
HAL Id: hal-01635946
https://hal.science/hal-01635946

Submitted on 16 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fully scalable implementation of a volume coupling
scheme for the modeling of multiscale materials

Thiago Milanetto Schlittler, Régis Cottereau

To cite this version:
Thiago Milanetto Schlittler, Régis Cottereau. Fully scalable implementation of a volume coupling
scheme for the modeling of multiscale materials. Computational Mechanics, 2017, 60 (5), pp.827 -
844. �10.1007/s00466-017-1445-9�. �hal-01635946�

https://hal.science/hal-01635946
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Fully scalable implementation of a volume coupling scheme for
the modeling of multiscale materials

Thiago Milanetto Schlittler · Régis Cottereau

the date of receipt and acceptance should be inserted later

Abstract We present in this paper a new implementa-

tion of a multi-scale, multi-model coupling algorithm,

with a proposed parallelization scheme for the construc-

tion of the coupling terms between the models. This

allows one to study such problems with a fully scal-

able algorithm on large computer clusters, even when

the models and/or the coupling have a high number

of degrees of freedom. As an application example, we

will consider a system composed by an homogeneous,

macroscopic elasto-plastic model and an anisotropic poly-

crystalline material model, with a volume coupling based

on the Arlequin framework.

Keywords Multimodel, Multiscale, Arlequin method,

FETI method, Mesh intersection search

1 Introduction

Coupling methods, in general, allow the study of multi-

scale systems, taking into account the different physical

processes of each scale - for example, the coupling be-

tween continuous and granular mediums [31], and of

heterogeneous wave propagation solvers [25,19]. These

methods can be classified in several different types, de-

pending on the desired application. Methods like the

VMS [22] and the HMM [13], and similar others, are

used when the parameters of the macro-scale model

are not known, but depend on the micro-scale over

the whole domain. They can be classified as embed-

ding methods, with the VMS enriching the macro-scale

with the micro-scale model over element patches, and

MSSMat (CentraleSupélec/CNRS/Université Paris-Saclay),
Grande Voie des Vignes, 92295 Châtenay-Malabry Cedex,
France
E-mail: regis.cottereau@centralesupelec.fr

the HMM altering the quadrature evaluation of the

weak formulation. If, on the other hand, the macro-scale

quantity of interest depends on the micro-scale only

over a part of the former’s domain, more local methods

are used. Examples include the non-overlapping domain

decomposition methods [2]. They are derived from do-

main decomposition techniques developed to solve nu-

merically PDEs over large-scale computer clusters [12,

16], and they are used when the coupling is done over

an interface between the models. These models use the

following formulation: find (u1,u2,Φ) ∈W1×W2×M

such that

a1 (u1,v1) + c (Φ,v1) = `1 (v1) , ∀v1 ∈W1; (1a)

a2 (u2,v2)− c (Φ,v2) = `2 (v2) , ∀v2 ∈W2; (1b)

c (ψ, Π1u1 −Π2u2) = 0, ∀ψ ∈M, (1c)

where the operators Πl : Wl → M project functions

from Wl into their restriction on the interface. The

weak formulations of the coupled models (first and sec-

ond equations) are altered by adding a coupling oper-

ator c(·, ·) and a Lagrange multiplier Φ, defined over a

mediator space M and associated to the interface be-

tween the models. Let us note as Wl the spaces asso-

ciated to each model l. The last equation guarantees

that the solutions of the systems, when projected into

M, are continuous under the coupling operation. The

formulation Eq. (1) can be solved iteratively by, for ex-

ample, enforcing strongly the continuity condition, or

by computing the Lagrange multiplier as an intermedi-

ary step [16].

For overlapping domains, still in the context of a

limited domain coupling, methods based on volume cou-

plings can be used, such as the Arlequin framework [3,

5,28] and the bridging domain method [32]. They keep

the same formulation as Eq. (1) but differ from the in-

terface methods by defining the term c(·, ·) as a volume

2 Thiago Milanetto Schlittler, Régis Cottereau

coupling over the overlapping domains. These methods

differ mainly on the choice of this coupling term. In

both cases, c(·, ·) is built using an intermediary mesh,

and a specific effort must be set on integrating functions

borne by incompatible meshes: that related to each of

the models, and that of the coupling operator c(·, ·).
The problem of meshing geometrical intersections

is also present in methods where a volume is cut by an

interface, such as with Nitsche’s method [17,23,15] or

the eXtended Finite Element Method [27,7,11]. In the

former method, two overlapping meshes are considered:

one representing an object, and another representing its

surroundings - which is altered to exclude the overlap-

ping between both meshes. To do this operation, one

needs to identify the geometric intersections between

the interface of the object mesh and the background

mesh, and re-mesh the intersecting elements of the lat-

ter. In the latter method, functions with discontinuities

(or with discontinuous derivatives) along a given inter-

face have to be integrated over a volume mesh. Both

these methods and the overlapping coupling techniques

therefore share similar characteristic features in terms

of integration, which are discussed in more detail in [26].

Generally speaking, the coupling step is not paral-

lelized for methods following the formulation Eq. (1),

since the mediator space is, in many cases, small when

compared to the models’ spaces associated to it. By con-

sequence, while the steps associated with each model

scale well when parallelized, the serial coupling step

breaks this scalability of the algorithm as a whole. Pre-

vious works [4,14] using the coupling algorithms and

parallelism focused on simulating several couplings be-

tween a single global model and many local models,

with each coupling being associated to one processor -

hence each coupling is serial. Here, we will use the same

theoretical framework as presented in ref. [4,14], but we

will focus on an implementation with parallelized and

scalable coupling step, possible due to a detailed work

on all steps of the implementation.

As an example of this implementation, we will study

a coupled system formed by a macroscopic and homo-

geneous elastic model and a microscopic anisotropic

elastic model, representing a polycrystalline material.

While we will focus on this example here, this frame-

work - and thus this implementation - can be applied

to other cases involving multi-scale physics, such as the

ones cited above. Similarly, we insist that, while we

focus here in the Arlequin framework, the paralleliza-

tion scheme presented here is applicable to any coupling

methods using the formulation Eq. (1).

This paper is structured on the following manner.

We will start by defining our physical problem, and by

recalling the Arlequin framework and the FETI domain

Figure 1: (color online) Domains used in the Arlequin

framework. The model domains are Ω1 and Ω2, the

overlapping domain is Ω12, and the coupling domain

(marked in gray) is Ωc12.

decomposition method [16], which was adapted to solve

the Arlequin problem in refs. [4,14]. We will follow this

with a discussion on the coupling operators - including

our implementation of a parallel intersection search al-

gorithm, needed to assemble them. This part should be

seen as the main contribution of this article, ensuring

the actual scalability (in practice) of a known numerical

coupling method (the FETI / Arlequin solver). Finally,

we will present in the last section our numerical results,

including the scalability tests of the algorithms and an

application case with a crack test involving homoge-

neous and heterogeneous elasticity models.

2 Arlequin framework

2.1 Formulation

We will consider here two linear elastic models, each as-

sociated to bounded regular domains Ω1 and Ω2, and

which overlap over a region Ω12. The latter is decom-

posed into two non-overlapping regions, Ω12 = Ωc12 ∪
Ωf12, with Ωc12 defining the coupling domain between

the two models (see Fig. 1). Furthermore, let us note

as Γu and ΓF , respectively, the clamped region of Ω1,

and its region where a field of surface density forces F

is applied.

The functional spaces associated to each model are

W1 =
{
v ∈ H1 (Ω1) ; v = 0 on Γu

}
,

W2 =
{
v ∈ H1 (Ω2)

}
.

The internal and external works al (ul,vl) and `l (vl)

are weighted by weight parameter functions (α1, α2) de-

Fully scalable implementation of a volume coupling scheme for the modeling of multiscale materials 3

fined in Ω1 and Ω2, respectively. These weights guaran-

tee the partitioning of the energy between the models

on the coupling region, and they follow the relations

αl ≥ 0 in Ωl, l = 1, 2, (2)

αl = 1 in Ωl \Ω12,

α1 + α2 = 1 in Ω12.

The weighted works are defined as

∀ (u1,v1) ∈W1×W1, (3)

a1 (u1,v1) =

∫
Ω1

α1σ (u1) : ε (v1) dΩ,

`1 (v1) =

∫
Ω1

α1f · v1dΩ +

∫
ΓF

α1F · v1dS,

and

∀ (u2,v2) ∈W2×W2,

a2 (u2,v2) =

∫
Ω2

α2σ (u2) : ε (v2) dΩ,

`2 (v2) =

∫
Ω2

α2f · v2dΩ.

In these equations, f denotes the field of volume density

forces applied on both model domains. σ (vl) and ε (vl)

are the linearized strain and stress tensors, associated

to the displacement field vl, and linked through Hooke’s

law.

The coupled problem involving the two systems fol-

lows the formulation presented in Eq. (1), with the cou-

pling operator being defined over the coupling domain

Ωc12. The mediator space, noted by M, is defined as

M =
{
Φ ∈ H1 (Ωc12)

}
. The coupling terms c (·, ·) link

this mediator space to either of the models spaces, or

to itself (in the case of the third equation of Eq. (1))

and it follows

∀ (Ψ,Φ) ∈M×V,V ∈ {W1,W2,M}

c (Ψ,Φ) =

∫
Ωc

12

κ

(
ε (Ψ) : ε (Φ) +

1

e2
Ψ ·Φ

)
dΩ. (4)

The parameters κ and e are of the order of magnitude

of the material’s rigidity and the width of the coupling

domain. The coupling term is, then, analogous to a stiff-

ness.

The domains Ω1 and Ω2 can be discretized by as-

sociating to them, respectively, the meshes T1 and T2,

each one with n1 and n2 degrees of freedom (DoF’s).

The formulation Eq. (1) can then be written as

K1u1 + CT
1 Φ = F1, (5a)

K2u2 −CT
2 Φ = F2, (5b)

C1u1 −C2u2 = 0. (5c)

Following standard notation, Kl and Fl, l = 1, 2, are

the matrices and vectors representing the internal and

external virtual works of the model l, with dimensions

nl × nl and nl, respectively. The coupling terms Cl are

nm × nl matrices, where nm is the number of DoF’s of

M. Each element of this matrix is given by

Cl,ij =

∫
Ωc

12

κ

(
ε (νmi) : ε

(
νlj
)

+
1

e2
νmi · νlj

)
dΩ, (6)

where νmi and νlj are form functions associated respec-

tively to the coupling region and the model l.

