y (t) is given by

P ϑ {Y (t) = y 1 } = µ λ + µ , P ϑ {Y (t) = y 2 } = λ λ + µ (5)
2. Let us denote P ij (t) = P ϑ {Y (t) = y j |Y (0) = y i }, then solving the Kolmogorov equation we obtain

P 11 (t) = µ λ + µ + λ λ + µ e -(λ+µ)t , P 12 (t) = λ λ + µ - λ λ + µ e -(λ+µ)t , P 21 (t) = µ λ + µ - µ λ + µ e -(λ+µ)t , P 22 (t) = λ λ + µ + µ λ + µ e -(λ+µ)t (6)
It follows from ( 5) and ( 6) that

K (s) = E ϑ [Y (t) Y (t + s)] = ( y 1 µ + y 2 λ λ + µ ) 2 + (y 2 -y 1 ) 2 λµ (λ + µ) 2 e -(λ+µ)s = ( Ȳ ) 2 + De -(λ+µ)s , (7) 
where

Ȳ = E ϑ Y (t) = y 1 µ + y 2 λ λ + µ , D = (y 2 -y 1 ) 2 λµ (λ + µ) 2 . ( 8 
)
3. Let F Y t ⊂ F be the family of σ-algebras of events

{Y (s) = y i , 0 ≤ s ≤ t, i = 1, 2} .
It follows from ( 6) that for some constant K > 0 and A < T and for all s > A, t > 0 the inequality

E ϑ { Y (s + T ) Y (t + T ) |F Y A } -E ϑ [Y (s) Y (t)] < Ke -(λ+µ)(T -A) (9) holds.

Method of moments estimator

Let us first address the problem of constructing a √ T -consistent estimator of the unknown parameter ϑ by the Method of Moments. Recall that we observe the stochastic process

dX t = Y (t) dt + dW t , X 0 , 0 ≤ t ≤ T, ( 10 
)
in continuous time, where W t , 0 ≤ t ≤ T is a standard Wiener process, X 0 is an independent random initial condition, and Y (t), t ≥ 0 is the stationary Markov process with two states y 1 and y 2 and infinitesimal rate matrix

( -λ λ µ -µ
) .

The processes Y (t) , t ≥ 0 and W t , t ≥ 0 are independent.

For simplicity we assume that T is an integer and impose the condition

λ ∈ [c 0 , c 1 ] , µ ∈ [c 0 , c 1 ] (11) 
where c 0 and c 1 are some positive constants. To introduce our preliminary estimator we need the following objects:

• The function

Φ (x) = 1 x - 1 x 2 ( 1 -e -x ) . ( 12 
)
• The statistics

ζ T = 1 T T -1 ∑ i=0 [X i+1 -X i ] 2 -1. (13) 
• The random variable α T is defined as a solution of the equation

ζ T = ( X T T ) 2 + 2η T Φ (α T ) , ( 14 
)
where

η T = ( X T T -y 1 ) ( y 2 - X T T ) . ( 15 
)
• The event A T ="the equation ( 14) has a solution α T ∈ [2c 0 , 2c 1 ]".

• The random variable

β T = α T 1I {A T } + (c 0 + c 1 ) 1I {A c T } ( 16 
)
Define the estimator θT = ( λT , μT ) where

λT = X(T ) T -y 1 y 2 -y 1 β T ; μT = y 2 -X(T ) T y 2 -y 1 β T . ( 17 
)
Properties of these estimators are given in the following theorem.

Theorem 1 Assume the condition [START_REF] Kutoyants | Parameter Estimation for Stochastic Processes[END_REF] holds; then the estimators in ( 17) satisfy

E ϑ [ √ T ( λT -λ ) ] 2 < C, E ϑ [ √ T (μ T -µ) ] 2 < C. ( 18 
)
with a constant C > 0, independent of T .

The proof is split below into several steps.

The next lemma gives √ T -consistent estimator for Ȳ (see [START_REF] Ibragimov | Statistical Estimation -Asymptotic Theory[END_REF]).

Lemma 1 Under the assumption [START_REF] Kutoyants | Parameter Estimation for Stochastic Processes[END_REF], the estimator X T /T is uniformly consistent for Ȳ :

E ϑ ( X T T - Ȳ ) 2 ≤ C T , T > 0 ( 19 
)
with a constant C > 0 independent of ϑ and T .

Proof. Using [START_REF] Iacus | Estimation for discretly observed telegraph process[END_REF] we obtain the following relations

E ϑ ( X T T - Ȳ ) 2 = E ϑ 1 T ∫ T 0 [ Y (t) - Ȳ ] dt + W T T 2 = 1 T + 1 T 2 E ϑ ∫ T 0 [ Y (t) - Ȳ ] dt 2 ≤ 1 T ( 1 + 2λµ (λ + µ) 3 (y 2 -y 1 ) 2 ) ≤ 1 T ( 1 + c 2 1 4c 3 0 (y 2 -y 1 ) 2
) .

Corollary. Existence of consistent estimators for λ λ+µ and µ λ+µ follows from (5) and Lemma 1. Indeed, from the equality

Ȳ = λ λ + µ y 2 + µ λ + µ y 1
and Lemma 1 we obtain

E ϑ [ √ T ( T -1 X T -y 1 y 2 -y 1 - λ λ + µ )] 2 < C, E ϑ [ √ T ( y 2 -T -1 X T y 2 -y 1 - µ λ + µ )] 2 < C. ( 20 
)
The statistic

X T T = 1 T ∫ T 0 Y (t) dt + W T T
is a sum of a bounded random variable and an independent normal random variable N (0, T -1 ). Hence η T defined in [START_REF] Kutoyants | On multi-step MLE-processes for ergodic diffusion[END_REF] satisfies

E ϑ [ √ T (η T -D) ] 2 < C, ( 21 
)
where the constant C > 0 does not depend on T and ϑ. The constant D is defined in [START_REF] Ibragimov | Statistical Estimation -Asymptotic Theory[END_REF].

