
HAL Id: hal-01635880
https://hal.science/hal-01635880v1

Submitted on 15 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using The Nanvix Operating System in Undergraduate
Operating System Courses

Pedro Henrique Penna, Henrique Cota de Freitas, João Caram, Márcio
Castro, Jean-François Méhaut

To cite this version:
Pedro Henrique Penna, Henrique Cota de Freitas, João Caram, Márcio Castro, Jean-François Méhaut.
Using The Nanvix Operating System in Undergraduate Operating System Courses. VII Brazilian
Symposium on Computing Systems Engineering, Nov 2017, Curitiba, Brazil. �hal-01635880�

https://hal.science/hal-01635880v1
https://hal.archives-ouvertes.fr


Using The Nanvix Operating System in
Undergraduate Operating System Courses

Pedro Henrique Penna,
Henrique C. Freitas and João Caram

Department of Computer Science
Pontifical Catholic University of Minas Gerais

Belo Horizonte – Brazil

Márcio Castro
Department of Informatics and Statistics

Federal University of Santa Catarina
Florianópolis – Brazil

Jean-François Méhaut
University Grenoble Alpes,

Inria, CNRS, Grenoble INP, LIG
F-38000 Grenoble – France

Abstract—Operating Systems (OSs) have an important position
in the Computer Science curriculum. When students face this
subject, they study core concepts, mechanisms and strategies
that apply to several fields. To support practical lectures in an
OSs course, instructors may adopt an OS on which students can
work, exercising their knowledge and enhancing their practical
skills. In this context, we present Nanvix, a new OS designed to
address this use in undergraduate OSs courses. We introduce a
flexible assignment-based teaching methodology for our OS, and
we assess the effectiveness of this methodology by applying it
in the OSs course of the Pontifical Catholic University of Minas
Gerais. When using Nanvix, the average score of the students
in the course increased in 11.2%, and the failure rate dropped
47.7%. Moreover, we observed that with Nanvix students got
more motivated and interested in the OSs field.

I. INTRODUCTION

Operating Systems (OSs) play an important role in the soft-
ware stack. They act as a hardware manager by multiplexing
access to resources, ensuring data protection and integrity, and
enforcing protocols and policies. Beyond that, OSs extend the
functionalities of the underlying hardware, presenting the user
a programming interface that is more pleasant to deal with.
In summary, without OSs, programmers would have to worry
about machine intricacies, ending up to be less productive [1].

Given the importance of OSs nowadays, it is simple to
highlight some extra points that turn them into a significant
subject to Computer Science (CS) curriculum. First, OSs help
students to design, implement and hack complex computing
systems. Also, they introduce core concepts, mechanisms and
strategies which can be applied to several fields of CS.

Teaching methodologies in OSs can follow several ap-
proaches. One that is widely adopted and mixes theory with
practice works as follows. The instructor divides the OSs
course into two parts: theoretical and practical lectures. In the
former, he/she introduces students to the main concepts and
principles of OSs, usually using some supporting material,
such as textbooks. In this first part, the goal is to provide
students with a solid foundations in the field. In practical
lectures on the other hand, the instructor assigns activities to
students so that they can exercise their theoretical knowledge.
Here, the instructor often alternates between user- and kernel-
level activities, possibly using some supporting OS [2], [3],
[4], [5], [6], [7].

With this kind of software, students have at their disposal
an OS on which they can work, exercising their theoretical
knowledge and enhancing their practical skills. Unfortunately,
existing OSs lack in several points. Some are restricted to run
in simulators, while others run on hardware, but are too large
to offer a pleasant learning rate to students; some provide no
teaching material neither grading suggestions, whereas others
impose a strict teaching methodology that may not reflect the
instructor needs; and finally, some embrace outdated features,
while others support modern features, but ask students to im-
plement most of them, which can be overwhelming depending
on the course schedule.

In this context, the goal of this work is to present Nanvix,
a new OS that we designed and implemented from scratch
to tackle the aforementioned problems. Nanvix may be used
by instructors to introduce students to core OS concepts,
which are common across the general purpose, real-time and
embedded systems. In addition, this work introduces a flexible
teaching methodology that may be used with Nanvix. We
present an evaluation of our methodology and OS, when we
applied both in the OSs course of the CS Undergraduate
Program at Pontifical Catholic University of Minas Gerais
(PUC Minas). Our work differs from previous ones in several
points. First, in contrast to related software, Nanvix:

i. is smaller, hence making kernel hacking easier;
ii. is fully featured, thus enabling instructors to better meet

their teaching needs;
iii. runs in virtual machines and on real hardware, which

further motivate students;
iv. is shipped with an extensive documentation, hence sav-

ing instructor’s time; and
v. presents an internal structure that is similar to Unix and

targets Posix specification, thus making students face a
realistic environment.