If the models’ and the mediator form functions can

be interpolated exactly by a common function space

(as we will do here, in Sec. 4), the coupling matrices Cl

can be written as the products of a nm × nm coupling

matrix, Cm and nm × nl interpolation matrices Pl:

Cl = CmPl. (7)

This new coupling matrix is defined only in the media-

tor space M, and is given by

Cm,ij =

∫
Ωc

12

κ

(
ε (νmi) : ε

(
νmj
)

+
1

e2
νmi · νmj

)
dΩ, (8)

where now all the form functions are associated to the

coupling region.

3 Solving the Arlequin problem: FETI solver

The system (5) can be solved as a monolithic problem,

but this approach has the limitation of not allowing

the usage of the proper solvers of the super-imposed

models. One can think, for example, of the coupling

between models such as linear / nonlinear, determinis-

tic / stochastic, continuum / atomistic Some works

have been proposed to solve this problem, adapting do-

main decomposition methods such as the FETI [16,4,

14] or the LATIN [28] methods. In the context of these

adaptations, each domain of the decomposition corre-

sponds to a different model domain, Ωl, and the domain

interfaces correspond to the coupling region Ωc12.

We focus in this article on a Arlequin solver based on

the FETI method. This domain decomposition method,

essentially, solves a given model inside each of the do-

mains of the decomposition, and then calculates cor-

rections due to the continuity between these domains.

It has a formulation similar to the one presented in

Eq. (1), with the differences that the binary matrices

connecting the domains (noted as Bi, in ref. [16]) are

exchanged by the coupling matrices Ci.

4 Thiago Milanetto Schlittler, Régis Cottereau

An application of this method to the Arlequin prob-

lem is presented in refs. [4,14], where the different mod-

els and the model couplings correspond, respectively, to

the domains of the decomposition and their interfaces.

We will present in this section a summarized version

of this application, restricted to two coupled models.

This will be followed by more detailed description of a

solver for the coupling corrections, with a strong focus

on which of its components affect the solver’s scalabil-

ity.

3.1 FETI solver for well conditioned matrices

If both matrices K1 and K2 are well conditioned, the

system (5) can be rewritten in the following manner.

By isolating the displacements in the first and second

equations, we have

u1 = u0
1 −K−1

1 CT
1 Φ, (9)

u2 = u0
2 + K−1

2 CT
2 Φ, (10)

where u0
1 and u0

2 are the solutions of the decoupled

models:

Klu
0
l = Fl, l = 1, 2. (11)

Substituting Eqs. (9) and (10) into Eq. (5c), we obtain

a system depending only on the Lagrange multiplier Φ:(
C1K

−1
1 CT

1 + C2K
−1
2 CT

2

)
·Φ =

(
C1u

0
1 −C2u

0
2

)
(12)

AΦ = b. (13)

The solution (u1,u2,Φ) can then be found by first solv-

ing the decoupled systems (11), then solving the cou-
pled system (12), and finally adding the coupling cor-

rections to the models through Eqs. (9) and (10).

3.2 FETI solver with a singular matrix, K2

The method above must be altered if one of the models

has a singular matrix Kl (for example, in the context of

linear elasticity, if the model has no Dirichlet boundary

conditions). Let us suppose here that the second model

falls in this case and that K2 is singular. Eq. (5b) still

admits solutions if K2 is consistent. In this situation,

Eq. (10) is substituted by

u2 = K+
2

(
F2 + CT

2 Φ
)

+ R2α

= u0,+
2 + K+

2 CT
2 Φ + R2α (14)

where K+
2 is the pseudo-inverse of K2 (a n2×n2 matrix

such that K2K
+
2 K2 = K2). The matrix R2 is a n2 ×

nRB2 matrix, whose columns form a basis of K2’s null

space, with nRB vectors. α is a nRB2 vector defining a

linear combination of this basis. In the context of the

elastic models that we are considering here, K2’s null

space is formed by the rigid body modes that are left

“free” due to the lack of Dirichlet boundary conditions

on the model.

The system (5b) admits at least one solution of the

form (14) if and only if the term
(
F2 + CT

2 Φ
)

is orthog-

onal to K2’s null space. This condition is represented

by the relation

RT
2

(
F2 + CT

2 Φ
)

= 0. (15)

Substituting Eq. (9) and (14) into Eq. (5c), we ob-

tain a system depending on the Lagrange multiplier and

the null space coefficients α:

A+Φ + RI
2α = b+, (16)

where

A+ =
(
C1K

−1
1 CT

1 + C2K
+
2 CT

2

)
, (17)

RI
2 = C2R2, and (18)

b+ =
(
C1u

0
1 −C2u

0,+
2

)
. (19)

Together with (15), this equation can be written in ma-

trix form as[
A+ RI

2

RI
2
T

0

]
·
[
Φ

α

]
=

[
b+

−RT
2 F2

]
. (20)

3.3 Projected conjugate gradient algorithm

The system (20) is symmetric and non-singular, and

hence it admits an unique solution (Φ,α). Still, this

system is also indefinite, so an iterative method such

as the conjugate gradient algorithm (CG) cannot be di-

rectly applied. Instead, a projected CG algorithm can be

used [16,20]. We will present here a preconditioned and

re-orthogonalized implementation of this algorithm, used

originally in [4,14].

The algorithm itself is presented in Alg. 1. From a

numerical point of view, it consists on applying the CG

method to the equation A+ ·Φ = b+, but modified in

such a way that the constraint (15) is satisfied at each

iteration. This can be done by choosing an initial solu-

tion guess, Φ(0), that follows this constraint, and impos-

ing that the descent directions p(k) are inside the null

space of RI
2. This guarantees that RI

2Φ
(k) = RI

2Φ
(0),

and thus Eq. (15) is satisfied. A suitable choice of Φ(0)

is

Φ(0) = −RI
2

(
RI

2

T
RI

2

)−1

R2
T · F2, (21)

Fully scalable implementation of a volume coupling scheme for the modeling of multiscale materials 5

and the descent direction condition can be achieved by

applying an orthogonal projector operator,

ΠR =

[
InRB

2
−RI

2

(
RI

2

T
RI

2

)−1

RI
2

T
]

(22)

on the vectors used to calculate the search directions.

After the constrained value of Φ is found, α can be

calculated from the system’s residual b+−A+Φ, using

Eq. (16):

α =
(
RI

2

T
RI

2

)−1

RI
2

T (
b+ −A+Φ

)
. (23)

3.4 Implementation of the projected CG algorithm

Some parts of the projected CG algorithm deserve a

more detailed description. These include the numeri-

cal optimizations needed to avoid the explicit construc-

tion of the matrix operators A+ and ΠR, the effects of

numerical fluctuations, a proper choice of a precondi-

tioner, and the choice of the convergence criteria. We

will focus now on these points.

Indirect operator application: Two steps of the

Alg. 1, involving the operators A+ and ΠR, at lines 7

and 11, are potential performance bottlenecks. These

operators involve the evaluation of inverse (dense) ma-

trices, and thus we want to avoid their explicit con-

struction.

In the case of the system matrix A+, each appli-

cation of a term ClK
−1
l CT

l can be exchanged by a

multiplication by CT
l , a call to the model l’s solver,

and a multiplication by Cl - avoiding the explicit con-

struction of the inverse operator. The same is true for

the terms with the pseudo-inverse, but in this case one

must use a version of the corresponding model’s solver

that takes the null space in consideration. For a lin-

ear elasticity model, the PETSc Krylov solvers can do

so using the MatNullSpaceCreateRigidBody and the

MatSetNullSpace functions, which create and attach

the rigid body modes to a given matrix, respectively.

Another approach in the same context would consist for

the user to indicate a set of additional Dirichlet bound-

ary conditions blocking the rigid body modes while

keeping the same amount of work on the rest of the

displacement field.

For the projection operation, a similar decomposi-

tion onto a series of operations can be used. In this

case, the nRB2 ×nRB2 matrix RI
2
T
RI

2 is small enough to

be inverted explicitly: in the worst case for a 3D linear

elasticity model, it is a (6× 6) matrix. Again due to

this small size, the inverted matrix can be stored and

multiplied locally, avoiding a communication bottleneck

when Alg. 1 is used in parallel. A similar procedure can

Algorithm 1: ProjectedPCG: preconditioned and

re-orthogonalized Conjugated Gradient algorithm,

modified to project the search direction into the

null space of the matrix RI
2. The inputs are the

linear system’s matrix and right-had side, A+ and

b+ (given here by Eqs. (17) and (19)). The pre-

conditioner operator is represented by the matrix

MPC , and the projection operator ΠR is given by

Eq. (22).

Input:

System matrix: A+ =
(
C1K−1

1 CT
1 + C2K+

2 CT
2

)
System right-hand side: b = (C1u0

1 −C2u0
2)

Output:
Converged solution Φkf

/* Initialization */

1 Initial solution: Φ(0) = −RI
2

(
RI

2
T RI

2

)−1
R2

T · F2;

2 r(0) = b−A+ ·Φ(0);

3 z(0) = ΠR ·MPC ·ΠR · r(0);
4 ρ(0) =

(
r(0), z(0)

)
2
;

5 p(0) = z(0);

6 for k = 0, 1, 2 . . . until convergence do
7 q(k) = A+ · p(k);

8 γ(k) = ρ(k)/
(
p(k),q(k)

)
2
;

9 Φ(k+1) = Φ(k) + γ(k)p(k);

10 r(k+1) = r(k) − γ(k)q(k);

/* Preconditioning and projection */

11 z(k+1) = ΠR ·MPC ·ΠR · r(k+1);

12 ρ(k+1) =
(
r(k+1), z(k+1)

)
2
;

/* reorthogonalization of the descent */

13 for i = 0, 1, 2 . . . k do
14 βi =

(
z(k+1),q(i)

)
2
/
(
p(i),q(i)

)
2
;

15 p(k+1) = z(k+1) −
∑k

i=0 βip
(i);

16 CheckConvergence();

be followed for Eqs. (21) and (23), where this inverse

matrix also appears.