Note that from the condition [START_REF] Kutoyants | Parameter Estimation for Stochastic Processes[END_REF] we have

λµ (λ + µ) 2 > c 2 0 4c 2 1
and we easily obtain the bound [START_REF] Zeitouni | Exact filters for the estimation of the number of transitions of finite-state continuous time Marcov processes[END_REF] for the estimator

ηT = max { η T , (y 2 -y 1 ) 2 c 2 0 8c 2 1 } (22) Lemma 2
The following equality holds

E ϑ ζ T = Ȳ 2 + 2DΦ (λ + µ) (23)
and under condition [START_REF] Kutoyants | Parameter Estimation for Stochastic Processes[END_REF] we also have

E ϑ [ √ T (ζ T -E ϑ ζ T ) ] 2 < C. ( 24 
)
Proof. By [START_REF] Iacus | Estimation for discretly observed telegraph process[END_REF] and stationarity of the process Y (t) we obtain

E ϑ ζ T = E ϑ [X 1 -X 0 ] 2 -1 = E ϑ ∫ 1 0 ∫ 1 0 Y (s) Y (t) dsdt + 1 -1 = Ȳ 2 + 2DΦ (λ + µ) . ( 25 
)
Denote

γ i = ∫ i+1 i Y (t) dt; ∆W (i) = W i+1 -W i .
Further, the equality

ζ T -E ϑ ζ T = 1 T T -1 ∑ i=0 ( γ 2 i -E ϑ γ 2 i ) + 2 T T -1 ∑ i=0 γ i ∆W (i) + 1 T T -1 ∑ i=0 ( ∆W (i) 2 -1 ) implies E ϑ (ζ T -E ϑ ζ T ) 2 ≤ 3 T 2 E ϑ ( T -1 ∑ i=0 ( γ 2 i -E ϑ γ 2 i ) ) 2 + 12 T 2 E ϑ ( T -1 ∑ i=0 γ i ∆W (i) ) 2 + 3 T 2 E ϑ ( T -1 ∑ i=0 ( ∆W (i) 2 -1 ) ) 2 := 3J 1 + 12J 2 + 3J 3 . ( 26 
)
By stationarity of Y (t)

J 1 = 1 T 2 E ϑ ( T -1 ∑ i=0 ( γ 2 i -E ϑ γ 2 i ) ) 2 = 1 T 2 T -1 ∑ i=0 T -1 ∑ j=0 E ϑ ( γ 2 i -E ϑ γ 2 i ) ( γ 2 j -E ϑ γ 2 j ) = 1 T 2 T -1 ∑ i,j=0 {∫ 1 0 ∫ 1 0 ∫ 1 0 ∫ 1 0 E ϑ {Y (s) Y (t) E ϑ [ Y (|i -j| + s 1 ) Y (|i -j| + t 1 ) |F Y 1 ]} dsdtds 1 dt 1 - ( E ϑ γ 2 0 ) 2 } . ( 27 
)
The bound [START_REF] Kamatani | Hybrid multi-step estimators for stochastic differential equations based on sampled data[END_REF] gives

E ϑ [ Y (|i -j| + s 1 ) Y (|i -j| + t 1 ) |F Y 1 ] -E ϑ Y (s 1 ) Y (t 1 ) ≤ K e -(λ+µ)|j-i| .
and, using ( 27) and ( 11), we obtain

J 1 ≤ K T 2 T -1 ∑ i,j=0 e -(λ+µ)|j-i| ≤ K 1 T .
The obvious bounds

J 2 = 1 T 2 E ϑ ( T -1 ∑ i=0 γ i ∆W (i) ) 2 = 1 T 2 T -1 ∑ i=0 E ϑ γ 2 i = E ϑ γ 2 0 T ≤ K T , J 3 = 1 T 2 E ϑ ( T -1 ∑ i=0 [ ∆W (i) 2 -1 ] ) 2 = 1 T 2 T -1 ∑ i=0 E ϑ [ ∆W (i) 2 -1 ] 2 ≤ K T
and (26) imply the second assertion of the lemma.

Lemma 3 The function Φ (x) (see [START_REF] Kutoyants | Identification of Dynamical Systems with Small Noise[END_REF]) has the following properties

lim x→0+ Φ (x) = 1 2 , ( 28 
)
lim x→∞ Φ (x) = 0, (29) 
Φ ′ (x) < 0, for x > 0. ( 30 
)
Proof. Expanding (12) into power series, we get

Φ (x) = 1 2 - x 3! + x 2 4! - x 3 5! + . . . Φ ′ (x) = - ( 1 3! - 2x 4!
) -

( 3x 2 5! - 4x 3 6! ) -. . .
which give the limits (28) and ( 29) and the bound (30) for x < 2. For x ≥ 2 it follows from the explicit expression for this derivative

Φ ′ (x) = 1 x 2 ( 2 x -1
) -

( 2 x 3 + 1 x 2 ) e -x .
Let us consider the equation ( 14) for α T , where ζ T and η T are defined in ( 13) and ( 15) respectively. By Lemma 3 this equation has at most one solution. Recall that on the event A T , the equation ( 14) does have a solution and consider the statistic β T defined in ( 16) (here c 0 , c 1 are the constants from the condition ( 11)).

Lemma 4 Under the condition [START_REF] Kutoyants | Parameter Estimation for Stochastic Processes[END_REF], the estimate

β T is √ T -consistent for λ + µ: E ϑ [ √ T (β T -(λ + µ)) ] 2 < C, ( 31 
)
with a constant C > 0, independent of ϑ and T .

Proof. It follows from Lemmas 1 and 2 that

ζ T = Ȳ 2 + 2DΦ (λ + µ) + ε 1 (T ) . ( 32 
)
Here and below ε i (T ) , i = 1, 2 . . . satisfy

E ϑ ( √ T ε i (T ) ) 2 < C.
By Lemma 1, estimates ( 21), ( 22) and boundedness of Φ (x) we also obtain

ζ T = Ȳ 2 + 2η T Φ (λ + µ) + ε 2 (T ) . ( 33 
)
It follows from ( 14) and (33) that on the event

A T 2η T Φ (α T ) = 2η T Φ (λ + µ) + ε 3 (T ) .
Since ηT is bounded away from zero by a positive constant (see Corollary to Lemma 1), the latter equality and Lemma 3 imply that on

A T Φ (α T ) -Φ (λ + µ) = ε 4 (T ) .
Therefore by Lemma 3 we obtain

E ϑ { 1I {A T } √ T (β T -(λ + µ)) } 2 < C. ( 34 
)
If ω ∈ A c T then the equation

Ȳ 2 + 2DΦ (λ + µ) + ε 3 (T ) = ( X (T ) T ) 2 + 2η T Φ (x) (35) 
has no solution x ∈ [2c 0 , 2c 1 ].

