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Detecting user focus in OLAP analyses

Mahfoud Djedaini', Nicolas Labroche!, Patrick Marcel', and Verénika Peralta'

University of Tours, France
firstname.lastname@univ-tours.fr

Abstract. In this paper, we propose an approach to automatically de-
tect focused portions of data cube explorations by using different fea-
tures of OLAP queries. While such a concept of focused interaction is
relevant to many domains besides OLAP explorations, like web search
or interactive database exploration, there is currently no precise formal,
commonly agreed definition. This concept of focus phase is drawn from
Exploratory Search, which is a paradigm that theorized search as a com-
plex interaction between a user and a system. The interaction consists of
two different phases: an exploratory phase where the user is progressively
defining her information need, and a focused phase where she investigates
in details precise facts, and learn from this investigation. Following this
model, our work is, to the best of our knowledge, the first to propose
a formal feature-based description of a focused query in the context of
interactive data exploration. Our experiments show that we manage to
identify focused queries in real navigations, and that our model is suffi-
ciently robust and general to be applied to different OLAP navigations
datasets.

1 Introduction

Interactive Data Exploration (IDE) is the task of efficiently extracting knowledge
from data even if we do not know exactly what we are looking for [4]. Typically,
an exploration includes several queries where the result of each query triggers the
formulation of the next one. OLAP analysis of data cubes is a particular case of
IDE, that takes advantage of simple primitives like drill-down or slice-and-dice
for the navigation. For example, an analyst may explore several attributes and
cross several dimensions, in order to find clues, causes or correlations to explain
unexpected data values, until identifying the most relevant data subsets and
deeply analyzing them. While OLAP has been around for more than 20 years,
little is known about typical navigational behavior.

Exploratory Search, however, is a sub-domain of Information Retrieval that
studies user behaviors during their explorations [11]. The basic model of ex-
ploration distinguishes two main phases. In a first phase, called exploratory
browsing, users are likely to explore the space, as well as better defining and un-
derstanding their problem. At this stage, the problem is being limited, labeled,
and a framework for the answer is defined. Over time, the problem becomes
more clearly defined, and the user starts to conduct more targeted searches. In



this second phase, called focused phase, users (re)formulate query statements,
examine search results, extract and synthesize relevant information.

Detecting focused phases in an exploration can be exploited in a variety of
applications, for instance in the context of user exploration assistants. When
focused, an analyst would expect more precise queries, related to what she is
currently analyzing. On the contrary, when exploring the data, the analyst would
prefer more diverse queries, for a better data space coverage. Focus detection
could also be used in data visualization. In a focus phase, an analyst would prefer
a highly focused interface, presenting to her in details what she is currently
investigating. Oppositely, an analyst who is exploring the data would rather
expect an interface presenting an overview of available data, highlighting the
diversity of available dimensions of analysis.

In this paper, we propose an approach to automatically detect focused phases
in OLAP explorations. While there exists no formal definition or consensual for-
mula to decide whether an OLAP exploration or a query is focused or not, the
concept of focus can be intuitively described by different characteristics that
indicate a focused activity. Our hypothesis is indeed that a definition of focus
is highly dependent of a fine characterization of the queries composing an ex-
ploration. For instance, the granularity level or the number of filters of a query,
or the number of OLAP operations that separate two consecutive queries, are
such characteristics. In our proposal, we identify a total of 19 characteristics to
finely describe different aspects of a query, either intrinsically, relatively to its
predecessor or relatively to the whole exploration containing it. We show that
it is possible to define a metric to quantify each of these characteristics. It is
then possible to see the central question of defining a formal model of the focus
based on the characteristics as a classification problem where the descriptive
features are the metrics’ scores and the output variable indicates if a query is
focused or not. By choosing an appropriate classification approach and well spec-
ified metrics, our work demonstrates that it is possible to build an interpretable,
yet efficient, model for the focus that is consistent with expert evaluation on
real OLAP navigations and predefined behavioral patterns on simulated OLAP
navigations that were defined agnostic of any focus definition.

The paper structure is as follows: Section 2 showcases an example for moti-
vating our approach, which is introduced in Section 3. Section 4 describes the
formal framework and Section 5 details the metrics used to characterize focus.
Section 6 highlights experiments and discusses results. Finally, before conclud-
ing, Section 7 presents related works.