Effects of numerical fluctuations: A classical

CG algorithm relies on the fact that the descent di-

rections
{
p(i)

}
are orthogonal to each other, under the

dot product associated to the matrix A+. In the case

of the projected CG algorithm presented in Alg. 1, an-

other condition is imposed on these vectors: that they

are inside the null space of RI
2. This guarantees that

the condition (15) is followed, and thus that the solu-

tion (14) exists.

Due to numerical fluctuations, though, these proper-

ties are not followed exactly. In the case of the first con-

dition, this results only into a slower algorithm conver-

gence. More importantly, in the case of the second con-

6 Thiago Milanetto Schlittler, Régis Cottereau

dition, these numerical errors result in incorrect rigid

body mode corrections (the term R2α in Eq. (14)),

posing a serious problem to the robustness of the pro-

jected CG algorithm.

One way to avoid the first effect is to re-orthogonalize

the descent directions (line 12 of Alg. 1). This change

increases the memory cost of the algorithm, since we

must save all the vectors
{
q(i)
}

. But, since system as-

sociated to the coupling space is the smallest one of the

coupled problem, this should not be an issue. In the case

of the second condition, the application of the projec-

tion operator directly on the residual (line 11 of Alg.

1), together with the reorthogonalization, guarantee by

construction that the new descent direction p(k+1) is

inside RI
2’s null space.

Convergence condition: Usually, the convergence

condition followed by a CG algorithm takes into ac-

count the relative or absolute convergence of the resid-

ual r(k) = b+ − A+Φ(k+1), by calculating its norm

under the preconditioner dot product

ρ(k) =
(
r(k),MPCr(k)

)
, (24)

which tends to zero as we approach the exact solution.

Due to the projection operations of the projected CG

algorithm, though, this norm does not tend to zero.

A more suitable choice of norm is the projected and

preconditioned dot product, used in line 11 of Alg. 1:

ρ(k) =
(
ΠRr(k), ·MPC ·ΠRr(k)

)
. (25)

Furthermore, while we might reach a convergence of the

solution Φ(k), this does not guarantee that the rigid

body modes correction, R2α, has converged. The func-

tion CheckConvergence(), at the line 16 of Alg. 1, must

then be altered to check the convergence of this correc-

tion term. Here, we chose a relative convergence test,

comparing two consecutive values of the the corrections:

abs(|R2α
(k+1)|2 − |R2α

(k)|2) < εRB |R2α
(k+1)|2. (26)

The effects of this choice of convergence check will be

discussed in the section 6.1, together with the effects of

the reorthogonalization.

Preconditioner: Following the ref. [4,14], we used

a preconditioner MPC based on the coupling matrix

Cm. Let us justify, from a mechanical point of view, this

choice. Using Eq. (7), the matrix A+ can be rewritten

in the following manner:

A+ =
[
Cm

(
P1K

−1
1 PT

1

)
+ Cm

(
P2K

+
2 PT

2

)]
Cm. (27)

Recall that the coupling matrix Cm is analogous to

a stiffness matrix with rigidity similar to those of the

materials studied, and note that the terms
(
P1K

−1
1 PT

1

)
and

(
P2K

+
2 PT

2

)
correspond to interpolations of the in-

verses of stiffness matrices into the coupling region. The

matrix A+ can then, in the context of choosing a pre-

conditioner, be roughly approximated by Cm.

The most straightforward preconditioner choice is

the full inverse of the coupling matrix, MPC = (Cm)
−1

,

but its efficient usage depends on solving yet another

equation system inside the main for loop of the pro-

jected CG algorithm. This system is defined in the me-

diator mesh M, though, and in most cases it should

be relatively cheap to solve it, when compared to the

full model’s systems. If this is not the case, another op-

tion is the usage of a Jacobi-like preconditioner, with

MPC = [diag (Cm)]
−1

. This choice avoids solving a new

equation system, but is a rougher approximation. We

tested and compared both choices (together with simu-

lations without the preconditioner), and the results are

presented in section 6.3.

3.5 Other domain decomposition methods

As we said previously, other domain decomposition meth-

ods can be used to solve the Arlequin problem, and the

choice depends on the application and the method’s

strengths. One of such is the LATIN method, which

is applied to the Arlequin problem in ref. [28]. This

method has the advantage of not being susceptible to

the rigid body modes problem seen for the FETI method,

since its “decoupled” step changes the rigidity matrices

(Eq. (33) in the reference). Due to this, it is compat-

ible with external solvers that do not project out the

rigid body modes. Furthermore, it is directly compati-

ble with the proper generalized decomposition method

[28]. On the other hand, due to these same changes to

the rigidity matrices, the LATIN / Arlequin solver is ar-

guably more intrusive: either the external solver must

accept the (possibly dense) modifications of the rigid-

ity matrices, either the external system must be solved

internally using an algorithm similar to Alg. 1, using a

A · x operation from the external solver.

4 Coupling matrix assembly and parallelization

Let us discuss now the parallelization of the discretized

formulation construction, Eq. (5). The matrices K1, K2

and the vectors F1, F2 can be constructed in paral-

lel using FEM libraries such as libMesh [24]. We will

present in this section the parallelized construction of

the coupling matrices Cl. From Eq. (6), we have that

these matrices involve the integration of form functions

associated to different, incompatible meshes,M and Tl.

Fully scalable implementation of a volume coupling scheme for the modeling of multiscale materials 7

Figure 2: (color online) 2D example of an intersection

between two elements Em ∈ M (blue) and El ∈ Tl
(red), corresponding to a non-zero coupling term Cl

i,j .

The intersection I (gray) does not follow the geometry

of either of these two meshes, and thus it must be tri-

angulated to allow the calculation of the coupling term.

We must, then, define a common mesh, over which we

can project these form functions, to calculate the inte-

grals using a Gaussian quadrature. This common mesh,

which we will note Im, must be constructed before the

proper assembly of the coupling matrices.

The form functions νmi and νlj used in Eq. (6) are

defined on the elements Em ∈ M and El ∈ Tl, respec-

tively. For two meshes formed by three dimensional el-

ements, the coupling terms Cl
i,j will be non-zero only if

their intersection defines a polyhedral region I (i.e., it

will be zero if the intersection is empty or if it defines

a lower dimensionality entity, such as a point or a sur-

face). The integral Eq. (6) must be calculated over this

intersection, but in the general case it does not follow

the element geometry of either M or Tl (see Fig. 2 for

a 2D example), and we cannot calculate the integrals

using directly the original form functions.

We need, then, to decompose each region I into a

form that can be treated using a Gaussian quadrature.

This can be done by triangulating each intersection re-

gion I, defining an element set {EI}, Fig. 2. The union

of all these intersection triangulations defines an inter-

section mesh, Im. Each element EI is associated to a

set of quadrature points {qp} and a form function basis

{νIk}. The latter can be used to rewrite the form func-

tions νmi and νlj . For linear form functions, this results

Figure 3: 2D example of the projection of the evaluation

of a form function νm1 of the element Em at a quadra-

ture point qp of the intersection element EI . In the case

represented, νm1 (qp) is equal to the form function νI2 of

the intersection elements, evaluated at qp and rescaled

by a constant λ.

in linear combinations,

νmi (qp) =
∑
k

λi,mk νIk(qp), νlj(qp) =
∑
k′

λj,lk′ ν
I
k′(qp),

(28)

where the weights λ depend on the positions of the

intersection elements’ quadrature points inside the ele-

ments Em and El. See Fig. 3 for a visualization of Eq.
(28) for 2D elements.

The coupling terms Cl
i,j can be rewritten by insert-

ing the linear decompositions of νmi and νlj into Eq. (6).

The result is a sum of integrals:

Cl
i,j =

∑
I

∑
k,k′

λi,mk λj,lk′C
I
k,k′ ,

CI
k,k′ =

∫
Ωc

12

κ

(
ε
(
νIk
)

: ε
(
νIk′
)

+
1

e2
νIk · νIk′

)
dΩ. (29)

Each CI
k,k′ corresponds to an integral involving the

form functions associated to an intersection element EI ,

and is defined on its region. It can, then, be calculated

using its quadrature points. Since these integrals are as-

sociated to the intersection mesh Im, it is reasonable to

use its partitioning over all the processors to distribute

the calculations. Another possibility would be to use

the partitioning of either M and Tl, which determines

the distribution of Cl’s degrees of freedom, but doing so

8 Thiago Milanetto Schlittler, Régis Cottereau

would leave idle processors, since not all of their parts

are involved in the coupling.

Alg. 2 shows a possible implementation of the paral-

lelized coupling matrix assembly. It takes as input three

meshes, the system mesh Tl, the mediator mesh M
and the intersection mesh Im, and an intersection ta-

ble iT bl. This table encodes the relations between these

three meshes, associating to each element EI ∈ Im the

pair of parent intersecting elements {Em, El}, Em ∈M
and El ∈ Tl. The parallelized loop on line 5 of Alg. 2

uses this information to calculate the contribution of

EI using Eq. (29). Finally, the output is the parallel

coupling matrix Cl, with its row and column degrees of

freedom following, respectively, the partitioning of M
and Tl. For simplicity sake, we suppose in Alg. 2 that all

the processors have the data of all the elements Em and

El. Some FEM libraries do this by default to reduce the

number of communications. If this becomes too mem-

ory intensive, reduced versions ofM and Tl, containing

only elements that intersect the Ωc12 coupling region,

can be used.

Algorithm 2: BuildCoupling : Parallelized con-

struction of the coupling matrix Cl, following Eq.

(29). The inputs are the system mesh Tl, the me-

diator mesh M, the intersection mesh Im, and

the intersection table iT bl. The latter contains,

for each element EI ∈ Im the intersecting pair of

elements {Em, El}, with Em ∈ M and El ∈ Tl.
The output is the coupling matrix Cl.