It follows from (35), Lemma 1 and the Corollary that the equation

Φ (x) = Φ (λ + µ) + ε 4 (T ) has no solution for x ∈ [2c 0 , 2c 1 ]. This means that [ Ȳ 2 + 2DΦ (λ + µ) + ε 3 - ( Ȳ + ε 0 ) 2 ] (2D + 2ε 5 ) -1 ̸ ∈ [Φ (2c 0 ) , Φ (2c 1 )] ,
where we used the notations

ε 0 = T -1 X T -Ȳ and ε 5 = ηT -D.
Hence we can write

A c T ⊂ {|ε 0 (T )| > α 1 } ∪ {|ε 3 (T )| > α 2 } ∪ {|ε 5 (T )| > α 3 }
for some positive constants α 1 , α 2 and α 3 , which do not depend on T . This inclusion implies

P (A c T ) ≤ P {|ε 0 (T )| > α 1 } + P {|ε 3 (T )| > α 2 } + P {|ε 5 (T )| > α 3 } < C T
and the claim of Lemma 4 holds by (34).

Proof of Theorem 1. Let us now apply obtained results to prove √ Tconsistency of the estimators defined in [START_REF] Robinson | The stochastic difference between econometric statistics[END_REF]. To this end, the obvious equality

λT -λ = β T X(T ) T -y 1 y 2 -y 1 -β T λ λ + µ + λ λ + µ (β T -(λ + µ)) ,
the bounds [START_REF] Wonham | Some applications of stochastic differential equations to optimal non-linear filtering[END_REF] and Lemma 4 give

E ϑ ( √ T ( λT -λ ) ) 2 ≤ 2E ϑ [ √ T β T ( X(T ) T -y 1 y 2 -y 1 - λ λ + µ )] 2 + 2 ( λ λ + µ ) 2 E ϑ [ √ T (β T -(λ + µ)) ] 2 < C.
The second inequality in [START_REF] Robinson | The stochastic difference between econometric statistics[END_REF] is shown similarly and thus the estimator θT = ( λT , μT

) is √ T -consistent.

One-step MLE

Our next goal is to construct the asymptotically efficient MLE-process for the parameter ϑ = (λ, µ) ∈ Θ. We do it in two steps. First we define the preliminary estimator θT δ = ( λT δ , μT δ ), obtained by applying the estimator from the previous section to the observations

X T δ = ( X t , 0 ≤ t ≤ T δ ) on the learning interval [ 0, T δ ] , with δ ∈ ( 1 2 , 1 
)

. By Theorem 1 this estimator satisfies the condition:

sup ϑ∈K T δ E ϑ θT δ -ϑ 2 ≤ C,
with a constant C > 0 independent of T and ϑ ∈ Θ. Let us introduce the additional condition (recall that Θ = (c 0 , c 1 ) × (c 0 , c 1 )):

M (N )

. There exists N ≥ 2, such that

c 0 (y 1 -y 2 ) 2 > 2N + 9 8 . ( 36 
)
With the preliminary estimator θT δ at hand, we propose one-step MLE:

ϑ ⋆ t,T = θT δ + t -1 I t ( θT δ ) -1 ∫ t T δ ṁ( θT δ , s) [ dX s -m( θT δ , s)ds ] , ( 37 
)
based on the slightly modified score-function

∆ t ( ϑ, X t ) = 1 √ t ∫ t 0 ṁ(ϑ, s) [dX s -m(ϑ, s)ds] , T δ ≤ t ≤ T.
Here we defined the vector

ṁ(ϑ, s) = (y 1 -y 2 ) ∂π (s, ϑ) ∂ϑ = (y 1 -y 2 ) ( ∂π (t, ϑ) ∂λ , ∂π (t, ϑ) ∂µ ) *
and the empirical Fisher information matrix I t (ϑ)

I t (ϑ) = 1 t ∫ t T δ ṁ(ϑ, s) ṁ(ϑ, s) * ds -→ I(ϑ), t → ∞
where the limit holds by the Law of Large Numbers; I(ϑ) is the Fisher information matrix

I(ϑ) = (y 1 -y 2 ) 2 E ϑ ∂π (s, ϑ) ∂ϑ ∂π (s, ϑ) * ∂ϑ .
The stochastic process ∂π(s,ϑ) ∂ϑ has relevant ergodic properties (see the proof of Lemma 6 below) and we assume here that ∂π(s,ϑ) ∂ϑ has invariant distribution. Therefore the expectation above does not depend on s.

Let us change the variable τ = tT -1 ∈ [0, 1] and introduce the stochastic process ϑ ⋆ T (τ ) , τ δ ≤ τ ≤ 1, where ϑ ⋆ T (τ ) = ϑ ⋆ τ T,T and τ δ = T δ-1 → 0. Below ϑ 0 denotes the true value of the parameter.

Theorem 2 Suppose ϑ 0 ∈ Θ, δ ∈ ( 1 2 , 1)
and the condition M (2) holds. Then the one-step MLE-process is consistent: for any ν > 0 and any τ ∈ (0, 1]

P ϑ 0 {|ϑ ⋆ T (τ ) -ϑ 0 | > ν} → 0 (38) as T → ∞. Moreover, it is asymptotically normal √ τ T (ϑ ⋆ T (τ ) -ϑ 0 ) =⇒ N ( 0, I(ϑ 0 ) -1 ) . ( 39 
)
Proof. Let us denote the partial derivatives

πλ (t, ϑ) = ∂π (t, ϑ) ∂λ , πµ (t, ϑ) = ∂π (t, ϑ) ∂µ , πλ,λ (t, ϑ) = ∂ 2 π (t, ϑ) ∂λ 2 ,
and so on.