Second, this work introduces a flexible assignment-based
teaching methodology that may be used with Nanvix. This
type of methodology enables instructors to better meet their
course schedule and it is absent in related OSs. Finally, this
work presents a quantitative evaluation of the use of our OS.
To the best of our knowledge, such evaluation is hardly found
in the literature, thus reinforcing the our main contributions.



The remainder of this work is organized as follows. In
Section II, we discuss related work. In Section III, we present
the internals of Nanvix. In Section IV, we introduce the
teaching methodology that may be used with our OS. In
Section V, we present a qualitative and quantitative evaluation
of our Nanvix-based teaching methodology. In Section VI, we
expose our conclusions and future perspectives of this work.

II. RELATED WORK

To support practical lectures in OSs courses, several OSs
narrowed for this goal are available. In the sections that follow,
we briefly discuss some of the most popular, and then contrast
them with Nanvix. For a more detailed discussion on this topic,
we refer the reader to [8], [9], [10], [11].

Minix is one of the first successful instructional OSs in-
troduced by Vrije University [6]. It is fully featured and
accompanies a well known textbook, but it presents some
drawbacks which turn it inconvenient to be used in OS courses.
First, Minix is a large system, when compared to related OSs.
Second, besides the practical activities that are presented in
Minix’s textbook, no teaching methodology is suggested with
it. It is up to the instructor to decide how to introduce Minix
to students. Finally, it embraces outdated features, such as a
segmentation-based paging system with no swapping.

Nachos is an OS, developed at University of California,
Berkley [2]. It runs in a simulated MIPS environment as a
user-level Unix process, and it was designed so as to provide a
minimum working example of a system. Nachos accompanies
a series of assignments which are built on top of one another
and students work on major portions of the OS. Nachos
instructors observed that their system and assignment-based
teaching methodology helped students to further consolidate
their understanding in OSs. However, they reported that they
were not able to find a textbook that covered many of the
concepts used in Nachos, thus stepping the learning rate.

GeekOS is an OS developed at University of Maryland,
College Park. It is structured as a monolithic kernel and
provides the bare-bone features of a modern OS. Based on
this system, students work in a series of assignments which
are built on the top of one another. An evaluation of GeekOS
is presented in [4], and the results showed that students
found that GeekOS helped them to understand OS concepts
though the course. Moreover, results unveiled that students felt
motivated on having GeekOS to run on real hardware.

Table I highlights the main differences between the afore-
mentioned OSs and Nanvix. In contrast, Nanvix is fully
featured (complete), and it accompanies a flexible assignment-
based teaching methodology that enables instructors to better
meet their schedule and teaching needs. Moreover, Nanvix
features a Unix System V architecture and Posix compliance,
thus making students face a realistic environment. Besides
this, Nanvix is smaller, hence making kernel hacking easier;
it is shipped with an extensive documentation, thus saving
instructor’s time; and it runs in virtual machines (easy to
debug) and on real hardware (further motivating).

TABLE I
COMPARISON BETWEEN OPERATING SYSTEMS.

Name Complete? Teaching Methodology Comments

Minix yes none outdated features
Nachos no assignments, not flexible does not run on hardware
GeekOS no assignments, not flexible no Posix compliance
Nanvix yes assignments, flexible Unix and Posix support

III. THE NANVIX INSTRUCTIONAL OPERATING SYSTEM

Nanvix is an OS that we designed from scratch to be
small and simple, and yet fully featured. It originally tar-
gets x86-based PCs and features virtual-memory based on
paging, a hierarchical Unix file system based on inodes, a
uniform device driver interface, and a preemptive priority-
based scheduler. Nanvix is under active development, with
growing interests on both education and research. This work
is grounded on Nanvix 1.2, but all its releases are available
at wwww.github.com/nanvix/nanvix. In the paragraphs that
follow, we briefly detail the internals of Nanvix. For a more
detailed discussion of our OS we refer the reader to [12].

