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Ecole Normale Supérieure de Cachan Matériaux, Ecole Nationale des Ponts et Chaussées

61 Avenue du Président Wilson, 1 Avenue Montaigne, Central IV,
94235 CACHAN Cedex, France 93167 Noisy le Grand Cedex, France
Introduction

The fatigue process can be schematically divided into an initiation stage and the propagation
period. In this paper, we consider brittle materials where only the initiation phase needs to be
studied, since the propagation is always unstable. We suppose that the initiation is due to some
initial randomly distributed defects that grow according to a generalized Paris' law and become
critical for a given number of cycles and for a given load level (characterized by a maximum
equivalent stress o over a cycle). The purpose of this paper is to present a statistical approach of
the initiation stage in fatigue derived from a unified framework of the failure probability in the
case of monotonic and cyclic loadings. We will show in particular that the iso-probability curves
in a Wohler diagram, have a shape which is independent of the initial satistical distribution of
defects. Applications of this study are to be found in the case of engineering ceramics.

The first section of this paper is devoted to the introduction of our model for the evolution of an
initial defect subjected to a cyclic loading with a uniform stress. In the second section, this
mesoscopic model is applied to the analysis of a structure Q of volume V subjected to any stress
field and divided into a large number of representative volume element V.

M . lel: Defect Distributi | its Evoluti

Initial heterogeneities in the material are modelled by randomly distributed defects only
characterized by their size, a. No restriction is assumed on the form of the initial distribution of
defects, fo(a). In the case of cyclic loadings, the defects grow. We assume that this evolution is
given by a generalized form of Paris' law :
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where ¢ is a maximum equivalent stress over a cycle (e.g. the maximum value over a cycle of the
principal tensile stress for ceramics), a is the size of defect (for instance the length of a crack in a
two dimensional problem or the radius of a penny-shaped crack in a three dimensional problem
(see for instance Ref. [1]), ayn the threshold defect size under which no evolution is possible and
C, m, n are material parameters (note that m equals n in a classical Paris' law). Let us note here
that we implicitly assume in our description that interactions between defects can be neglected,
since the evolution law, as well as the criteria for growth and failure, only depend on the defect
size and not on its environment. We also discard the possibility of nucleating new cracks during
the fatigue process.

Two defect sizes are particularly importarit in this description: for a given stress the threshold size,
aih, below which the defect cannot grow, and the maximum size, dmax, the defect can assume
before leading to an overall failure of the material. Both sizes can be connected to material intrinsic
parameters using a generalized stress intensity factor,

where Y depends on the shape of the modelled defect. Failure of the material is given by Knax,
whereas no propagation occurs for K less than Ky Both quantities Kmax and Ky, are considered
as material parameters, whereas amax and a depend on the imposed stress through Eq.(2).

From these considerations, we can readily write down the expression of two stresses which will
bound the evolution of the material under fatigue. Let us call ay, the largest defect size presentin a
given sample, or volume element, subjected to a uniform stress field. Under monotonic loading,
the failure will occur for a value of the stress 6=0,y,,,, such that

K
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Whereas, for cyclic loading, if the maximum stress is smaller than a threshold O
= Kih_
Oth = 4
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then no defect will grow __ and thus the material will not fail __ whatever the number of cycles.
In the interval o, < 6 < Oy, failure will occur after a finite number of cycles.



In the case of fatigue, the influence of the mean stress on the threshold stress can also be studied.
We proposed in the evolution law to take into account the maximum stress over a cycle, i.e. the
sum of the mean stress 6 and the half amplitude stress Ac/2. Thus in a Haig's diagram, the
equation of the Haig's curve is given by : o + Ao/2 = B, where B is a constant determined by the
half amplitude stress oy, obtained with a mean stress equal to zero. This assumption is supported
by experimental results [2].

The defect size distribution is supposed to be characterized by a probability density function f, We
do not consider other parameters such as the orientation, or the shape of the defects [3]. These
features can be thought of being already integrated through the definition of an effective mean
defect size. In the following, for the sake of simplicity, we will consider only the case of constant
cyclic loadings. Generalization to more complex loadings can be done easily by integration of
Eq.(1).