Lemma 5 Suppose ϑ 0 ∈ Θ and N > 1. If the condition

c 0 (y 1 -y 2 ) 2 > N + 3 4 (40)
holds, then

sup ϑ∈Θ E ϑ 0 ( | πλ (t, ϑ)| N + | πµ (t, ϑ)| N ) < C 1 , ( 41 
)
and, if the condition

c 0 (y 1 -y 2 ) 2 > 2N + 9 8 (42)
holds, then

sup ϑ∈Θ E ϑ 0 ( |π λ,λ (t, ϑ)| N + |π λ,µ (t, ϑ)| N + |π µ,µ (t, ϑ)| N ) < C 2 . ( 43 
)
Here the constants C 1 > 0, C 2 > 0 do not depend on t.

Proof. For simplicity we write

πλ (t, ϑ) = πλ , πµ (t, ϑ) = πµ , π (t, ϑ) = π.
Taking the derivative of

dπ = [µ -(λ + µ) π -π (1 -π) (y 1 -y 2 ) (y 2 + (y 1 -y 2 ) π)] dt + π (1 -π) (y 1 -y 2 ) dX t . ( 44 
)
we obtain the equations

d πλ = -π dt -πλ [λ + µ + (1 -2π) (y 1 -y 2 ) [y 2 + (y 1 -y 2 ) π] +π (1 -π) (y 1 -y 2 ) 2 ] dt + πλ (1 -2π) (y 1 -y 2 ) dX (t) , ( 45 
) d πµ = [1 -π] dt -πµ [λ + µ + (1 -2π) (y 1 -y 2 ) [y 2 + (y 1 -y 2 ) π] +π (1 -π) (y 1 -y 2 ) 2 ] dt + πµ (1 -2π) (y 1 -y 2 ) dX (t) . ( 46 
)
Using the standard arguments it can be shown that the stochastic process π (t, ϑ) has continuous derivatives w.r.t. λ and µ with probability 1. If we denote the true value of the parameters by ϑ 0 and π (t, ϑ 0 ) = π o etc., then these equations with ϑ = ϑ 0 read

d πo λ = -π o dt -πo λ [ λ 0 + µ 0 + π o (1 -π o ) (y 1 -y 2 ) 2 ] dt + πo λ (1 -2π o ) (y 1 -y 2 ) d W (t) , ( 47 
)
d πo µ = [1 -π o ] dt -πo µ [ λ 0 + µ 0 + π o (1 -π o ) (y 1 -y 2 ) 2 ] dt + πo µ (1 -2π) (y 1 -y 2 ) d W (t) , ( 48 
)
where

dπ o = [µ 0 -(λ 0 + µ 0 ) π o ] dt + π o (1 -π o ) (y 1 -y 2 ) d W (t) . ( 49 
)
This system is linear with respect to πλ and πµ and it can be written as follows (

x t = π o , y t = πo λ , z t = πo µ , a = λ 0 + µ 0 , b = y 1 -y 2 ) dx t = [µ 0 -ax t ] dt + bx t (1 -x t ) d Wt , ( 50 
)
dy t = -x t dt - [ a + b 2 x t (1 -x t ) ] y t dt + b (1 -2x t ) y t d Wt , ( 51 
)
dz t = [1 -x t ] dt - [ a + b 2 x t (1 -x t ) ] z t dt + b (1 -2x t ) z t d Wt . ( 52 
)
Note that as λ 0 > 0 and µ 0 > 0, the process π (t, ϑ 0 ) = x t ∈ (0, 1) is ergodic with two reflecting boundaries at 0 and 1. Therefore the process π o (t, ϑ 0 ) is ergodic with the invariant density

f (ϑ 0 , x) = [x (1 -x)] 2(µ 0 -λ 0 ) (y 1 -y 2 ) 2 -2 G (ϑ 0 ) exp { - 2µ 0 + 2 (λ 0 -µ 0 ) x (y 1 -y 2 ) 2 x (1 -x) } = [x (1 -x)] γ(µ 0 -λ 0 )-2 G (ϑ 0 ) exp { - γµ 0 x - γλ 0 1 -x }
where we denote γ = 2 (y 1 -y 2 ) -2 and define the normalizing constant

G (ϑ 0 ) = ∫ 1 0 [x (1 -x)] γ(µ 0 -λ 0 )-2 exp { - γµ 0 x - γλ 0 1 -x } dx.
The processes y t and z t admit the following expressions

y t = - ∫ t 0 exp { - ∫ t v [ a + b 2 x s (1 -x s ) - b 2 2 (1 -2x s ) 2 ] ds +b ∫ t v (1 -2x s ) d Ws } x v dv, (53) 
z t = ∫ t 0 exp { - ∫ t v [ a + b 2 x s (1 -x s ) - b 2 2 (1 -2x s ) 2 ] ds +b ∫ t v (1 -2x s ) d Ws } [1 -x v ] dv. ( 54 
)
Let us put x s = 1 2 -x s . Then we have

x s (1 -x s ) - 1 2 (1 -2x s ) 2 = -3x 2 s + 1 4
and

y t = ∫ t 0 ( x v - 1 2 ) e - ( a+ b 2 4 ) (t-v) exp { 3b 2 ∫ t v x 2 s ds + 2b ∫ t v x s d Ws } dv.
To estimate the moments E ϑ 0 |y t | N we note that x v -1 2 ≤ 1 2 and use the Hölder inequality

(∫ t 0 |f (v) g (v)| dv ) N ≤ (∫ t 0 |f (v)| N N -1 dv ) N -1 ∫ t 0 |g (v)| N dv with f (v) = exp {-a (t -v) ε} and g (v) = exp { - ( a (1 -ε) + b 2 4 
) (t -v) +3b 2 ∫ t v x 2 s ds + 2b ∫ t v x s d Ws } ,
where ε > 0. This yields the estimate

E ϑ 0 |y t | N ≤ C (N, ε) ∫ t 0 e -N ( a(1-ε)+ b 2 4 ) (t-v) E ϑ 0 e 3N b 2 ∫ t v x 2 s ds+2N b ∫ t v xsd Ws dv,
where the constant C (N, ε) > 0 does not depend on t. Further, we can write