Input:
System mesh Tl, mediator mesh M
Intersection mesh Im, intersection table iT bl

Output:
Coupling matrix Cl

1 Partition the meshes Tl, M;

2 Partition the mesh Im and the intersection table iT bl;

3 Associate Cl rows to M’s DoF’s;

4 Associate Cl columns to Tl’s DoF’s;

5 oneach processor p do
6 Local parts of Im: Ipm;

7 foreach element EI ∈ Ipm do
/* Get the intersecting element pair */

8 {Em, El} = iT bl[EI];

9 foreach DoF pair (i, j) of {Em, El} do
10 Transform the form functions νmi and νlj

to EI ’s form function basis;

11 Calculate the contribution of EI ;

12 Add it to Cl
i,j ;

13 return Cl

5 Mesh intersection search

The construction of each operator Cl depends on build-

ing all the intersections between the two model’s meshes.

In general, it is useful to separate this build process into

two parts: a search step, which returns a list of inter-

secting elements, and a build step, which takes this list

and build the geometrical intersection. The latter step

is essentially the same, independently from the choice

of search algorithm.

Several serial search algorithms for two meshes exist

in the literature [29][26][33][18], but we must take into

account the fact that our intersections are restricted to

the coupling region Ωc12. This region can be represented

by a third mesh, TC , and the problem can be formu-

lated in a general form as: build all the intersections

between three given meshes, TA, TB and TC . The mesh

TC , though, does not have the same status as the other

two, since it has no physical system associated to it.

We will present in this section a parallel algorithm that

takes this into account to solve the intersection search

problem, but first we will describe some serial search

methods, upon which our algorithm is based. Note that,

as will be detailed below, the most critical component

to guarantee the efficiency of the parallel algorithm is

the distribution of the intersection construction work-

load over the processors.

5.1 Serial mesh intersection search

A straightforward method to find the intersections be-

tween two meshes would be to test each one of the el-

ement pairs (EA, EB) for an intersection, resulting in

an algorithm with complexity O(|TA| |TB |), where |·| is

the number of elements of a mesh. More efficient al-

gorithms organize the bounding boxes of the elements

into hierarchical spatial data structures [29][26], or use

advancing front methods and neighbor information [18]

to reduce the number of operations. In any case, the

resulting set of nI polyhedrons must be checked for in-

tersections with the third mesh TC . This step is effec-

tively a second intersection search, and its complexity

can be reduced by saving, during the first step, only the

intersections found inside the region Ωc12.

We will focus here mainly on the advancing front

method from ref. [18]. This algorithm takes advantage

of the neighbor structure of the meshes by noting that,

if it is known that two elements A1 ∈ TA and B1 ∈ TB
intersect, then A1’s neighbors are likely to also intersect

B1 or B1’s neighbors. An implementation adapted to

include a restriction to a convex region ΩC (which can

be, for example, the bounding box of TC) is presented

in Alg. 3. It works as follows:

Fully scalable implementation of a volume coupling scheme for the modeling of multiscale materials 9

(a) (b) (c)

Figure 4: Intersection search: (a) algorithm starts at the intersection between A1 and B1. (b) It explores the region

around the initial intersection and finds all the intersections near it (gray area). (c) During this process, B1’s

neighbors (here, B2 and B3) are tested for intersections with the elements of TA being explored, and any pairs

found are added to a list for the next iteration - in this case, {B2, A4} and {B3, A7} were added.

Algorithm 3: AFIntersectionSearch: Intersec-

tion search algorithm based on ref. [18]. The inputs

are the two meshes to be tested, TA and TB , and

the region over which we want to restrict the inter-

sections, ΩC . The list TestA is a list of elements of

TA to be tested for intersections with the element

Bt. The output is a table iPairs, containing the

intersecting pairs {At, Bt}.
Input:
Meshes TA and TB , convex region ΩC

Output:
Intersection pairs table iPairs

1 List of pairs to test: TestPairs;
2 List of elements from TB already treated: TreatedB;

3 Search first intersection inside ΩC :
{A1, B1}, A1 ∈ TA, B1 ∈ TB ;

4 TestPairs.insert({A1, B1});
5 while TestPairs is not empty do
6 Elems. from TA to test: TestA;
7 List of new pairs: NewPairs;

8 {Ainit, Bt} = TestList.pop();
9 TestA.insert(Ainit);

10 while TestA is not empty do
11 Elements from TA already treated: TreatedA;

12 At = TestA.pop();

/* Test for intersection, and update

iPairs if positive */

13 UpdtInter(At, Bt, ΩC , iPairs);

/* Add At’s neighbors to test list */

14 UpdtTest(At, T estA, TreatedA) ;

/* Test Bt’s neighbors for new pairs */

15 UpdtPairs(At, Bt, ΩC , NewPairs, TreatedB);

/* Update the pair test list */

16 TestPairs.insert(NewPairs);
17 TreatedB[Bt] = true;

18 return iPairs

– Starting from an initial pair of elements intersect-

ing inside ΩC , {A1, B1} (Fig. 4a), find all the in-

tersections involving B1 by recursively testing the

elements around A1 (Fig. 4b), taking care of mark-

ing which elements were tested already.

– While doing this, test the new elements Ai for inter-

sections with B1’s direct neighbors inside the region

ΩC (line 15 of Alg. 3). Save the positive cases in a

list of element pairs to be tested (Fig. 4c). This step

and the previous one correspond to the inner loop

of Alg. 3, between lines 10 and 15.

– After exhausting all the intersections possibilities

involving B1, mark it as “already tested”.

– Repeat the algorithm with the next element pairs

to be tested, ignoring the elements of TB already

treated.

Notice that, in this algorithm, the meshes do not have

the same standing: TB is used as a guide for the inter-

section search, while TA is only explored locally at each

step. In most practical cases, the number of elements

Ai ∈ TA tested in Alg. 3 inner loop is considerably

smaller than |TA|, resulting in a linear average com-

plexity O(|TB |) [18]. The worst case scenario happens

when all the elements of TA and TB intersect each other:

in this extreme case we have |TA| |TB | intersections, and

so O(|TA| |TB |) tests are done. From the memory point

of view, no new data structures are created, and the

algorithm uses O(|TA|+ |TB |) space.

The implementation of the advancing front algo-

rithm presented in Alg. 3 differs mainly on the depen-

dency on the region ΩC . This is done to restrict the

intersections to this region (line 13), and to stop the al-

gorithm from exploring intersections outside of it (line

15). The second test might seem redundant at first, but

it is needed because the advancing front algorithm is

10 Thiago Milanetto Schlittler, Régis Cottereau

Figure 5: (color online) Behavior of the advancing front

algorithm without the intersection region check done at

line 15 of Alg. 3. In this case, the intersection between

B1 and A3 is ignored.

Figure 6: (color online) Graphical representation of the

patch construction and intersection used in Alg. 4, and

described in Alg. 5.

very sensitive on the direction over which the so-called

front is advancing. Without it, is entirely possible that

algorithm will add to the test list TestPairs a pair of

elements (A1, B1) that intersect outside the coupling

region, and such that none of A1’s neighbors intersect

B1 (see Fig. 5). In this case, B1 will be marked as “al-

ready treated” after testing with A2, and the intersec-

tion with A3 will not be found. This can be somewhat

mitigated by expanding the test list at line 14 with k-

nearest neighbors, but this slows down the algorithm,

while not guaranteeing that this problem will always be

avoided.

Algorithm 4: ParallelInterSearch: Paral-

lelized intersection search. The inputs are the

meshes TA, TB and TC . The latter mesh is used to

partition the search over the processors. The func-

tion InterSearch can be any serial search func-

tion, adapted to save only intersections inside a a

given convex region (such as Alg. 3). The output is

a table iPairs, containing the intersecting pairs.

Input:
Meshes TA, TB and TC
Output:
Intersection pairs table iPairs

1 Partition the mesh TC ;

2 oneach processor p do
3 Local partition of TC : T p

C ;
4 Local intersection pairs: iPairsp;

5 foreach element EC ∈ T p
C do

6 Overlapping patches: PA, PB ;

/* Build the patches */

7 BuildPatch (TA, EC , PA);
8 BuildPatch (TB , EC , PB);

/* Search the intersections */

9 InterSearch (PA, PB , EC , iPairsp);

/* Gather intersections lists */

10 Gather(iPairsp, iPairs);

11 return iPairs

5.2 Parallel mesh intersection search

Let us describe now the parallel intersection search al-

gorithm, Alg. 4. As before, for simplicity we suppose

that the geometrical information of all elements of TA
and TB are accessible by all processors. The main idea

behind this algorithm is to distribute the intersection

search over the processors by dividing the meshes TA
and TB into overlapping patches PA and PB . These

patches are built in such a way that each overlapping

patch pair (PA,PB) covers exactly one element EC of

the mesh TC (see Fig. 6). The patch construction pro-

cess itself can be done using a simplified advancing front

algorithm (Alg. 5), which is essentially the inner loop

of 3, using the element EC as the guide and Ti as the

probed mesh. The intersection search is then reduced to

an embarrassingly parallel problem, composed by |TC |
completely independent problems of finding the inter-

sections between (PA,PB) inside EC . The only step in

Alg. 4 which needs communications between the pro-

cessors is the partitioning of TC - which is used to dis-

tribute the workload over the processors.

Fully scalable implementation of a volume coupling scheme for the modeling of multiscale materials 11

Algorithm 5: BuildPatch: patch construction

algorithm based on ref. [18]. The inputs are the

element EC which the patch will cover and the

mesh Ti from which it will be constructed. The list

TestElem is a list of elements of Ti to be tested

for intersections with EC . The output is the patch

Pi.
Input:
Mesh Ti, element EC

Output:
Patch Pi

1 Elements from Ti to test: TestElem;
2 Elements from Ti already treated: TreatedElem;

3 Search first intersection with EC : Einit ∈ Ti;
4 Pi.insert(Einit);
5 TreatedElem.insert(Einit);

/* Add Einit’s neighbors to test list */

6 UpdtTest(Einit, T estElem, TreatedElem);

7 while TestElem is not empty do

8 Et = TestElem.pop();

/* Test for intersection, and update Pi if

positive */

9 UpdtPatch(Et, EC ,Pi);

/* Add Et’s neighbors to test list */

10 UpdtTest(Et, T estElem, TreatedElem);

11 return Pi

5.3 Scaling of the parallel mesh intersection algorithm

We will present now the implementation and scalabil-

ity of our parallel intersection search and construction

algorithm. In general, numerical geometry algorithms

are susceptible to numerical imprecision and round-

ing errors, resulting into incorrect results, and this in-

cludes the intersection search and construction algo-

rithms. The Computational Geometry Algorithms Li-

brary (CGAL) [30] avoids this problem by implement-

ing its geometrical entities and algorithms using exact

number types. We also chose it due to its Nef poly-

hedrons module. The Nef polyhedrons are defined by

Boolean operations on a series of half-planes, and, by

consequence, the intersection between two Nef polyhe-

drons can be constructed by applying an “AND” oper-

ation between them. This choice allows us to easily con-

struct the intersection of an element triplet (EA, EB , EC),

regardless of the geometry of the elements chosen.