The architecture of Nanvix is outlined in Figure 1. It
presents a similar structure to Unix System V [13], and it
has been intentionally designed this way because it is adopted
in some successful OSs, such as Linux. Nanvix is structured
in two layers. The kernel (bottom layer), seats on top of the
hardware and runs in privileged mode. Its job is to (i) extend
the underlying hardware so that an easier-to-program interface
is exported to the higher layer; and (ii) multiplex hardware
resources among several users. The userland (top layer), relies
on Posix system calls exported by the kernel and it is the place
where user software run in unprivileged mode.

The kernel presents a tiny monolithic architecture (7k loc),
and it is structured in four subsystems: the hardware ab-
straction layer; the memory management system; the process
manager; and the file system. The hardware abstraction layer
interacts directly with the hardware and exports to the other
subsystems a set of well-defined low-level routines. The job
of the hardware abstraction layer is to isolate, as much as
possible, all the hardware intricacies, so that the kernel can
easily be ported to other compatible platforms.

The memory manager provides a flat virtual memory ab-
straction. It does so by having two modules working together:
the paging and virtual memory allocator. The former deals
with paging, keeping in memory those pages that are more
frequently used, and swapping out to disk those that are not.
The virtual memory allocator, on the other hand, relies on
the paging module to create higher-level abstractions called
memory regions, and thus enable advanced features such as
shared memory regions, on-demand loading and lazy coping.

The process manager handles creation, termination, schedul-
ing, synchronization and communication of processes. Pro-
cesses are single-threaded entities and are created on demand,
either by the system itself or the user. Scheduling is based on
preemption, and in userland it happens whenever a process
runs out of quantum or blocks awaiting for a resource. In ker-

wwww.github.com/nanvix/nanvix


Process
Management

Hardware

Hardware Abstraction Layer

Buffer
Cache

File System

Virtual Memory System

System Call Interface

Swapping SystemCharacter Block

Device Drivers

Scheduler

IPC

User Libraries

User Programs

User Level

Kernel Level

Kernel Level

Hardware Level

Hardware

Hardware Abstraction Layer

File System

Memory System

System Calls

Process System

User software

Fig. 1. Nanvix architecture.

nel land, processes run in nonpreemptive mode and scheduling
occurs when a processes voluntarily foes to sleep. In addition,
the process manager exports inter-process communication fa-
cilities, such as Posix pipes and shared memory regions.

The file system provides a uniform interface for dealing with
hardware resources. It extends the device driver interface and
creates on top of it the file abstraction. Files can be accessed
through a unique pathname, and may be shared among several
processes. The Nanvix file system is compatible with the one
present in Minix, it adopts an hierarchical inode structure, and
features mounting points and disk block caching.

IV. TEACHING WITH NANVIX

In this section, we detail the assigned-based teaching
methodology that we propose to be used with our Nanvix.
In contrast to related approaches, ours is designed so that
instructors may: (i) carry out practical activities in any order
they want; and (ii) be free to propose their own activities. First,
we present an overview of it, then we introduce the underlying
principles that we considered when designing the assignments,
and next we present each of them in turn. In the end, we
present the evaluation method that we adopted to assess the
effectiveness of our Nanvix-based teaching methodoly.

A. Assignments Organization

Table II presents an overview of the five assignments that
are shipped with Nanvix. These assignments are designed for a
one semester-course, and may be assigned in arbitrary order.
We suggest that the instructor to take about 10-15 minutes
every week to discuss with the students what problems they are
facing and how they can address them. With respect to grading,
we do not pin down a specific scheme, because administrative
questions may differ from one course to another. However, we
suggest some considerations in the evaluation of assignments.

TABLE II
ASSIGNMENTS SHIPPED WITH NANVIX.

Subject Assignment Name Activities Duration

Process
Management

Process Scheduling Implement a priority scheduler 3 weeks
Semaphores Implement semaphores in kernel 3 weeks

Memory
Management Page Replacement Implement page eviction 4 weeks

I/O
Management Prefetching Implement disk block prefetching 4 weeks

File Systems
and Security Security Exploit security breaches 3 weeks

B. Assignment Principles

Improve Existing Features. Students work improving exist-
ing functionalities, rather than building entire system’s com-
ponents from scratch. This way, they can focus more on core
design aspects, thus increasing their learning rate.