E ϑ 0 exp { 3N b 2 ∫ t v x 2 s ds + 2N b ∫ t v x s d Ws } = E ϑ 0 ( exp { 2N b ∫ t v x s d Ws -2N 2 b 2 ∫ t v x 2 s ds } exp { N b 2 (2N + 3) ∫ t v x 2 s ds }) ≤ exp { N b 2 4 (2N + 3) (t -v) } because x 2 s ≤ 1/4, and 
E ϑ 0 exp { 2N b ∫ t v x s d Ws -2N 2 b 2 ∫ t v x 2 s ds } = 1.
Therefore,

E ϑ 0 |y t | N ≤ C (N, ε) ∫ t 0 e -N ( a(1-ε)+ b 2 4 -b 2 4 (2N +3 
)

) (t-v) dv = C (N, ε) ∫ t 0 e -N ( a(1-ε)-b 2 2 (N +1) ) (t-v) dv.
We see that if

λ 0 + µ 0 (y 1 -y 2 ) 2 > 1 2 + N 2 , then E ϑ 0 |y t | N ≤ C.
In particular, if we set N = 2 in the condition (40) and choose a sufficiently small ε > 0, we get the bound

sup ϑ 0 ∈Θ E ϑ 0 ∂π (t, ϑ 0 ) ∂λ 2 ≤ C, ( 55 
)
where the constant C > 0 does not depend on t.

We also need to estimate the derivatives (45), ( 46) for the values ϑ ̸ = ϑ 0 . The equation for πλ becomes

d πλ = -π dt -πλ [ λ + µ + (1 -2π) (y 1 -y 2 ) 2 ( π -π 0 ) +π (1 -π) (y 1 -y 2 ) 2 ] dt + πλ (1 -2π) (y 1 -y 2 ) d W (t) . ( 56 
)
Hence if we put a = λ + µ, y t = πλ and b = y 1 -y 2 , we obtain the equation

dy t = -x t dt - [ a + b 2 (1 -2x t ) ( x t -x 0 t ) + b 2 x t (1 -x t ) ] y t dt + b (1 -2x t ) y t d Wt .
The solution of this equation can be written explicitly, similarly to (53), but with additional term b 2 (1 -2x t ) (x t -x 0 t ) in the exponent. This term satisfies the inequality

(1 -2x t ) ( x t -x 0 t ) ≥ -1.
Hence by calculations as above, E ϑ 0 |y t | 2 will be bounded, if

λ + µ (y 1 -y 2 ) 2 > 3 2 + N 2 .
For the second derivative π = πλ,λ (t, ϑ) we obtain similar bounds for the moments as follows. The equation for π is

dπ = -y t [ 2 -2b 2 y t ( x t -x 0 t ) + 2b 2 y t (1 -2x t ) ] dt -2by 2 t d Wt - π [ a + b 2 (1 -2x t ) ( x t -x 0 t ) + b 2 x t (1 -x t ) ] dt + bπ (1 -2x t ) d Wt .
Let us write it as

dπ = A (t) dt + B (t) d Wt -π [a + C (t)] dt + πt D (t) d Wt
using the obvious notations. Its solution satisfies

∂ 2 π (t, ϑ) ∂λ 2 = ∫ t 0 e - ∫ t v [a+C(s)-1 2 D(s) 2 ]ds+ ∫ t v D(s)d Ws [ A (v) dv + B (v) d Wv ] .
The bound

C (s) - D (s) 2 2 = b 2 (1 -2x s ) ( x s -x 0 s ) + b 2 2 [ 2x s (1 -x s ) -(1 -2x s ) 2 ] ≥ -b 2 -3b 2 ( x - 1 2 
) 2 + b 2 4 = - 3b 2 4 -3b 2 ( x - 1 2 
) 2 ≥ - 3b 2 2 holds since ( x -1 2 ) 2 ≤ 1 4 . Therefore, a - 3 2 b 2 - 2N + 3 4 b 2 = a - 9 4 b 2 - N 2 b 2 and if λ + µ (y 1 -y 2 ) 2 > 9 4 + N 2 ,
then we obtain

E ϑ 0 ∂ 2 π (t, ϑ) ∂λ 2 N < C.
Hence under the condition (42) we have

sup ϑ∈Θ E ϑ 0 ∂ 2 π (t, ϑ) ∂λ 2 N < C.
Similar estimates can be obtained for other derivatives and the claimed assertion follows.

Lemma 6 The solutions (x t , y t , z t ) of the equations (50)-( 52) have the following ergodic properties

1 T ∫ T 0 ṁλ (t, ϑ 0 ) 2 dt = b 2 T ∫ T 0 y 2 t dt -→ I 11 (ϑ 0 ) , 1 T ∫ T 0 ṁλ (t, ϑ 0 ) ṁµ (t, ϑ 0 ) dt = b 2 T ∫ T 0 y t z t dt -→ I 12 (ϑ 0 ) , 1 T ∫ T 0 ṁµ (t, ϑ 0 ) 2 dt = b 2 T ∫ T 0 z 2 t dt -→ I 22 (ϑ 0 ) ,
where convergence is in the mean square.

Proof. The proof of existence of the invariant measure can be found in [START_REF] Chigansky | Maximum likelihood estimation for hidden Markov models in continuous time[END_REF], section 4.2. Note that the equations (50)-(52) do not coincide with those in [START_REF] Chigansky | Maximum likelihood estimation for hidden Markov models in continuous time[END_REF], where the case λ = µ and y 1 = 1, y 2 = 0 is considered; however the same arguments apply to the system of equations ( 50)-(52).

The strong mixing coefficient α (t) for ergodic diffusion process (50) satisfies the estimate α (t) < e -c|t| , as shown in [START_REF] Veretennikov | Bounds for the mixing rate in the theory of stochastic equations[END_REF]. The conditions, under which this bound holds, can be checked by applying the following transformation to the equation (50):

ξ t = g (x t ) , g (x) = ∫ x 1/2 dv bv (1 -v) , x ∈ (0, 1) .
The obtained process solves the stochastic differential equation

dξ t = A (ξ t ) dt + dW t , ξ 0 = g (x 0 ) , 0 ≤ t ≤ T,
whose drift coefficient A (•) satisfies the assumptions needed in [START_REF] Veretennikov | Bounds for the mixing rate in the theory of stochastic equations[END_REF].