The usage of exact geometry algorithms comes at

the cost of more expensive operations, though, and as

such a proper optimization and balancing of the code

is needed. Exact geometrical tests, such as verifying if

two elements intersect, are considerably cheaper than

exact constructions of new geometrical entities, such as

the construction of their intersection. Due to this, when

using exact operations, an efficient intersection search

algorithm is considerably cheaper numerically than the

intersection construction itself. Table 1 illustrates this

with the CPU time taken by our search algorithm and

by the intersection construction, for meshes of the do-

mains presented in Fig. 7. Due to this difference, we

will study the scaling of the search algorithms and of

the intersection construction separately. Also, we will

present a mesh repartitioning based on the number of

intersections that allows us to properly distribute the

workload of the intersection construction. All simula-

tions presented here were done on the FUSION cluster,

using Intel Xeon E5-2670v3 @ 2.30 GHz.

Intersection search: 154 s
Intersection build: 46351 s

Table 1: CPU time of the intersection search and con-

struction steps, for the meshes described in Fig. 7 and

on Table 2.

Mesh Elements Intersections

T1 1, 753, 486 —

T2 438, 426 —
TC 2, 734 —

TI 6, 662, 531 1, 715, 343

Table 2: Number of elements of the meshes from Fig. 7,

and for the resulting intersection mesh. For the latter,

the number of intersections is also shown.

Intersection search scaling: Strong scaling is the

property of an algorithm to solve the same problem n

times faster when using n times as many processors.

We tested the strong scaling of the intersection search

algorithm Alg. 4 using meshes of the domains presented

in Fig. 7. The two system meshes, T1 and T2, have ∼
1.75·106 and ∼ 4.38·105 elements, respectively, and the

coupling mesh IC has 2.7 · 103 elements. The resulting

intersection mesh (not pictured) has 6.66 ·106 elements,

which is considerably larger than the other three meshes

used to generate it.

We tested the algorithm using two different search

methods for the intersections between the patches PA
and PB : with the “näıve”, direct pair search method

(testing all the the element pairs for intersections), and

with the advancing front method, described in Alg. 3.

Figs. 8a presents the wall time vs. number of CPUs

for these methods (respectively, the red lines with the

crosses, and the blue lines with circles) and the dashed

12 Thiago Milanetto Schlittler, Régis Cottereau

(a) (b) (c)

Figure 7: (color online) Domains of the meshes used for the intersection search and construction scaling: (a)

macroscopic and (b) microscopic domains, and (c) the coupling region. The black lines indicate their geometrical

position compared to one another. The number of elements of the corresponding meshes are shown in Table 2.

24 48 96 192 384
Processors

10
-1

10
0

10
1

10
2

W
a
ll

ti
m

e
 (

s
)

Adv. front
All pairs
Min. time - Adv. front
Min. time - All pairs
O(n)

(a)

24 48 96 192 384
Processors

10
2

10
3

W
a
ll

ti
m

e
 (

s
)

Without repart.
With repart.
Min. time - Without repart.
Min. time - With repart.
O(n)

(b)

Figure 8: (color online) Intersection algorithm strong scaling, wall time vs. number of processors. (a) Scaling

of intersection search, for different methods used to find the intersections between two patches PA and PB :

test all element pairs and advancing front method (b) Scaling of intersection construction, with and without

the repartitioning step. The wall times are indicated by the thick lines with symbols. The thin, dashed lines

with symbols, marked with “Min. time” in the legends, indicate the time taken by the fastest processor in each

simulation.

black lines show the ideal, O(n) complexity scaling. The

wall time represents, effectively, the time taken by the

slowest processor, and the difference between it and the

time taken by the fastest processor in each simulation

(represented by the thin lines in these figures) gives

to us an idea of how the workload is distributed in

each simulation - and hence of the implementation’s

efficiency.

The small differences between the wall times and

the fastest processor times when compared to the O(n)

complexity curve indicate that the algorithm is scalable.

This reflects the fact that the processors do not com-

municate during the parallelized loop in Alg. 4, as we

discussed in sub-section 5.2. These curves diverge from

the O(n) line, though, as the number of processors in-

crease. This is due to an non-ideal distribution of the

search workload, which is defined by IC ’s partitioning.

Here, we used libMesh’s default partitioning weights,

which associates to each element a weight equal to its

number of nodes. This choice of weights has no infor-

mation about the intersections associated to element

EC ∈ IC , and this leads to an uneven workload distri-

bution as the number of processors (and hence parti-

tions) increases. This diverge is small enough, though,

that it poses no problem given the speed of the inter-

section searches.

Notice that the advancing front algorithm is more

than an order of magnitude slower than the direct pair

search method. This happens because the advancing

front algorithm needs to construct an intersection to

stop it from exploring intersections outside of the cou-

pling region (as was discussed in sub-section 5.1), which

increases the algorithm’s cost.

Intersection construction scaling: The blue cur-

ves with circle markers in Fig. 8b present the wall time

of the intersection construction as a function of the

number of processors, for the same meshes as above,

and using libMesh’s default partitioning weights. This

graph presents the same behavior as Figs. 8a, but since

the intersection construction takes more time than the

Fully scalable implementation of a volume coupling scheme for the modeling of multiscale materials 13

Wall time Fastest proc. time

Without repart. (s) 188 55

With repart. (s) 152 107

Table 3: Wall and fastest processor times for the in-

tersection construction. The latter is least time taken

by a processor during the simulation. Done with 336

processors.

search, the uneven workload distribution becomes more

pronounced.

Differently from the intersection search, though, we

know at this step how many intersections are associated

to each element EC ∈ IC . The time taken to process

each element EC is directly proportional to this quan-

tity, and hence using it as the weights of the partition-

ing results in a more balanced construction algorithm.

This is illustrated by the red curves with plus markers

in Fig. 8b. While there is still some unbalancing for a

large number of processors when using this new choice

of weights, it is considerably smaller than before. This

results in an algorithm that is ∼ 20% faster with the

repartition (see Table 3, with the intersection construc-

tions times for 336 processors.). More specifically, the

wall time for the intersection construction with reparti-

tion is 2195 s on 24 processors and 152 s on 336 proces-

sors, while it is respectively 2182 s and 188 s without

repartition. The speedup is therefore 14.4/14 > 1 with

repartition and 11.6/14 ≈ 0.83 without repartition. Fi-

nally, it can be concluded that the strategy proposed

for the intersection search and construction makes the

coupling algorithm strongly scalable on 24 to 336 pro-

cessors.

6 Numerical results

Let us now present our numerical results. We will study

the properties and scaling of the FETI / Arlequin solver,

based on the projected Conjugated Gradient (CG) al-

gorithm (Alg. 1), and present an application case com-

posed by a macroscopic, homogeneous model coupled

with a microscopic heterogeneous model representing

a polycrystalline material. To implement the Arlequin

and FETI algorithms, we used the libMesh library [24].

All simulations presented here were done on the FU-

SION cluster, using Intel Xeon E5-2670v3 @ 2.30 GHz.

The libraries that we developed to do these simulations

(including the ones used for the intersection search scal-

ing in the previous section) are freely available at the

“Code Arlequin” GitHub repository [1].

Weak scalability is the property of an algorithm to

require a constant wall time to solve a problem with n

times as many degrees of freedom over n times as many

processors. We will start by studying the weak scaling

of this algorithm for different implementations - with

and without the reorthogonalization operation, and for

different convergence tests. After this, we will analyze

these implementations in more details, by focusing on

the behavior of a system where their differences are ob-

vious. Finally, we will study the computational impact

of the different preconditioner choices.

For all these cases, we applied the FETI solver on

a coupled traction test, presented in Fig. 9. Both sys-

tems are modeled with the same 3D linear elasticity

model, with a Young’s modulus E = 200 GPa and a

shear modulus µ = 80 GPa. Their domains Ω1 and Ω2

are discretized by the meshes T1 and T2. Both models

are coupled at the region Ωc12. A force density F = 100

kPa is applied on the face ΓF of the domain Ω2, on

the x̂ direction, while the face Γ0 of the domain Ω1 is

clamped. Since the domain Ω2 has no Dirichlet bound-

ary conditions, we will use its rigid body modes for the

projected CG algorithm. In all cases, the mesh TC of

the coupling region has |TC | ∼ 3.5 · 103 elements.

6.1 Weak scaling

Usually, the weak scaling of iterative methods such as

the CG algorithm is done by analyzing the evolution

of the average time per iteration for different system

sizes. This is done because increasing the system size

increases the number of iterations of these solvers, and

thus the wall time does not offer a suitable measurement

of the scalability. In our case, though, , the duration

of each iteration depends on the choice of solvers for

the system models - which are assumed here to have

weak scalings of their own. Thus, this quantity is not a

suitable measurement for the weak scaling of solely the

projected CG algorithm implemented here.

Considering this, we chose to use the number of iter-

ations of the coupled solver until the convergence, nconv
for the weak scaling. This quantity should stay stable

if one of the model’s meshes increases in number of

elements while the mediator space stays the same. In

the context of our traction test, this corresponds to in-

creasing the number of elements of the mesh T2 while

keeping the mesh T1 unchanged (and thus the mediator

space). We will present in the following sub-sections the

numerical costs of the coupling phase, compared to the

model solver costs.

To do this scaling test, we used a mesh T1 with

|T1| ∼ 5 · 105 elements, and we varied the number of

elements of T2 from 7.2 ·103 to ∼ 4.9 ·105, roughly dou-

bling |T2| for each case. The number of processors was

14 Thiago Milanetto Schlittler, Régis Cottereau

Figure 9: (color online) Domains of the meshes used for the traction coupling tests: (a) schematic representation

of the test, (b) domain Ω1 of the first model, (c) domain Ω2 of the second model, and (d) the coupling region,

Ωc12. The black lines on Figs (b), (c) and (d) indicate their geometrical position compared to one another.