2 DMotivating example

Our example is taken from the Star Schema Benchmark (SSB) specification [8]!.
This benchmark defines a workload consisting of 4 flights of queries. Each flight

! We redirect the reader to the SSB specification for the logical schema and the exact
SQL text of the queries. In our example, we consider the instance is generated with
a scale factor of 1.



Query flight 3 Q1 Q2 Q3 Q4
Where year in [1992,1997],[year in [1992,1997]|year in [1992,1997]|yearmonth=Dec97,
c_region=ASIA, cnation = 'US’,|(c_city="UKIl’or |(c_city="UKI1’or
s_region =ASIA s_nation = 'US’ "UKI5’), "UKI5’),
(s_city="UKI1’ (s_city="UKI1’
or "UKI5’) or "UKI5’)
Group by c-nation, s_nation,|c_city, s_city, year |c_city, s_city, year |c_city, s_city, year
year
# cells 150 596 24 3
# tuples examined|200k 8k 329 5

Table 1. Description of SSB query flight 3. The measure sum(lo_revenue) is the same
in all queries.

can be seen as an exploration over a 5 dimensional cube whose schema corre-
sponds to the relational star schema defined by the benchmark. We particularly
pay attention to flight number 3, that consists of 4 queries Q1, Q2, Q3 and Q4,
analyzing revenue volume (see Table 1). Q1 asks for revenue generated for re-
gion Asia (for both suppliers and customers) between 1992 and 1997, by nations.
It examines over 200,000 tuples of the fact table and produces 150 cells of the
cube. Q2 asks for revenue in the United States at the city level, for the same
time period. It examines 8000 tuples and produces 596 cells. Q3 remains at the
city level but asks for revenue in the United Kingdom, and only for two cities in
the UK, examining 329 tuples and producing 24 cells. These two cities remain
selected in Q4 that drills the time dimension at the month level, to just one
month, examining only 5 tuples and producing 3 cells.

It can be seen that the beginning of the navigation is not focused, while
the second half (Q3 and Q4) start to focus on a particular zone in the cube.
The benchmark specification actually accounts for this, indicating that the last
query was deliberately specified to be a “needle-in-haystack” query. We now
review what differentiates the first half of the navigation, which is exploratory,
from the second, focused, part.

The first two queries are only loosely related to each other. They move by
relatively big jumps in the data space. They are coarse in terms of the filters
and the granularity levels used, which results in big portions of the fact table
being analyzed to produce relatively large answer sets. This may induce high
execution time but surely also high consideration time (time taken by the user
to analyze the answer set).

On the contrary, queries 3 and 4 are separated by one OLAP operation
(specifically, a drill down operation), and the text of query 4 is obtained from that
of query 3 with only a few modifications. The queries become finer, in the sense
that more filters are accumulated on finer granularity levels, targeting a smaller
portion of the fact table. The result sets are also much smaller. Content-wise,
the "needle-in-haystack” effect indicates that this focus is justified by something
surprising in the data.

As we will see in the next sections, our study of real navigation logs collected
from users corroborate these intuitive considerations. Specifically, we have ob-
served in these logs that longer navigations tend to incorporate quite long focused



sequences, often at the middle or end of the navigation, corresponding to short
jumps in the data space. In these focused sequences, queries are close to each
other in terms of OLAP operations and text, and their answer sets often share
cube cells. Being able to automatically detect such focus zones in navigations has
many advantages, for example in experience sharing among users (the needle in
the haystack, discovered in a former navigation, may be useful to other analysts)
or suggesting recommendations in line with the user’s immediate interests, and
more generally to make user experience with big datasets less disorienting.

These observations led us to define 3 categories of features to characterize
focused zones in navigations. The first category corresponds to intrinsic proper-
ties of the query taken independently of the other queries, like the filters, the
answer set, etc. The second category positions a query respectively to its im-
mediate predecessor in the navigation, for instance to detect OLAP operations.
Finally, the last category positions the query relatively to the navigation itself,
for instance to check if the query appears in a long chain of similar queries.