Now to verify the convergence

E ϑ 0 ( 1 T ∫ T 0 y 2 t dt - 1 T ∫ T 0 E ϑ 0 y 2 t dt ) 2 = E ϑ 0 ( 1 T ∫ T 0 [ y 2 t -E ϑ 0 y 2 t ] dt ) 2 -→ 0 (57) 
we can apply the result of the following lemma.

Lemma 7 Let {Y t , t > 0} be a stochastic process with zero mean, satisfying

E |Y t | m(2k-1) < C 1 , ∫ ∞ 0 t k-1 [α (t)] (m-2)/m dt < C 2 ,
for some m > 2 and k ≥ 1, where α (t) is the strong mixing the coefficient. Then

E ∫ T 0 Y t dt 2k ≤ C 3 T k .
Proof. For the proof see Lemma 2.1 in [START_REF] Khasminskii | On stochastic processes defined by differential equations with small parameter[END_REF].

The limit (57) is obtained by setting Y t = y 2 t -E ϑ 0 y 2 t , m = 3 and k = 1. Let us now verify consistency of the one-step MLE-process. To this end, we have

P ϑ 0 {|ϑ ⋆ T (τ ) -ϑ 0 | > ν} ≤ P ϑ 0 { θT δ -ϑ 0 > ν 2 } + P ϑ 0 { I τ T ( θT δ ) -1 τ T ∫ τ T T δ ṁ( θT δ , s) [ dX s -m( θT δ , s)ds ] > ν 2 } .
By the Theorem 1, the first term on the right satisfies

P ϑ 0 { θT δ -ϑ 0 > ν 2 } ≤ 4 ν 2 E ϑ 0 θT δ -ϑ 0 2 ≤ C ν 2 T δ → 0.
The second term can be bounded as follows

P ϑ 0 { I τ T ( θT δ ) -1 τ T ∫ τ T T δ ṁ( θT δ , s) [ dX s -m( θT δ , s)ds ] > ν 2 } ≤ P ϑ 0 { I τ T ( θT δ ) -1 τ T ∫ τ T T δ ṁ( θT δ , s) d Ws > ν 4 } + P ϑ 0 { I τ T ( θT δ ) -1 τ T ∫ τ T T δ ṁ( θT δ , s) ∆m ( θT δ , s ) ds > ν 4 } ,
where ∆m ( θT δ , s ) = m(ϑ 0 , s) -m( θT δ , s). We can write

I τ T ( θT δ ) -1 τ T ∫ τ T T δ ṁ( θT δ , s) d Ws ≤ I τ T ( θT δ ) -1 T γ 1 T δ-γ ∫ τ T T δ ṁ( θT δ , s) d Ws ,
where 0 < γ < δ - 1 2 . Hence

P ϑ 0 { I τ T ( θT δ ) -1 τ T ∫ τ T T δ ṁ( θT δ , s) d Ws > ν 4 } ≤ P ϑ 0 { 1 T δ-γ ∫ τ T T δ ṁ( θT δ , s) d Ws > √ ν 2 } + P ϑ 0 { I τ T ( θT δ ) -1 T γ > √ ν 2 } -→ 0,
as T → ∞, because

P ϑ 0 { 1 T δ-γ ∫ τ T T δ ṁ( θT δ , s) d Ws > √ ν 2 } ≤ 1 νT 2δ-2γ E ϑ 0 ∫ T T δ ṁ( θT δ , s) 2 ds ≤ C νT 2δ-2γ-1 → 0.
Recall that 2δ -2γ -1 > 0; then

P ϑ 0 { I τ T ( θT δ ) -1 τ T ∫ τ T T δ ṁ( θT δ , s) ∆m ( θT δ , s ) ds > ν 4 } ≤ P ϑ 0 { 1 τ T 1-γ ∫ τ T T δ ṁ( θT δ , s) ∫ 1 0 ṁ(ϑ v , s) * dvds ( θT δ -ϑ 0 ) > √ ν 2 } + P ϑ 0 { I τ T ( θT δ ) -1 T γ > √ ν 2 } -→ 0 as T → ∞, because θT δ -ϑ 0 = O ( T -δ/2
) and other terms are bounded in probability (here

ϑ v = ϑ 0 + v( θT δ -ϑ 0 )).
To prove (39) let us write

√ τ T (ϑ ⋆ T (τ ) -ϑ 0 ) = √ τ T ( θT δ -ϑ 0 ) + I τ T ( θT δ ) -1 √ τ T ∫ τ T T δ ṁ( θT δ , s) d Ws + I τ T ( θT δ ) -1 √ τ T ∫ τ T T δ ṁ( θT δ , s) [ m(ϑ 0 , s) -m( θT δ , s) ] ds,
and note that

E ϑ 0 1 √ τ T ∫ τ T T δ [ ṁ( θT δ , s) -ṁ(ϑ 0 , s) ] d Ws 2 ≤ 1 τ T ∫ τ T T δ E ϑ 0 ṁ( θT δ , s) -ṁ(ϑ 0 , s) 2 ds -→ 0
as T → ∞. By the Central Limit Theorem (see, e.g., Theorem 1.19 in [START_REF] Kutoyants | Statistical Inference for Ergodic Diffusion Processes[END_REF]) the convergence in distribution

1 √ τ T ∫ τ T T δ ṁ(ϑ 0 , s) d Ws =⇒ N (0, I(ϑ 0 ))
holds, since by the Law of Large Numbers