7.2e3 1.7e4 3.3e4 6.2e4 1.3e5 2.7e5 4.9e5
Mesh T

2
 elements

0

200

400

600

800

1000

F
in

a
l
p

ro
je

c
te

d
 r

e
s
id

u
a

l

With reortho.

Without reortho.

(a)

7.2e3 1.7e4 3.3e4 6.2e4 1.3e5 2.7e5 4.9e5
Mesh T

2
 elements

0

10

20

30

40

50

60

70

80

90

100

It
e

ra
ti
o

n
s
 u

n
ti
l
c
o

n
v
e

rg
e

n
c
e

,
n

c
o
n
v

Both conv.

Only residual conv.

Only RB conv.

(b)

Figure 10: (color online) Weak scaling for different implementations of the projected CG algorithm: number of

iterations until convergence vs. numbers of elements for the mesh T2: (a) with and without the reorthogonalization

step, and (b) for different convergence tests (only checking the residual convergence, only checking the R2α

correction convergence (RB check), and doing both checks.). In (a), both checks were used. In all cases, |T1| ∼ 5·105

elements.

also increased accordingly, increasing from 6 to 384 pro-

cessors for the smallest and the largest values of |T2|.
The simulations were done using the inverse coupling

matrix preconditioner, MPC = (Cm)
−1

. In all cases, we

used the relative ρ(k) convergence check ρ(k) < ερρ(0),

with ερ = 10−8, and, when applicable, the R2α conver-

gence check from Eq. (26), with εRB = 10−6.

Fig. 10 presents nconv for each simulation. Fig. 10a

shows the difference due to the reorthogonalization (or

lack of thereof), while Fig. 10b shows the differences

due to the different convergence check tests - namely,

with only the ρ(k) check, only the R2α check, and with

both checks. In Fig. 10a, both checks were used.

For the case without the reorthogonalization, the

algorithm does not present any form of weak scaling.

The number of iterations varies wildly between 365 and

866, with no correlation with the number of elements

from the mesh T2. The reorthogonalization reduces and

stabilizes considerably the number of iterations, which

now vary between 52 and 66, which corresponds to a

better weak scaling.

Concerning the convergence checks, using either only

the ρ(k) check or the R2α check results in series of sim-
ulations with worse scaling than using both checks at

the same time (notably for |T2| ∼ 1.7 · 104). While the

norm of R2α is a stronger convergence parameter than

ρ(k) (reflected by the larger number of iterations for the

former), it does not supersede it, since the R2α check

curve does not coincide with the curve with both checks.

Considering this, we decided to keep both checks.

6.2 Reorthogonalization and convergence check

In this section, we will present in more details the re-

sults of the scaling for |T2| ∼ 1.7 · 104. This series of

simulations presents the largest difference of number of

iterations until convergence between the different algo-

rithm implementations (Fig. 10), and hence is better

adapted to illustrate the differences between them.

Fig. 11 shows the evolution of the projected resid-

ual ρ(k) (following Eq. (25)) and of the rigid body (RB)

modes correction norm |R2α|, as a function of the it-

Fully scalable implementation of a volume coupling scheme for the modeling of multiscale materials 15

0 50 100 150 200
Iteration k

10
-5

10
0

10
5

10
10

P
ro

je
c
te

d
re

s
id

u
a
l,
ρ

(k
)

No reortho.

With reortho.

0
10

-7

10
9

700

(a)

0 50 100 150 200

Iteration k

10
-2

10
-1

10
0

10
1

10
2

10
3

C
o
rr

e
c
ti
o
n

n
o
rm

,
|R

2
α

|
2

No reortho.

With reortho.

10
-2

10
3

0 700

(b)

Figure 11: (color online) Effect of the descent reorthogonalization on the evolution of the final (a) residual norm,

ρ(k), and (b) rigid body correction norm |R2α|2. The algorithm converged after 687 iterations without the re-

orthogonalization (red curves), and after 61 with it and both convergence checks (black curves). The main figures

show the curves up to 200 iterations, while the insets show the full curves. The simulations with only the residual

or the RB convergence check follow the black curves, stopping after 8 and 35 iterations, respectively. Number of

elements in each mesh: |T1| ∼ 5 · 105 elements, |T2| ∼ 1.7 · 104 elements.

Figure 12: (color online) Final, deformed traction test mesh for different projected CG algorithm implementations.

The colors represent the von Mises stress. Number of elements in each mesh: |T1| ∼ 5 ·105 elements, |T2| ∼ 1.7 ·104

elements. The displacements were scaled by a factor of 103.

eration. The black and the red curves show the results

for reorthogonalized and non-reorthogonalized simula-

tions, with both the convergence checks. The simula-

tions with only one of the convergence checks follow

the black line, ending after 8 iterations for the residual

check, and after 35 for the RB check. Fig. 12 shows the

final, deformed system for each implementation case,

with deformations scaled by a factor of 103.

We can see from Fig. 11 that the non-reorthogonalized

implementation differs after only a few iterations from

the other implementations, indicating that the orthog-

onality of the descents is lost shortly after the start

of the simulation. After this point, we have recurrent

peaks for the residual, with amplitude variations of a

factor of ∼ 102. The RB correction present smaller os-

cillations.

The reorthogonalization operation not only reduces

considerably the number of iterations until convergence

from 687 to 61 (for the same convergence checks), but

it also eliminates these peaks from all but the first few

iterations. As we can see from Fig.12, the converged

solution is similar in both cases. Using only one of the

convergence checks yields results that are not properly

converged. All these factors indicate that the reorthog-

onalization is needed to guarantee the robustness and

efficiency of the projected CG algorithm, and that both

convergence checks are needed to guarantee a correct

result.

16 Thiago Milanetto Schlittler, Régis Cottereau

0 60 120 180 240
Iterations k

10
-4

10
2

10
8

10
14

P
ro

je
c
te

d
 r

e
s
id

u
a
l,
 ρ

(k
)

No precond.
Jacobi precond.
Coupl. precond.

(a)

0 60 120 180 240
Iterations k

10
0

10
1

10
2

10
3

C
o
rr

e
c
ti
o
n
 n

o
rm

,
|R

2
α

| 2

No precond.
Jacobi precond.
Coupl. precond.

(b)

Figure 13: (color online) Effects of the preconditioner choice on (a) the residual norm, ρ(k), and (b) the L2 norm

of the rigid body correction term, |R2α|2. Number of elements in each mesh: |T1| ∼ |T2| ∼ 1 · 106 elements.

Preconditioned simulations were done with ερ = 10−8 and εRB = 10−6, and the non-preconditioned one with

ερ = 10−8 and εRB = 10−4.

MPC nconv Total time (s) Time / iter. (s) Model 1 (s) Model 2 (s) Precond. (s) Proj. (s)

C−1
m 79 136.639 1.730 39.769 32.452 64.199 0.219

29.105% 23.750% 46.985% 0.160%

diag (Cm)−1 227 169.337 0.746 85.422 83.370 0.002 0.543

50.445% 49.233% 0.001% 0.321%

Table 4: Wall time costs for each component of the projected CG algorithm (Alg. 1), for different choices of precon-

ditioner matrices, MPC . “Model 1” and model “Model 2” correspond to calls to the model’s solvers, “Precond.”

to the preconditioner operations, and “Proj.” to the projection operations, ΠR.

6.3 Preconditioner effects

Before we pass to an applied case, let us discuss the ef-

fects of different preconditioners MPC on the projected

CG algorithm convergence, and also analyze the (pos-

sibly) overhead time added to the algorithm for each

choice. We tested two different cases: MPC = C−1
m ,

based on Eq. (27); MPC = diag (Cm)
−1

, which is a

Jacobi-like approximation of the previous case. To use

the first preconditioner efficiently, we must define a

third equation system, using Cm as the system ma-

trix, and solve it. The Jacobi-like preconditioner, on

the other hand, only adds a vector term-by-term mul-

tiplication.

To do these tests, we chose to use a coupled system

similar to the previous traction test, with both system

meshes T1 and T1 containing∼ 1·106 elements. The sim-

ulations were done on 384 processors. The convergence

parameters chosen were ερ = 10−8 and εRB = 10−6.

Figs. 13 show the residual ρ(k) and the RB correc-

tion |R2α|2 for all simulation cases. For reference, these

figures also show the results with no preconditioning

and ερ = 10−8 and εRB = 10−4 (this case did not con-

verge for εRB = 10−6). As one should expect, the pre-

conditioned simulations present much lower values of

ρ(k), and the R2α correction norm goes down rapidly

to reasonable values for the preconditioned simulations,

while it stays slightly above the correct values during

the non-preconditioned simulation.

This can be explained by the imprecisions of the so-

lution approximation Φ(k): Eq. (23) has been deduced

for the real solution Φ, and it will only result on valid

rigid body modes corrections if Φ(k) is a good approx-

imation of it - which is false during the first iterations

of the solver in all cases. Since the non-preconditioned

simulation takes longer to yield a reasonable approxi-

mation of Φ, it presents the largest interval with incor-

rect R2α corrections - and hence the larger oscillations

and slower convergence.

Table 4 presents the timing and iteration statis-

tics for each of the preconditioned simulations, includ-

ing the timing of their main components: the system

solvers, the preconditioner, and the projection opera-

tors. In both cases, the projection operation amount

to less than 0.4% of the wall time. This indicates that

our implementation of the projection operator ΠR does

not incur a performance bottleneck, and that the algo-

rithm optimization should focus on reducing the cost of

the models’ solvers and the number of iterations of the

coupled solver. We should stress here that the costs of

Fully scalable implementation of a volume coupling scheme for the modeling of multiscale materials 17

model solvers and of the MPC = C−1
m preconditioner

depend strongly on the number of processors chosen

for the models and the coupling. Note that the matrix

Cm is inverted using the generalized minimal residual

method (GMRES), PETSc’s default parallel iterative

linear equation system solver.