Freedom in Design. Creativity is an important skill for com-
puter scientists. We encourage this by designing assignments
in such a way that students are free to choose whatever data
structures and algorithms they want.

Encourage Realistic Solutions. High performance is an
important requirement for an OS and it is usually challenging
to deliver. To motivate students to work towards this, each
assignment is shipped with a micro-benchmark which they can
use to evaluate their solution. We suggest that the more stu-
dents score on these benchmarks, the more they are rewarded.

Teamwork. In industry, software is developed by having
tens of small and self-organizing teams to collaborate with
one another. To replicate such environment, assignments are
designed to be accomplished by a team of 2-4 students.

Detailed Documentation. An OS that serves as a supporting
teaching tool to theoretical lectures should be well docu-
mented, otherwise instructors and students will have difficul-
ties on using it. To address this problem, we provide a detailed
documentation of both the kernel and assignments.

C. Process Scheduling and Semaphore Implementation

In the educational version of Nanvix, processes are sched-
uled based on a round-robin policy, and no process synchro-
nization mechanism is available. We therefore ask students
to (i) implement a priority scheduler; and (ii) implement
semaphores in kernel land and export this feature through the
system call interface to userland. Students are free to choose
their own design. However, they should follow the system
specification for the semaphore implementation, which is
compatible with Posix, and should benchmark their solutions
by running a Producer-Consumer example that is provided.

In this assignment, students learn how the OS schedules
processes to execution, how complex scheduling policies may
be built on top of simpler ones, and how synchronization
primitives may be implemented. In addition, students learn
the importance of dynamic priority scheduling; have insights
about how to design fair semaphores; and learn how to add
new system calls to an OS’s kernel.

Students should have about six weeks to work on this
assignment, three weeks for each part. With respect to grading,



we suggest the instructor to reward with extra points those
students that have implemented a dynamic priority schedul-
ing policy in the first activity, and semaphores with access
verification and/or fair scheduling in the second one.

D. Page Replacement

In the educational version of Nanvix, pages are evicted
from main memory and swapped out to disk in a first-in-first-
out fashion with a local-replacement policy. Such strategy is
simple to implement, but it leads to a poor performance when
compared to other strategies. To solve this problem, students
are asked to implement a more efficient page eviction algo-
rithm. To encourage them to work on realistic solutions, we
require students to evaluate the performance of their strategy
with a matrix multiplication benchmark that we provide.

With this assignment, students learn important principles
on system design. First, they further understand how the OS
provides the illusion of a large memory to users, through
the virtual memory and paging techniques. Second, students
work deepen their knowledge on how the paging system works
internally. Finally, students learn how a smart eviction strategy
may lead to a good system’s performance.

Students should have about four weeks to work on this
assignment: one week to first understand how the existing
paging system works, two weeks to implement a more effi-
cient page eviction algorithm, and another week to perform
benchmark evaluation and final adjustments on their solution.
With respect to grading, we suggest the instructor to reward
students according to the robustness of their solution.

E. I/O Prefetching

In Nanvix, the disk buffer cache features synchronous reads
and asynchronous write operations, but it lacks prefetching
support for sequential reads. To further enhance the file
system’s performance, we ask students to implement this latter
feature. To accomplish so, they have to add a read ahead
function in the buffer cache, then they have to hack the
read() system call to make use of this new operation; and
finally they have to benchmark their solution.

With this assignment, students learn several lessons. First,
they learn how prefetching can boost the performance of the
system. Second, while working with the the buffer cache,
students will have to deal with race conditions, and thus
exercise their previous knowledge on process synchronization.
Finally, students work with a core subsystem of the device
system, thereby further understanding how it works as a whole.

Students should have about four weeks to work on this
assignment: one week to first understand how the buffer
cache subsystem works, two weeks to implement the block
read ahead operation, and another week to hack the read()
system call and evaluate their solution. With respect to grading,
we suggest instructors to reward students according to the
simplicity of their solution – the solution should take no more
than a hundred lines of code.

F. Exploiting Security

In this assignment we students to seek and exploit security
breaches in Nanvix. Intentionally, five vulnerabilities were
left open in the system: (i) password cracking by brute-force
attacking the passwords file; (ii) privilege escalation by editing
the unprotected system’s initialization file; (iii) kernel panic by
writing random content in memory with the read() system
call; (iv) memory dump using the write() system call; and
(v) denial of service with a fork-bomb attack.