1 τ T ∫ τ T T δ ṁ(ϑ 0 , s) ṁ(ϑ 0 , s) * dt -→ I(ϑ 0 ).
Further, let us denote

vT δ = √ τ T ( θT δ -ϑ 0 )
, then we can write

vT δ + I τ T ( θT δ ) -1 √ τ T ∫ τ T T δ ṁ( θT δ , s) [ m(ϑ 0 , s) -m( θT δ , s) ] ds = I τ T ( θT δ ) -1 ( I τ T ( θT δ ) - 1 τ T ∫ 1 0 ∫ τ T T δ
ṁ( θT δ , s) ṁ(ϑ r , s) * dr ds

) vT δ ,
where ϑ r = θT δ + r ( θT δ -ϑ 0 ) . The expression

ṁ(ϑ r , s) = ṁ( θT δ , s) + ∫ 1 0 m(ϑ q , s)dq ( θT δ -ϑ 0 )
and the equality

I τ T ( θT δ ) = 1 τ T ∫ τ T T δ ṁ( θT δ , s) ṁ( θT δ , s) * ds give vT δ + I τ T ( θT δ ) -1 √ τ T ∫ τ T T δ ṁ( θT δ , s) [ m(ϑ 0 , s) -m( θT δ , s) ] ds = √ τ T θT δ -ϑ 0 2 O (1) = T 1 2 -δ O (1) -→ 0, as T → ∞,
Let us verify that the Fisher information matrix is nondegenerate. To this end, it suffices to show invertibility of the matrix

J (ϑ 0 ) = ( E ϑ 0 ỹ2 t , E ϑ 0 ỹt zt E ϑ 0 ỹt zt , E ϑ 0 z2 t ) ,
where ỹt , zt are stationary solutions of (51) and ( 52) respectively. If this matrix is degenerate, then

E ϑ 0 ỹ2 t E ϑ z2 t = (E ϑ 0 ỹt zt ) 2 . ( 58 
)
By the Cauchy-Schwartz inequality

(E ϑ 0 ỹt zt ) 2 ≤ E ϑ 0 ỹ2 t E ϑ 0 z2
t with equality if and only if zt = cỹ t with some constant c ̸ = 0. Therefore in the case of equality we have E ϑ 0 (cỹ t -zt ) 2 = 0.

Introduce a new process ṽt = cỹ t -zt as a solution of the equation

dṽ t = [x t (1 -c) -1] dt - [ a + b 2 xt (1 -xt ) ] ṽt dt + b (1 -2x t ) ṽt d Wt ,
where ṽt and xt are stationary. Hence

E ϑ 0 (∫ t 0 e -a(t-s) [x s (1 -c) -1] ds ) 2 ≤ 4 ( 1 + e -2at ) E ϑ 0 ṽ2 t + 4b 4 a ∫ t 0 e -a(t-s) 1 16 E ϑ 0 ṽ2 s ds + 4b 2 ∫ t 0 e -2a(t-s) E ϑ 0 ṽ2 s ds ≤ CE ϑ 0 ṽ2
t with some constant C > 0 which does not depend on t. By stationarity E ϑ 0 ṽ2 t does not depend on t and hence non-degeneracy of the matrix J (ϑ 0 ) follows, if we can show that

lim t→∞ E ϑ 0 (∫ t 0 e -a(t-s) [x s (1 -c) -1] ds ) 2 > 0,
for all c. The stochastic process

ζ t = ∫ t 0 e -a(t-s) [x s (1 -c) -1] ds
is the solution of the equation

dζ t dt = -aζ t + xt (1 -c) -1, ζ 0 = 0.
Elementary calculations show that for all ϑ 0 and c

lim t→∞ E ϑ 0 ζ 2 t = E ϑ 0 [π 0 (1 -c) -1] 2 a 2 > 0,
where π0 is a random variable with the density of the invariant distribution of the stochastic process π (t, ϑ 0 ). Thus the Fisher information matrix I (ϑ 0 ) is non degenerate for all ϑ 0 ∈ Θ.

Note that, by the Theorem 2, the limit covariance matrix of one-step MLE-process coincides with the covariance of the asymptotically efficient MLE (see [START_REF] Chigansky | Maximum likelihood estimation for hidden Markov models in continuous time[END_REF]), therefore ϑ ⋆ T (τ ) is asymptotically efficient as well.

Discussion

In this section we dwell on several possible generalizations of the obtained results.

Using the same arguments as in [START_REF] Kutoyants | On multi-step MLE-processes for ergodic diffusion[END_REF] it is possible to prove the uniform consistency : for any ν > 0 lim

T →∞ P ϑ 0 { sup τ δ ≤τ ≤1 |ϑ ⋆ T (τ ) -ϑ 0 | ≥ ν } = 0.
Moreover it can be shown that the normalized one-step MLE-process

η T (τ ) = τ √ T I(ϑ 0 ) -1/2 (ϑ ⋆ T (τ ) -ϑ 0 ) , τ * ≤ τ ≤ 1,
converges to the two-dimensional standard Wiener process W (τ ) , τ * ≤ τ ≤ 1, where τ * is any value satisfying τ * ∈ (0, 1]. For the details see the proof of a similar result in [START_REF] Kutoyants | On multi-step MLE-processes for ergodic diffusion[END_REF].

The condition M (2) can probably be relaxed, but it needs a special study. The finitness of the Fisher information follows from [START_REF] Chigansky | Maximum likelihood estimation for hidden Markov models in continuous time[END_REF] and the condition M (2) is basically used to control the matrix of the second derivatives.

Markov chain with d > 2 states

In the case of Markov chain Y (t) , t ≥ 0 with d > 2 states, the only essential difficulty in our approach is the construction of the preliminary estimator. For two states construction of a suitable preliminary estimator is relatively easy and it is not immediately clear how to extend it to the more general setup. If we have some √ T consistent estimator θT of the unknown parameter ϑ ∈ Θ ⊂ R m , then the corresponding one-step MLE-process is

ϑ ⋆ t = θT δ + t -1 I t ( θT δ ) -1 ∫ t T δ ṁ ( θT δ , s ) [ dX s -m ( θT δ , s ) ds ] , T δ ≤ t ≤ T, where δ ∈ ( 1 2 , 1 ) . Asymptotic efficiency √ τ T (ϑ ⋆ τ T -ϑ 0 ) =⇒ N ( 0, I (ϑ 0 ) -1
) , can be shown, applying the arguments from this paper. Note that the estimator ϑ ⋆ T is computationally simpler than the MLE θT . For the discrete time hidden Markov models with d ≥ 2 states, the MLE studied in e.g. [START_REF] Bickel | Asymptotic normality of the maximum likelihood estimator for general hidden Markov models[END_REF], can be used as the preliminary estimator for the one-step MLE-process, constructed as in our paper. The obtained online estimator of the unknown parameter will have asymptotically optimal properties.