Regarding the preconditioner costs, the MPC =

C−1
m case is considerably more expensive than the Jacobi-

like MPC = diag (Cm)
−1

case (and even more expen-

sive than the solves of the models). This is compensated

by the reduced number of iterations, and hence reduce

number of calls to both models’ solvers, resulting into

a simulation ∼ 19.3% faster in the former case. The

high cost of the MPC = C−1
m preconditioner is mainly

due to the relatively low sparsity of this matrix when

compared to the other matrices, which reduces the effi-

ciency of the linear solver associated to it. If such costs

becomes too high, the results for the Jacobi-like precon-

ditioner MPC = diag (Cm)
−1

show that it is a viable

numerical alternative.

7 Application: crack test

For an application test, we considered the coupled crack

test, with the meshes shown in Fig. 14. The macroscopic

system is described by an homogeneous 3D linear elas-

ticity model, with a Young’s modulus E = 200 GPa and

a shear modulus µ = 80 GPa. The corresponding do-

main Ω1 is represented by the mesh T1 (Fig. 14a), with

|T1| ∼ 3.4 · 104 elements. Its leftmost side is clamped,

while displacements are imposed on right side holes,

on the ẑ and −ẑ directions. The microscopic system

is described by an heterogeneous 3D anisotropic linear

elasticity model, with physical parameters c11 = 198

GPa, c12 = 125 GPa, c44 = 122 GPa. Its domain Ω2

(Fig. 14b) is divided into 250 crystals, each with its

own random anisotropy direction following an uniform

direction distribution on a sphere. The corresponding

mesh has |T2| ∼ 7.2 · 106 elements. This model is lo-

cated at the crack junction of the macroscopic mesh

T1, and both meshes are coupled by the region marked

in Fig. 14c, with a coupling mesh with |TC | ∼ 1.1 · 103

elements. Overall, the domains were meshed in such a

way that the mesh T1’s element size is ∼ 10× smaller

near the crack junction than on the outer region, while

the mesh T2’s element size is ∼ 10× smaller than the

smallest element size of T1. For the preconditioner, we

used MPC = C−1
m .

The simulation was run on 96 processors, and con-

verged after 63 iterations, with the convergence param-

eters, we used ερ = 2 · 10−4 and εRB = 10−4. Fig. 15

present the resulting deformed meshes, as well as the

von Mises stress for both the models. The displacement

conditions on the macroscopic mesh T1 result on a co-

herent deformation of the mesh T2, which presents a

maximum von Mises stress near the tip of the crack.

We can also visualize the grain anisotropy effects near

this region, with different grains presenting different de-

formation responses.

Operation Time (s)

System initializations 8.09
Coupling matrix assemble 27.16
I/O 52.48
Arlequin / FETI solver 398.61

Setup 2.53
Solve model 1 52.99
Solve model 2 340.14
Precond. 2.05
Other 0.90

Total 486.34

Table 5: Wall times for the coupled crack test simula-

tion, with convergence parameters ερ = 2 · 10−4 and

εRB = 10−4. “System initialization” consists on the

equation systems’ initialization. The “Arlequin / FETI

solver” time is subdivided into its main components, in-

cluding the setup, the models’ solves, preconditioning

operations, and other (projections and vector manipu-

lations)

8 Conclusion

We presented in this article a fully scalable framework

to assemble and solve a coupled problem using the Ar-
lequin method. The two main components of this frame-

work are a new parallel algorithm to find the intersec-

tions between the meshes of the coupled models and a

more detailed and scalable implementation of a FETI

/ Arlequin solver. While the total CPU time costs of

the intersection construction algorithm are consider-

able (mainly due to the choice of the exact geometry

libraries), this algorithm follows a strong scaling, which

guarantees a fast assemble of the coupling operations if

a suitable number of processors is chosen.

Concerning the FETI / Arlequin solver, we pre-

sented a parallel implementation which has a weak scal-

ing and for which most of time cost is due to the calls of

the models’ solvers. This translates into an algorithm

with a small numerical overhead for the coupling op-

erations, and which will not worsen the scalability of

the models’ solvers. This is possible due to our detailed

study of the optimizations needed to avoid the numeri-

cal bottlenecks of the algorithm and a careful choice of

convergence criteria.

18 Thiago Milanetto Schlittler, Régis Cottereau

(a) (b) (c)

Figure 14: (color online) Meshes used for the crack test: (a) macroscopic homogeneous model mesh, T1, with the

microscopic, polycrystalline and anisotropic model mesh inset, T2. (b) zoom on the microscopic mesh. (c) coupling

region mesh, TC (black, thick lines). Number of elements in each mesh: |T1| ∼ 3.4 · 104 elements, |T2| ∼ 1.1 · 106

elements.

(a) (b) (c)

Figure 15: (color online) Results of the crack test: (a) deformed macroscopic model mesh, T1, (b) deformed

microscopic model mesh, T2 (inserted into the macroscopic mesh), and (c) deformed microscopic model mesh

with grains. In (a) and (b), the colors represent the von Mises stress (log scale) of the macro and micro models,

respectively. Results obtained after 63 iterations, with ερ = 2 · 10−4 and εRB = 10−4, and using the coupling

matrix preconditioner.

The usage of the FETI method also allows this al-

gorithm to be easily adapted to multi-physics problems

with very different coupled model pairs, such as linear

/ non-linear models, atomistic / continuum and deter-

ministic / stochastic model pairs. Furthermore, the for-

mulation of the coupling method is completely indepen-

dent from the models, referencing them only through

the calls to their solvers. This allows the usage of each

models’ own solver and code implementation without

changing the coupling algorithm. The deterministic /

stochastic model pair application is especially impor-

tant for the numerical homogenization of random ma-

terials [10,8,9]. Another interesting extensions of this

algorithm consist on generalizing it for a parallel solver

with time coupled models, or for reduced-order solvers,

such as the PGD [28]. Our future works will focus on

these applications.

Finally, the work presented here can be extended to

other physical couplings using the formulation from Eq.

(1), such as the ones presented in refs. [31,6,21], and the

intersection search algorithm can be adapted to other

numerical methods, such as the Nitsche method [26].

Acknowledgements This work benefited from French state
funding managed by the National Research Agency under
project number ANR-14-CE07-0007 CouESt. The simulations
were done using the CentraleSupelec-ENS Paris-Saclay’s com-
puting mesocenter, FUSION. We would like to thank its sup-
port team for the help provided during the simulations.

References

1. Code Arlequin. https://github.com/cottereau/CArl

2. Alart, P., Iceta, D., Dureisseix, D.: A nonlinear Domain
Decomposition formulation with application to granular
dynamics. Computer Methods in Applied Mechanics and
Engineering 205-208, 59–67 (2012). DOI 10.1016/j.cma.

https://github.com/cottereau/CArl

Fully scalable implementation of a volume coupling scheme for the modeling of multiscale materials 19

2011.04.024. URL https://hal.archives-ouvertes.fr/

hal-00597519

3. Ben Dhia, H.: Problèmes mécaniques multi-échelles:
la méthode Arlequin (written in French). Comptes
Rendus de l’Académie des Sciences - Series IIB
- Mechanics-Physics-Astronomy 326(12), 899–904
(1998). DOI 10.1016/S1251-8069(99)80046-5. URL
http://www.sciencedirect.com/science/article/pii/

S1251806999800465

4. Ben Dhia, H., Elkhodja, N., Roux, F.X.: Multimodel-
ing of multi-alterated structures in the Arlequin frame-
work. European Journal of Computational Mechan-
ics 17(5-7), 969–980 (2008). DOI 10.3166/remn.17.
969-980. URL http://www.tandfonline.com/doi/abs/

10.3166/remn.17.969-980

5. Ben Dhia, H., Rateau, G.: The Arlequin method as a
flexible engineering design tool. Int. J. Numer. Meth.
Engng. 62(11), 1442–1462 (2005). DOI 10.1002/nme.
1229. URL http://onlinelibrary.wiley.com/doi/10.

1002/nme.1229/abstract

6. Chamoin, L., Prudhomme, S., Ben Dhia, H., Oden, T.:
Ghost forces and spurious effects in atomic-to-continuum
coupling methods by the Arlequin approach. Int. J. Nu-
mer. Meth. Engng. 83(8-9), 1081–1113 (2010). DOI
10.1002/nme.2879. URL http://onlinelibrary.wiley.

com/doi/10.1002/nme.2879/abstract

7. Chessa, J., Belytschko, T.: An extended finite element
method for two-phase fluids: flow simulation and model-
ing. Journal of Applied Mechanics 70(1), 10–17 (2003).
DOI 10.1115/1.1526599

8. Cottereau, R.: Numerical strategy for unbiased ho-
mogenization of random materials. Int. J. Numer.
Meth. Engng 95(1), 71–90 (2013). DOI 10.1002/nme.
4502. URL http://onlinelibrary.wiley.com/doi/10.

1002/nme.4502/abstract

9. Cottereau, R.: A Stochastic-deterministic Coupling
Method for Multiscale Problems. Application to Numer-
ical Homogenization of Random Materials. Procedia
IUTAM 6, 35–43 (2013). DOI 10.1016/j.piutam.2013.
01.004. URL http://www.sciencedirect.com/science/

article/pii/S2210983813000059

10. Cottereau, R., Clouteau, D., Ben Dhia, H., Zac-
cardi, C.: A stochastic-deterministic coupling method
for continuum mechanics. Computer Methods in
Applied Mechanics and Engineering 200(47–48), 3280–
3288 (2011). DOI 10.1016/j.cma.2011.07.010. URL
http://www.sciencedirect.com/science/article/pii/

S0045782511002519

11. Dı́ez, P., Cottereau, R., Zlotnik, S.: A stable extended
FEM formulation for multi-phase problems enforcing the
accuracy of the fluxes through Lagrange multipliers. In-
ternational Journal for Numerical Methods in Engineer-
ing 96(5), 303–322 (2013). DOI 10.1002/nme.4554

12. Dolean, V., Jolivet, P., Nataf, F.: An Introduction to Do-
main Decomposition Methods. Other Titles in Applied
Mathematics. Society for Industrial and Applied Mathe-
matics (2015). URL http://epubs.siam.org/doi/book/

10.1137/1.9781611974065

13. E, W., Engquist, B.: The Heterognous Multiscale
Methods. Communications in Mathematical Sciences
1(1), 87–132 (2003). DOI 10.4310/CMS.2003.v1.n1.
a8. URL http://www.intlpress.com/site/pub/pages/

journals/items/cms/content/vols/0001/0001/a008/

14. Elkhodja, N.: Approches de structures complexes dans
des cadres adaptés de la méthode Arlequin (PhD thesis,
written in French)

15. Embar, A., Dolbow, J., Harari, I.: Imposing Dirichlet
boundary conditions with Nitsche’s method and spline-
based finite elements. International Journal for Numeri-
cal Methods in Engineering 83(7), 877–898 (2010). DOI
10.1002/nme.2863

16. Farhat, C., Roux, F.X.: A method of finite element tear-
ing and interconnecting and its parallel solution algo-
rithm. International Journal for Numerical Methods in
Engineering 32(6), 1205–1227 (1991). DOI 10.1002/nme.
1620320604. URL http://doi.wiley.com/10.1002/nme.