3 Characterizing and detecting focus phases

Our approach aims at automatically detecting focus phases in user explorations.
As mentioned above, there is yet no formula for deciding whether a query is
focused or not. However, as illustrated by the previous motivation example, an
expert is able to recognize a focus activity by looking at various characteristics
of the queries and the exploration.

In order to quantify these intuitive characteristics, we define a set of metrics.
As such, these metrics characterize different aspects of a query: the user intention
(e.g., the desired granularity expressed through the aggregation level), the results
(e.g., the number of cube cells retrieved), as well as its relationship to other
queries (e.g., the differences between a query and its predecessor).

Then, the question of formally characterizing a focused query can be ex-
pressed as a classification problem in which all queries can be represented by
scores issued from the metrics and the class output variables is binary, either
”focused” or "not focused”. These are the only two classes we are able to define
regarding the fuzzy notion of focus. The main difficulty in this case relates to
the building of a proper corpus of annotated queries by experts, to learn the
model from it. Not all the classifiers meet this requirement. Indeed, as the abil-
ity to interpret what makes a query focused is a major objective in our work, we
limit ourselves to linear models that learn a weight for each metric’s score and
then output a focus score that is computed as weighted sum over the metrics
values for each query. In this context, we use an off-the-shelve SVM classifier
whose separative hyperplane equation provides the expected relation to qualify
the focus of a query based on our metrics scores and their associated weights.
Moreover, this formalization allows to understand in a very intuitive way how
each metric contributes to the detection of focus.

As detailed in Section 6, we used a set of real explorations over a real data
cube to train and test the classifier. All the queries of all the explorations were



labeled by a human expert, familiar with both the cube explored and the front
end tool used for the explorations. Each query is then labeled either as focused or
as exploratory. The labels we obtain are used as a ground truth for our classifier.

4 Formal framework

This section introduces the formal framework underlying our approach, in which
explorations are treated as first class citizens.

Ezploration. An exploration is a triple (e,lts, ets), where e = (g1,...,qp) is a
sequence of p OLAP queries, lts is a function that gives for a query its launch
time-stamp, and ets is a function that gives for a query its evaluation time-
stamp. With a slight abuse of notation, we note ¢ € e if a query ¢ appears in
the exploration e.

During their explorations, users inspect the elements of a cube instance (or
simply, cube) retrieved by a query.

Cube model. Without loss of generality, the OLAP queries we consider are di-
mensional aggregate queries over a data cube [2]. We consider cubes under a
ROLAP perspective, where dimensions consist of one or more hierarchies, each
hierarchy consisting of one or more levels. Formally, a cube schema consists of:
i) n hierarchies, each hierarchy h; being a set Lev(h;) = {L?,..., L} of levels
together with a roll-up total order =, of Lev(h;), il) a set of measure attributes
M, each defined on a numerical domain. For a n-dimensional cube, a group-by
set is an element of Lev(hy) X ... X Lev(hy,).
The elements of a cube are called cells.

Cells. Cells are tuples (my, ..., m,, meas) where the m; are taken in Dom(Lgi),
L} € Lev(h;), for all i, and meas is a measure value.

Query model. A query (G, P, M) is defined by a group by set G (identifying the
query granularity), a set of boolean predicates P, and a set of measures M. The
answer to a query ¢, denoted answer(q), is the set of non empty cells whose
coordinates are defined by the query group by set and selection predicates.

Among the set of cells in an answer, we distinguish between base cells and
aggregated cells. In base cells, m; are taken in Dom(L?). In aggregate cells,
there exists one m; not in Dom(LY). An aggregate cell (my,...,m,, meas) can
be defined as the result of a query ({L1,...,Ln},{L1 =ma,..., L, = my},{m})
for some measure m.