Two-step MLE-process

The learning interval [0, T δ ] with δ ∈ ( 1 2 , 1) is negligible with respect to the observations time T . It can be made even shorter, if we use two-step MLEprocess approach, as it was proposed in [START_REF] Kutoyants | On multi-step MLE-processes for ergodic diffusion[END_REF]. This modification uses the learning interval [0, T δ ) with δ ∈ ( 1 3 , 1 2 ]. The procedure is as follows. First we obtain the preliminary estimator θT δ by applying our Method of Moments estimator to the observations X

T δ = ( X s , 0 ≤ s ≤ T δ )
. By ( 18)

T δ E ϑ 0 θT δ -ϑ 0 2 ≤ C,
where the constant C > 0 does not depend on T .

Then we introduce the second preliminary estimator-process θt,T = θT δ + t -1/2 I t ( θT δ ) -1 ∆ t ( θT δ , X It can be shown that for all τ ∈ (0, 1] and t = τ T we have the asymptotic normality of the estimator ϑ ⋆⋆ T (τ ) = ϑ ⋆⋆ τ T,T :

√ τ T (ϑ ⋆⋆ T (τ ) -ϑ 0 ) =⇒ N ( 0, I (ϑ 0 ) -1 ) . ( 59 
)
The first step of the proof is to study the expression

T γ 2 ( θτT,T -ϑ 0 ) = T γ 2 ( θT δ -ϑ 0 ) + T -1+ γ 2 I τ T ( θT δ ) -1 ∆ τ T,T (ϑ 0 , X t ) + T -1+ γ 2 I τ T ( θT δ ) -1 ∫ τ T T δ ṁ ( θT δ , s ) [ m (ϑ 0 , s) -m ( θT δ , s )] ds,
We can show that if 2 3 < γ < 2δ, then T γ 2

( θτT,T -ϑ 0 ) is bounded in probability and we have (59).

The proof is omitted, being similar in spirit to that in [START_REF] Kutoyants | On multi-step MLE-processes for ergodic diffusion[END_REF]. Note however that such two-step MLE-process lacks the advantage of being computationally efficient: its construction requires generating the family of filters m ( θs,T , s ) for all θs,T , s ∈ [ T δ , t ] , while for one-step MLE-process, m (ϑ, s) is to be computed only for the single value ϑ = θT δ .

Kalman filter

The proposed device is universal and can be applied to construct asymptotically efficient estimators (estimator-processes) in other models. Let us consider the following simple example of the partially observed system dX t = (λ + µY t ) dt + dW t , X 0 = 0, dY (t) = -aY (t) dt + dV t , Y 0 , where W t , t ≥ 0 and V t , t ≥ 0 are two independent Wiener processes and a > 0 is a known constant. The unknown parameter ϑ = (λ, µ) ∈ Θ = (c 0 , c 1 ) × (c 3 , c 4 ) is to be estimated, using the sample X T = (X t , 0 ≤ t ≤ T ). Calculation of the MLE θT requires m (ϑ, t) for all ϑ ∈ Θ, t ∈ [0, T ] (see, e.g., Section 3.1 in [START_REF] Kutoyants | Statistical Inference for Ergodic Diffusion Processes[END_REF]) and hence we are faced with the computational problem of the same complexity as for the model considered in this paper. One-step procedure can reduce the computational load, while attaining the optimal performance in the large sample limit.

A reasonable choice of the preliminary estimator is θT = ( λT , μT ) with

λT = X T T , μT = √ ζ T K .
where we denoted ζ T = max ( ζT , 0 ) and

ζT = 1 T T -1 ∑ i=0 [ X i+1 -X i -λT ] 2 -1, K = E (∫ 1 0 Y * s ds ) 2 .
Here Y * s is the stationary process satisfying the same equation as Y (s). It can be shown that

E ϑ 0 √ T ( θT -ϑ 0 ) 2 < C.
Introduce the learning interval [ 0, T δ ] with δ ∈ ( 1 2 , 1

) and the one-step MLE

ϑ ⋆ T = θT δ + I T ( θT δ ) -1 T -1 ∫ T T δ ṁ ( θT δ , t ) [ dX t -( λT δ + μT δ n ( θT δ , t ) )dt ] .
Using the same arguments as above we can verify the convergence √ T (ϑ ⋆ T -ϑ 0 ) =⇒ N ( 0, I (ϑ 0 ) -1 ) .

Further, following Section 4 2 ∫ t 0 e

 420 of[START_REF] Chigansky | Maximum likelihood estimation for hidden Markov models in continuous time[END_REF], we can writeṽt = ṽ0 e -at + ∫ t 0 e -a(t-s) [x s (1 -c) -1] ds -b -a(t-s) xs (1 -xs ) ṽs ds + b ∫ t 0 e -a(t-s) (1 -2x s ) ṽs d Ws .

  whereF X t = σ {X s , 0 ≤ s ≤ t}. The conditional expectation n (ϑ, t) satisfies the Kalman-Bucy filtering equations dn (ϑ, t) = -an (ϑ, t) dt + µγ t (µ) [dX t -(λ + µn (ϑ, t)) dt] , n (ϑ, 0) , ∂γ t (µ) ∂t = -2aγ t (µ) -γ t (µ) 2 µ 2 + 1, γ 0 , 0 ≤ t ≤ T.

	and the log-likelihood function is given by		
	L	(	ϑ, X T )	=	∫ T 0	m (ϑ, t) dX t -	1 2	∫ T 0	m (ϑ, t) 2 dt,	ϑ ∈ Θ.

Let us define n (ϑ, t) = E ϑ ( Y (t) |F X t )

and m (ϑ, t) = λ + µn (ϑ, t),
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