1620320604

17. Fernández-Méndez, S., Huerta, A.: Imposing essential
boundary conditions in mesh-free methods. Computer
Methods in Applied Mechanics and Engineering 193(12-
14), 1257–1275 (2004). DOI 10.1016/j.cma.2003.12.019

18. Gander, M.J., Japhet, C.: An Algorithm for Non-
Matching Grid Projections with Linear Complexity. In:
M. Bercovier, M.J. Gander, R. Kornhuber, O. Widlund
(eds.) Domain Decomposition Methods in Science and
Engineering XVIII, no. 70 in Lecture Notes in Compu-
tational Science and Engineering, pp. 185–192. Springer
Berlin Heidelberg (2009). URL http://link.springer.

com/chapter/10.1007/978-3-642-02677-5_19. DOI:
10.1007/978-3-642-02677-5 19

19. Ghanem, A., Torkhani, M., Mahjoubi, N., Baranger,
T., Combescure, A.: Arlequin framework for multi-
model, multi-time scale and heterogeneous time in-
tegrators for structural transient dynamics. Com-
puter Methods in Applied Mechanics and Engineering
254, 292–308 (2013). DOI 10.1016/j.cma.2012.08.019.
URL http://linkinghub.elsevier.com/retrieve/pii/

S004578251200271X

20. Gill, P.E., Murray, W., Institute of Mathematics and
Its Applications, National Physical Laboratory (Great
Britain) (eds.): Numerical methods for constrained op-
timization. Academic Press, London ; New York (1974)

21. Hu, H., Belouettar, S., Potier-Ferry, M., Daya, E.M.,
Makradi, A.: Multi-scale nonlinear modelling of sandwich
structures using the Arlequin method. Composite Struc-
tures 92(2), 515–522 (2010). DOI 10.1016/j.compstruct.
2009.08.051. URL http://www.sciencedirect.com/

science/article/pii/S0263822309003249

22. Hughes, T.J.R.: Multiscale phenomena: Green’s
functions, the Dirichlet-to-Neumann formulation,
subgrid scale models, bubbles and the origins of
stabilized methods. Computer Methods in Ap-
plied Mechanics and Engineering 127(1–4), 387–401
(1995). DOI 10.1016/0045-7825(95)00844-9. URL
http://www.sciencedirect.com/science/article/pii/

0045782595008449

23. Juntunen, M., Stenberg, R.: Nitsche’s mthod for general
boundary conditions. Mathematics of Computation 78,
1353–1374 (2009). DOI 10.1090/S0025-5718-08-02183-2

24. Kirk, B.S., Peterson, J.W., Stogner, R.H., Carey, G.F.:
libMesh: A C++ Library for Parallel Adaptive Mesh
Refinement/Coarsening Simulations. Engineering with
Computers 22(3–4), 237–254 (2006). http://dx.doi.

org/10.1007/s00366-006-0049-3

25. Marchais, J., Rey, C., Chamoin, L.: Representation of
localized phenomena in dynamics using multi-scale cou-
pling. In: B.H.V. Topping (ed.) Proceedings of the
Eleventh International Conference on Computational
Structures Technology, 252, pp. 1–12 (2012)

26. Massing, A., Larson, M.G., Logg, A.: Efficient imple-
mentation of finite element methods on non-matching
and overlapping meshes in 3d. arXiv:1210.7076 [math]

https://hal.archives-ouvertes.fr/hal-00597519
https://hal.archives-ouvertes.fr/hal-00597519
http://www.sciencedirect.com/science/article/pii/S1251806999800465
http://www.sciencedirect.com/science/article/pii/S1251806999800465
http://www.tandfonline.com/doi/abs/10.3166/remn.17.969-980
http://www.tandfonline.com/doi/abs/10.3166/remn.17.969-980
http://onlinelibrary.wiley.com/doi/10.1002/nme.1229/abstract
http://onlinelibrary.wiley.com/doi/10.1002/nme.1229/abstract
http://onlinelibrary.wiley.com/doi/10.1002/nme.2879/abstract
http://onlinelibrary.wiley.com/doi/10.1002/nme.2879/abstract
http://onlinelibrary.wiley.com/doi/10.1002/nme.4502/abstract
http://onlinelibrary.wiley.com/doi/10.1002/nme.4502/abstract
http://www.sciencedirect.com/science/article/pii/S2210983813000059
http://www.sciencedirect.com/science/article/pii/S2210983813000059
http://www.sciencedirect.com/science/article/pii/S0045782511002519
http://www.sciencedirect.com/science/article/pii/S0045782511002519
http://epubs.siam.org/doi/book/10.1137/1.9781611974065
http://epubs.siam.org/doi/book/10.1137/1.9781611974065
http://www.intlpress.com/site/pub/pages/journals/items/cms/content/vols/0001/0001/a008/
http://www.intlpress.com/site/pub/pages/journals/items/cms/content/vols/0001/0001/a008/
http://doi.wiley.com/10.1002/nme.1620320604
http://doi.wiley.com/10.1002/nme.1620320604
http://link.springer.com/chapter/10.1007/978-3-642-02677-5_19
http://link.springer.com/chapter/10.1007/978-3-642-02677-5_19
http://linkinghub.elsevier.com/retrieve/pii/S004578251200271X
http://linkinghub.elsevier.com/retrieve/pii/S004578251200271X
http://www.sciencedirect.com/science/article/pii/S0263822309003249
http://www.sciencedirect.com/science/article/pii/S0263822309003249
http://www.sciencedirect.com/science/article/pii/0045782595008449
http://www.sciencedirect.com/science/article/pii/0045782595008449
http://dx.doi.org/10.1007/s00366-006-0049-3
http://dx.doi.org/10.1007/s00366-006-0049-3

20 Thiago Milanetto Schlittler, Régis Cottereau

(2012). URL http://arxiv.org/abs/1210.7076. ArXiv:
1210.7076

27. Moës, N., Dolbow, J., Belytschko, T.: A finite ele-
ment method for crack growth without remeshing.
Int. J. Numer. Meth. Engng. 46(1), 131–150 (1999).
DOI 10.1002/(SICI)1097-0207(19990910)46:1〈131::
AID-NME726〉3.0.CO;2-J. URL http://onlinelibrary.

wiley.com/doi/10.1002/(SICI)1097-0207(19990910)

46:1<131::AID-NME726>3.0.CO;2-J/abstract

28. Néron, D., Ben Dhia, H., Cottereau, R.: A de-
coupled strategy to solve reduced-order multimodel
problems in the PGD and Arlequin frameworks.
Comput Mech pp. 1–13 (2016). DOI 10.1007/
s00466-015-1236-0. URL http://link.springer.com/

article/10.1007/s00466-015-1236-0

29. Samet, H.: Hierarchical spatial data structures. In:
A.P. Buchmann, O. Günther, T.R. Smith, Y.F. Wang
(eds.) Design and Implementation of Large Spa-
tial Databases, no. 409 in Lecture Notes in Com-
puter Science, pp. 191–212. Springer Berlin Heidelberg
(1989). URL http://link.springer.com/chapter/10.

1007/3-540-52208-5_28. DOI: 10.1007/3-540-52208-
5 28

30. The CGAL Project: CGAL User and Reference Manual,
4.7 edn. CGAL Editorial Board (2015). URL http://

doc.cgal.org/4.7/Manual/packages.html

31. Wellmann, C., Wriggers, P.: A two-scale model of granu-
lar materials. Computer Methods in Applied Mechanics
and Engineering 205–208, 46–58 (2012). DOI 10.1016/j.
cma.2010.12.023. URL http://www.sciencedirect.com/

science/article/pii/S0045782510003798

32. Xiao, S., Belytschko, T.: A bridging domain method for
coupling continua with molecular dynamics. Computer
Methods in Applied Mechanics and Engineering 193(17-
20), 1645–1669 (2004). DOI 10.1016/j.cma.2003.12.053.
URL http://linkinghub.elsevier.com/retrieve/pii/

S004578250400026X

33. Zomorodian, A., Edelsbrunner, H.: Fast software for box
intersections. pp. 129–138. ACM Press (2000). DOI
10.1145/336154.336192. URL http://portal.acm.org/

citation.cfm?doid=336154.336192

http://arxiv.org/abs/1210.7076
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J/abstract
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J/abstract
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J/abstract
http://link.springer.com/article/10.1007/s00466-015-1236-0
http://link.springer.com/article/10.1007/s00466-015-1236-0
http://link.springer.com/chapter/10.1007/3-540-52208-5_28
http://link.springer.com/chapter/10.1007/3-540-52208-5_28
http://doc.cgal.org/4.7/Manual/packages.html
http://doc.cgal.org/4.7/Manual/packages.html
http://www.sciencedirect.com/science/article/pii/S0045782510003798
http://www.sciencedirect.com/science/article/pii/S0045782510003798
http://linkinghub.elsevier.com/retrieve/pii/S004578250400026X
http://linkinghub.elsevier.com/retrieve/pii/S004578250400026X
http://portal.acm.org/citation.cfm?doid=336154.336192
http://portal.acm.org/citation.cfm?doid=336154.336192

	1 Introduction
	2 Arlequin framework
	3 Solving the Arlequin problem: FETI solver
	4 Coupling matrix assembly and parallelization
	5 Mesh intersection search
	6 Numerical results
	7 Application: crack test
	8 Conclusion