5 Metrics

This section details the metrics we identified to describe quantitatively the dif-
ferent aspects of focus for a query. We organize these metrics in three categories:



i) intrinsic to the query, i.e., only related to the query itself, ii) delta metrics,
i.e., dependent on the query’s predecessor in the exploration, and iii) contextual,
i.e., dependent on the complete exploration, to provide more context to the met-
ric. Each of these 3 categories can be then refined into 3 subcategories. Some of
them relate to (T) the text of the query and cube schema, (R) the result of the
query and (C) the chronology of the session, be it the time, or the sequentiality.
Formal definitions are only given for non trivial metrics. In metric definitions,

let g, be a query in an exploration e = (g1, ..., gp).
Cat Metric name Description Coef
Intrinsic metrics
T  Number of measures (NoM) Number of measures used in gy 0,246
T  Number of filters (NoF') Number of filters (or selections) used in gy 0,553
T  Number of aggregations (NoA) Number of aggregations (or projections) used in g, 0,192
T  Aggregation Depth (ADepth) Level of aggregation w.r.t. available cube levels 0,217
T  Filter Depth (FDepth) Ratio of filtered data w.r.t. available cube data 0,147
R Number of cells (NoC) Number of non null cells in answer(qy) -0,395
R Relevant New Information (RNI) Amount of information in answer(qx) 0,068
C  Ezecution Time (ExecTime) Time taken for executing gy 0,030
Delta metrics
T  Iterative Edit Distance (IED) Edition effort required to get g from qr_1 -0,201
R Iterative Recall (IR) Recall of answer(qy) w.r.t answer(qr—1) 0,008
R Iterative Precision (IP) Precision of answer(qx) w.r.t answer(qr—1) 0,203
C  Consideration Time (ConsTime) Time taken by the user to consider answer(qy) 0,084
Contextual metrics

T Click Per Query (CPQ) Number of subsequent queries at distance 1 from g -0,100
T  Click Depth (CD) Length of the query chain gi belongs to 0,491
R Increase in View Area (IVA) Amount of new cells in g -0,051
C  Number of Queries (NoQ) Number of queries executed so far in the exploration 0,176
C Query relative position (QRP) Relative position of g, within the exploration -0,057
C Query Frequency (QF) Frequency at which the DB has been queried so far 0,019
C Elapsed Time (ElTime) Elapsed time since the beginning of the exploration 0,007

Table 2. Overview of the considered metrics. For convenience, we also put in this table
coefficients (Coef) of the features, that relate to the experiments (see Section 6).

Intrinsic Metrics This category concerns metrics that are exclusively related
to a given query, independently of the exploration the query belongs to. Most
metrics of subcategories (T) and (R) follow the intuition that the more focused
a user, the more complex and detailed the queries she evaluates and the fewest
the number of cells. In other words, if the user carefully chooses measures and
filters, and sufficiently drills down, she has a precise idea of what she is looking
for. These features can be computed straightforwardly from query text or query
results and their definition is omitted due to lack of space. Aggregation Depth
(ADepth) defines the aggregation depth of the query relatively to the levels of
the cube. Consider a cube with [ levels, depth(l;, h;) being the depth of the level

l; in hierarchy h;, and noting I; € P if level I; appears in the set P of predicates

depth(l;,h; . .
of query ¢, ADepth(q) = M. Filter Depth (FDepth) is computed

similarly by considering for each filter its corresponding level. Relevant New



Information (RNI) is a measure of entropy of the query result. For a query g, it
evaluates the quantity of information contained in answer(qy). Formally, RNT =

1 — (interest(answer(qy))), where interest measures the interestingness degree

_ (=37, p(i) log(p(1)))

B log(m) ’

with |C] = m, C(i) is the i'" value of the set C' and p(i) = % denotes
i=1

the i*" cell occurrence. Ezecution Time (ExzecTime) is also related to query

complexity, assuming all queries are executed in the same environment. It is

computed as FxecTime(qy) = ets(qr) — lts(qx).

as a simple normalized entropy, defined by: interest(C)