For cyclic loadings, function f evolves with the number of cycles and with the load level G as
parameters : f is denoted by fn(a,0). Using evolution law (1), it is casy to compute fN(a,0) and to
relate it to the initial distribution. Integration of (1) gives the defect size, a(N), after N cycles,
knowing the initial size a(0).

o(N)=a(0) if a(0)<ay, )
(p(\/a(N) ) - (p(\/a(O) )= Co"’N if a(0)>ay, (5YH

where the function ¢ can be written

(x-Vag)"™((1-m)x+Vay) .
o(x) = m(z_m)(l_m) th (5"

when m#1 and m#2. (Those two special cases have a different expression which can be written
without difficulty.) It is useful to introduce a function y such that a(0)= y(a(N), o, N). ycan be
computed from Eqgs.(5 and 5'), although a closed expression cannot be written for a general value
of parameter m. Since the evolution equation (1) is deterministic, the probability to find a defect of
size a after N cycles is equal to the probability to find initially a defect of size y(a, 6, N) . Since it
is assumed that no new crack nucleates, fiy can be related to fy by

fn(a, 0) = f(y(a, o, N)) % (6)

where the coefficient (9y/0a) comes from the change of the measure (from da to dy(a) ).
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We consider a structure Q of volume V, subjected to any stress field, which can be divided into a
large number of elements of volume V. The latter being a representative volume element
subjected to uniform stress fields. The cumulative initiation probability Pyg is the probability to
find a defect larger than the critical defect size amgax . Thus for monotonic loadings,.

Pro= I fo(x) dx . )

G
In the case of cyclic loading we can apply the same argument, using fy instead of fo. Using
relation (6), Py can be rewritten as :

PIO=J fo(x) dx )

W(2me,3, N)

where W(a,,,,,0, N) represents the initial defect size that, after N cycles and under a stress G,
reaches the critical defect size amax. Hence, relation (8) has a similar form as expression (7) and
constitutes a generalization to cyclic loadings [3].

If the propagation phase is unstable (e.g. for brittle materials such as engineering ceramics [4]),
the cumulative initiation probability also corresponds to the cumulative failure probability : relation
(8) represents whence the correlation between the defect distribution and the cumulative failure
probability.

Let us also note that for structures made of brittle material and submitted to cyclic loadings,
relation (7) does not give a decoupling of the cumulative failure probability Pyg in a product of a
function that depends only upon the load level by a function that depends only upon the number of
cycles N, as suggested in Ref. [5].

On the structural scale, the initiation occurs if one defect within the volume becomes critical. That
means that if this defect reaches the critical size, Q5. the initiation occurs. Determining the
initiation at the structural scale is equivalent to finding the "weakest" link in the structure, which is
expected to be a good approximation for brittle materials with a dilute density of defects. Let us
also recall that we already used the assumption that the interactions between defects could be
neglected during initiation, and the hypothesis of the independence of events ([6], [7]). The
cumulative initiation probability Py of a structure €2 can be related to Pyg by :
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By means of expressions (8) and (9), a general relationship between the defect distribution and
the initiation (or failure) probability of a structure  can be derived :

oo

Pr=1-exp [VIEI In { I-J fo(x) dx }dV] for cyclic loadings (10)
Q
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For monotonic loading, the same equation holds with the substitution of Y(Gmax» G, N) into @,
It should be emphasized that expression (10) also represents the cumulative failure probability if
the propagation process is unstable as for engineering ceramics such as silicon nitride [4].
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In the case of a given fatigue loading, the iso~cumulative initiation probabilities are given, on a
structure scale, by Py = constant, thus F(y(@p,x,0,N))=constant where F is the cumulative
frequency associated to function fy, since the loading pattern is constant. This condition can
simply be rewritten as :

V(K2,,,/Y202, o, N)= A (1)

where A is a constant. Let us stress this important result:

The iso-probability curves in the plane (o, N), (Wéhler diagram) are independent of the defect
size distribution . The latter allows to quantify the value of the probability on a given curve, but
does not affect its shape.

The iso-probability curves are solely determined by the evolution equation, Paris' law (1).

The number of cycles N corresponding to a given probability can be derived from equations (5')
and (11):

1
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where B is a constant equal to B=g(A). Expression (12) shows that, whatever the value of m,
dN/do <0, (an increase in the number of cycles, for a given probability, implies a decrease of the
load). Let us note that the result (12) does not depend upon the defect distribution.

To compare two iso-probabilities (Py; and Py;) in a Wohler diagram, one may study the quantity
log(Ny/N,) at a given load level. This ratio is given by

_ 9Ky /Y0)-B (13)
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where B, and B; are two constants (B, < B;). Since d(N,/N;)/do >0 whatever the value of m,
the iso-probabilities diverge with the applied stress. This result shows that the higher the load
level, the larger the scatter of the time to initiation (to failure). It can also be noticed that this result
is independent of the defect distribution, and of the power of n in Paris' law (1).

Conclusions

In the study of initiation processes, we have presented a unified framework for brittle failure under
monotonic and cyclic loading taking into account the statistical distribution of defect within the
material. In the case of materials for which the propagation process is unstable, expression (10)
gives a relationship between the defect distribution and the cumulative failure probability. In
fatigue, we have obtained the strikingly simple result that the iso-probability curves are
independent of the initial statistical defect distribution of the material.

We acknowledge useful discussion with R. Billardon and D. Marquis. This study has been
supported by the GRECO Géomatériawx.
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