Delta metrics They characterize a query relatively to the previous query in
the exploration. Here the intuition is that the closer two consecutive queries, the
more they have in common, the more focused the user. lterative Edit Distance
(IED) represents the edition effort, for a user, to express the current query start-
ing from the previous one. It is strongly related to OLAP primitives operations,
and computed as the minimum number of atomic operations between queries,
by considering the operations of adding/removing a measure, drilling up/down,
and adding/removing a filter. The considered cost for each observed difference
(adding/removing) is the same. Iterative Recall (IR) and Iterative Precision (IP)
are computed as classical recall and precision by considering the current query
result cells as the retrieved set, and the previous query result cells as the relevant

set. Thus, the larger the intersection between queries in terms of accessed cells,

the more focused we are. Formally, T R(qg, qr—1) = (amwegf:l)ugf&i“j;(qk‘l)) and

IP(qi,qu—1) = (answer(qr)Nanswer(gx—1))

answer(qy)

first queries of the exploration, by defining IR(q;) = IP(q1) = 0.5. We ap-
proximate Consideration Time (CT) by computing the time between the end of
execution of the current query and the beginning of execution of the subsequent
one: ConsTime(qx) = lts(qrs+1) —ets(qr). We fixed ConsTime to a neutral value
(the average of all the previous queries) for the last query of the exploration.
ConsTime does not take into consideration the size of visualized data, as this is
an independent feature (in NoC). The importance granted to the combination
of ConsTime and NoC' features is delegated to the SVM.

. We give a default neutral score to the

Contextual Metrics Contextual metrics characterize a query relatively to an
exploration, and more specifically its position within it. In particular, a query
occurring in different explorations, can get different scores for these metrics. The
two contextual metrics in subcategory (T) adapt popular activity metrics used
in Web Search. In this domain, Clicks Per Query is used to evaluate search
engines through their Search Engine Results Pages (SERP). Given a SERP,
CPQ represents the number of links in this page that have been clicked by
the user. We adapt it by considering a click as obtaining a new query that
differs in one operation from the current query. This model allows to repre-
sents typical user behaviors in front of OLAP systems. Formally, we count the
number of queries occurring after g in the exploration, that are at edit dis-
tance one from gx: CPQ(qx,e) = {gp € e | p > k,IED(qx,q,) = 1}|. In



web search, Click Depth evaluates the number of pages that have been suc-
cessively visited, by following hyper links, from one result in a SERP. For a
given query qg, we adapt it by calculating the length of the chain of queries
starting from ¢ that are distant of one OLAP operation from their imme-
diate predecessor, without discontinuity. CD(gx,e) = |Skp|, where Sk, is the
longest subsequence of exploration e starting at query ¢x and ending at query
gp inclusive, such that Vg;,qi41 € €, IED(q;, ¢i+1) < 1. Increase in View Area
(IVA) characterizes the increase in terms of new cells in answer(qx) compared
to all the cells seen during the previous queries of the exploration. Formally,

IV A(qr, e) = lanswer(qe)\U;ep1,6—1) answeT(QiH. Number of Queries (NoQ) repre-

\ Uie[l,k] answer(q;)|
sents the absolute number of previous queries in the exploration. It is useful to

capture the correlation between the tediousness of an exploration and the focus.
Query Relative Position (QRP) allows to capture the influence of the position
of the query in the exploration on the focus. We expect queries at the beginning
of an exploration to be more exploratory, and the ones at the end to be more
focused. It is computed as the rank of the query in the exploration, normalized
by the size of the exploration: QRP(qx,e) = % Query Frequency captures the
engagement of the user by measuring how many queries she submits per unit
of time. QF(qr) = NoQ(qr)/ElTime(qx). Finally, Elapsed Time computes the
time from the beginning of the exploration: ElTime(qx,e) = ets(qr) — lts(q1).

6 Experiments

This section presents the setup and outcomes of the experiments we conducted
to evaluate our approach. We first discuss to which extent the coefficients learned
by the model to weigh each descriptive metric (see Section 3) are consistent with
the human expertise. Then, we show that our model, once learned on a dataset,
can be generalized to other OLAP navigation datasets without any significant
loss in prediction rate.

6.1 Experimental setup

Data set We worked with a real database instance, namely a cube called MobPro,
built from open data on workers mobility. In MobPro, facts represent individuals
moves between home and workplace, and dimensions allows to characterize a
move depending on its frequency, the vehicle used, the traveled distance, etc.
The cube is organized as a star schema with 19 dimensions, 68 levels in total,
and 24 measures. 37,149 moves are recorded in the facts table.

User explorations In this experiment, we asked 8 junior analysts (who are stu-
dents in a master’s degree specialized in BI), to analyze the cube using Saiku?.
They were familiar with OLAP tools, but not necessarily with the data within
MobPro. We gathered 22 explorations from the system logs. In total, these ex-
plorations represent 913 queries.

2 http://meteorite.bi/products/saiku



Query labeling In order to learn our metric scores weights, we need to label
the 913 queries, stating if they are focused or not. The 913 queries have been
annotated by one expert, with the help of a web application specifically developed
for this purpose. A second expert independently annotated 100 of those queries.
Both experts are teachers in the masters degree in BI, and co-authors of this
paper. On the 100 queries, a high agreement of 89% has been observed between
the two experts, ensuring the representativeness of the 913 labels.

6.2 Model training

Using our set of 913 queries, each described by the 19 features and the label, we
trained a linear SVM classifier. The linear SVM outputs coefficients that traduce
the relative importance of each feature. As the metrics are not normalized, the
weights learned may be due to SVM compensating for initial low or high values of
the metrics, and not only due to the relative intrinsic importance of the features.
With a reasonable assumption of normal distribution of our metrics, we used a
z-score for normalizing each metrics scores independently before training our
model. Z-score ensures that for a given feature, each value is expressed relatively
to this feature variance.

We used 76% of our data (700 queries) for training our model, while the
other 24% (213 queries) constitute the test set. Both training and test sets are
described in table 3. We parameterized the SVM so that it performs a 10-fold
cross validation while learning on the training set, and obtained an accuracy of
80%.

Description Training set Test set
# Queries 700 213

% focus 46,7% 59,2%
% non focus 53,3% 40,8%

Table 3. Description of training and test sets for linear SVM

Model discussion Feature coefficients we obtained are presented in table 2.
By observing them, weights can be easily classified into 4 categories, using 2
dimensions that we call polarity and intensity. The impact of a metric on the
focus can be positive/negative in terms of polarity, and high/low in terms of
intensity. Impact polarity depends on the sign of the coefficient of the metrics,
whereas impact intensity depends on the absolute value of the coefficient. Here,
we highlight trends and discuss in details some of the features.

A focused analyst has a relatively well defined information need in mind,
which is clearly evidenced by the weights discovered. Indeed, among the metrics
related to text (T) and results (R), we observe that all the metrics that restrict
the perimeter of the analyzed data (like NoF, FDepth, NoA, ADepth, NoM) have



a positive impact on focus. And as expected, metrics that relax the perimeter of
analyzed data, like NoC and IVA, appear to have a negative impact on focus.

Metrics that characterize an important move within the data space have a
negative impact on focus. IED and IVA are particularly concerned by this. Again,
as expected, metrics that measure a closeness between two consecutive queries
have a positive impact on the focus. IP is the best representative of that in the
sense that its value decreases with the amount of new cells gathered compared
to cells in the previous query.

Interestingly, most metrics relative to chronology (C) have little impact on
the focus, with the notable exception of Number of Queries, which tends to
confirm that focus phases indeed happen after rather long exploratory phases.
Another rather surprising finding is that complex metrics in (R) like RNT do not
show a significant impact on focus.

More generally, we observe that the importance of a feature is fairly related
to the metrics categories and subcategories. No category or subcategory should
be ignored, in the sense that all of them include metrics having high weights.
A general trend is that metrics relative to the text of the query (T) have in
general higher weights, which indicates that focus is highly correlated to the user
intention expressed in the query syntax. Likewise, in general, intrinsic metrics
tend to have a higher impact on the focus (as seen on NoC, NoF, NoM). But this
is counterbalanced by the fact that CD, of category (C) has the second highest
weight, meaning that the context of the exploration indeed provides semantics
when assessing focus.

6.3 Model performance

We previously described the meaningfulness of the features coefficients provided
by the SVM. We also conducted different experiments, described below, to check
the robustness of the predictive power of our classifier.

Testing on artificial explorations The objective of this experiment is to
validate our model on explorations whose focus is known. For that, we used
CubeLoad [9] for generating realistic explorations. CubeLoad takes as input a
cube schema and creates the desired number of sessions according to templates
modeling various user exploration patterns. Patterns available in Cubeload simu-
late: (Goal Oriented) users with limited OLAP skills pursuing a specific analysis
goal, (Slice And Drill and Slice All) more advanced users navigating with a se-
quence of slice and/or drill operations, (Ezploratory) users tracking unexpected
results with exploratory sessions.

Following the definition of the patterns, we expect Goal Oriented explorations
to be highly focused, while Fzploratory are expected to be much less focused.
For this experiment, we used the SSB schema [8] and generated a collection of
49 explorations (500 queries) over it. Table 4 presents, per exploration pattern,
the ratio of (non) focused queries as predicted by our algorithm. The average
ratio of focused queries per exploration pattern confirms our expectations. Goal



Oriented explorations have a much higher ratio of focused queries compared to
Exploratory ones. We also notice that Exploratory and Slice All have a similar
ratio of focused queries. However, Exploratory explorations are much less focused
than Slice All ones in terms of average focus intensity. Slice and Drill is correctly
recognized as an intermediate behavior.

Patterns Explorative Goal oriented Slice and Drill Slice All
# of explorations 15 13 14 7

7 of queries 171 123 126 80

% of focused queries 18,13 64,23 49,21 18,75
avg focus -0,568 -0,070 -0,193 0,738
stdev focus 1,072 1,024 0,955 0,841

Table 4. Ratio of focus queries in terms of cubeload patterns

Testing on real explorations We created a test set of 213 labeled queries from
the 22 explorations we collected over the MobPro cube. We obtained an accuracy
of 69,9%, meaning that 69,9% of the queries have been similarly classified by
the expert and the model. Moreover, our model is pretty balanced, as we could
retrieve focused (resp., non focused) queries with an accuracy of 71,4% (resp.,
67,8%). These scores are good, especially given that a naive classifier that would
always predict the focus class would reach an accuracy of 59,2% on the test set.

6.4 Focus vs analyst skills

Analyst skills A B C

min Focus -0,558 -1,806 -2,366
max Focus 1,657 1,126 -1,174
avg Focus 0,241 -0,240 -1,767
stdev Focus 0,861 0,895 0,513

Table 5. Correlation between exploration focus and analyst skills

In general, a skilled analyst performs more focused explorations as she has a
better knowledge of data. The objective of this experiment is to verify that our
model is capable of retrieving this correlation.

We used a set of explorations, previously labeled by the same expert who
labeled the queries for the focus. Our expert labeled each exploration with one
of three labels: A, B, C. These labels categorize the user knowledge acquisition,
from A when the user conducts a in depth analysis and benefits from it in terms of



knowledge, to C when the user conducts a very poor analysis and did not benefit
from it. We used this as a ground truth. Besides, we used our model to predict
the focus of the queries in these explorations. For each query, we predict not
only its class (focus or not), but also the degree to which it belongs to the class,
by computing the distance to the separation hyperplan found by the SVM. We
compute the degree of focus of an exploration as the average of its queries focus
degree. After matching explorations degree focus and skill label, we verify that
our model is in accordance with intuition. Results are presented in table 5. From
this table, it is easy to identify that classes A and C are clearly distinguished
by their degree of focus. Users who acquired knowledge conducted more focused
explorations in average, with a minimum (resp., maximum) of focus relatively
low (resp., high) compared to the others. This reasoning is inversely true for
exploration in class C. Class B is an intermediate situation, quite ambiguous,
where it cannot be stated clearly that the skill has been mastered or not.

6.5 Computation efficiency

Besides the experiments that validate the robustness of our model, we evaluated
the average computation time for each metric. Indeed, as we motivated focus
detection as a way to improve user experience, we have to ensure that metrics
computation runs in near real time. In average, it appears that for a given
query, each metric computation does not require more than a few hundred of
milliseconds. In average, the computation of all the metrics for a given query is
695 milliseconds, which is negligible given that the average consideration time
for a query result is 11200 milliseconds. Having their metrics scores, the query
classification is then instantaneous, which validates our approach.

7 Related Work

Analyzing user sessions has been studied for many years in web search. Recent
works aim at characterizing the difficulty of search tasks and detecting varia-
tions in sessions. For instance, in [1], Athukorala et al. proposed a method for
distinguishing between exploratory phases and lookup phases in the context of
Information Retrieval. Their idea consists in experimentally discovering features
that can be used for this distinction. They submitted several tasks to partic-
ipants. Some of these tasks require exploration while other require more sim-
ple lookups. Based on objective measurements, they could identify that query
length, completion time, and maximum scroll depth (in the browser), are the
most distinctive indicators for distinguishing between exploratory /lookup tasks.
Although they address a problem very similar to the one we tackle in this pa-
per, they work at the exploration level, while our method gives finer results by
characterizing each query of an exploration.

A recent trend in web search is to analyze web search sessions by means of
machine learning, and more particularly with classifiers. In [3], the goal is to
discover new intent and obtain content relevant to users’ long-term interests.



They develop a classifier to determine whether two search queries address the
same information need. This is formalized as an agglomerative clustering problem
for which a similarity measure is learned over a set of descriptive features (the
stemmed query words, top 10 web results for the queries, the stemmed words
in the titles of clicked URL, etc.). Perhaps closer to focus detection is the work
of Odijk et al. [7] for characterizing user struggling during web searches. They
propose a method for distinguishing between users exploring search results from
user struggling for satisfying a given information need. They tackle this problem
by using an approach similar to what we propose in terms of methodology. They
use a bunch of keyword features, and using a large real set of explorations, they
trained a machine learning algorithm for learning how to differentiate between
the two aforementioned types of explorations.

In the databases domain, however, to the best of our knowledge, only a
handful of works were interested in analyzing real database sessions. As noted
by Jain et al. [5], there exists only two real world SQL workloads available to
the research community: the SQLShare workload [5] and the Sloan Digital Sky
Server workload [10]. In [5], authors present their enhanced SQL web based tool.
They made their tool available online for several years, permitting users to up-
load their datasets and perform advanced analysis. From this, they could gather
a rich workload of SQL queries, performed on different datasets, by different
users. Based on different metrics computed on each single query (length of the
query text, number of distinct operators, query runtime, ... ), they propose to
characterize each query according to its complexity. An interesting aspect of this
work is the investigation of metrics for measuring the cognitive load of users that
is indirectly translated in the complexity of the queries they issue. Moreover, at
the workload scale, authors show that queries have a high diversity, considering a
query similarity measure based on the query text. Authors also propose to clas-
sify user behaviors as exploratory and analytical, based on the number of queries
per dataset. According to them, a user is analyzing when she submits a lot of
queries to the same dataset. This simple distinction is rather coarse compared
to the 19 dimensions we use in this paper for analyzing the same distinction.

Nguyen et al. [6] propose an approach for discovering the most accessed
areas of a relational database to characterize user interests. Their notion of user
interest relies on the set of tuples that are more frequently accessed, and is
expressed as selection queries (mostly range queries). They use DBSCAN to
cluster user interests in the Sky Server dataset. Their similarity metric relies on
Jaccard coefficient of the accessed tables and on overlapping of predicates. In this
work also, only one metrics (most frequent accessed tuples) is used. Additionally,
we note that, being tailored for range queries, their metric is inappropriate for
OLAP queries that are mostly dimensional (i.e., point based), due to the nature
of the hierarchical dimensions used to select data.

With the growing interest around exploratory search in the context of inter-
active database exploration, we believe that our work constitute a first important
contribution for understanding the different aspects of user navigations in struc-
tured data.



8 Conclusion

Exploratory search considers a search as a complex interaction between a user
and a system, including exploratory phases and focus phases. In this paper,
we highlight the usefulness of detecting which phases a user is currently in,
in the context of OLAP exploration of data cubes. We propose an automatic
method, based on a state of the art machine learning algorithm, modeling this
detection as a classification problem. To our knowledge, our contribution is a
pioneer of its kind. We successfully built a model, trained on a relatively large
set of real explorations. We validated experimentally our model on a test set of
real explorations, as well as on an artificially, driven, state-of-the-art exploration
generator. On top of that, we checked the coherence of our model by using it to
detect how skilled is a data analyst.

We plan to follow up our investigations in two main directions. First, we
will study the use of focus as a score for evaluating the overall quality of an
exploration. Second, we plan to generalize our approach to relational databases
and more general types of explorations.
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