Students should browse the system call interface of the
file system, and they learn two topics on information security
with a hands-on cracking approach. First, they understand how
vulnerabilities may be exploited and compromise sensitive
information. Second, they are encouraged to rethink about
software design, in what concerns information security.

What concerns course schedule, students should have about
three weeks to work on this assignment: one week for learning
how Nanvix deals with security, another week for seeking
and exploiting security breaches, and a final week for writ-
ing reports about the encountered vulnerabilities. Regarding
grading, we suggest instructors to reward students according
to the number of security breaches they have exploited.

G. Evaluation Method

In order to evaluate the teaching methodology that we
propose, we applied it in the undergraduate OSs course of
PUC Minas. We measured the performance and motivation of
students by observing their score on exams and assignments,
and compiling their feedback from emails and surveys that we
distributed, respectively.

At PUC Minas, undergraduate computer science students
take the OSs course in their fifth academic semester. In this
course that lasts about 16 weeks (64 hours), lectures are strictly
theoretical and practical topics such as shell and concurrent
programming are covered in extra-class assignments. To in-
troduce our methodology, we adopted the following method.

In a first academic year, we kept the aforementioned teach-
ing approach, but we gathered statistics about the performance
of students on exams to find out what were the main challenges
that they faced. Then, in a second academic year, we used this
information to apply a slightly different teaching approach, in
which we kept traditional lectures, but we adopted assignments
in Nanvix. Again, we gathered statistics about what difficulties
students experienced on exams. However, in addition, we
asked students to answer a short survey about their thoughts
on Nanvix being used for practical assignments..

Finally, in a third academic year, we used our previous
experience to re-redesign the OSs course at PUC Minas. In this
new version of the course, we kept the normal course schedule
and assignments in Nanvix, but additionally we reserved
some lectures to introduce the internals of our OS, and we
allocated a partial-time teaching assistant to help students with
their questions. In order to evaluate the effectiveness of this
new version of the course, we gathered statistics about the
performance of students on exams, and we also asked them to
answer the same survey from the previous academic year.



V. TEACHING METHODOLOGY EVALUATION

In this section, we discuss the results that we observed
when we applied our teaching methodology in the Operating
Systems course of PUC Minas. First, we discuss the back-
ground experience we had when introducing our Nanvix-based
methodology, and then we move on to an evaluation of the
assignments and the teaching methodology itself.

A. Background Experience

In the first academic year, we observed that students had
difficulty on the process and memory management topics.
Their average score on exams in these subjects were 53.9%
and 51.1%, respectively. To address this problem, in the second
academic year we applied students to the Process Scheduling,
Page Replacement and I/O Prefetching assignments in Nanvix.
With this redesign, we observed a 68.1% and 59.1% raise
in the average student score, in the process and memory
management subjects respectively.

To redesign the OSs course for the third academic year,
we considered the performance of students on exams in the
previous academic year and their answers to a survey that
we distributed. The answers to this survey are outlined in
Figure 2. According to the survey, about 80% of the students
answered that our assignment-based approach helped them
to better understand some concepts and principles that were
introduced in the lectures. Additionally, about 35% of the
students reported that Nanvix helped them in practical topics.
When we asked students to give us their thoughts about our
assignment methodology, about 50% of them asked us for
practical lectures on Nanvix, 20% suggested us to introduce
our OS in theoretical lectures, and about 45% asked for the
Security assignment.

Based on this previous experience, in the third aca-
demic year, we applied to students the Process Scheduling,
Semaphores, and Security assignments. Moreover, we alter-
natively also let students work on the Page Replacement
assignment for extra points. In this redesign, we found out
that (i) Nanvix helped 83.8% and 40.5% of the students, in
theoretical and practical topics, respectively; and (ii) that 5.6%
and 13.9% of the students complained about the schedule and
the difficulty of assignments, respectively.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
How Nanvix has helped you?

What would you suggest for the next semester?

n
u

m
b

e
r 

o
f 

st
u

d
e

n
ts

perspectives

Theory

Practice

Motivation

Practical lectures

More assignments

Introduce Nanvix in lectures

Change the schedule

Make assignments easier

Fig. 2. Survey results for second academic year.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

assignments

Process Scheduling 

static priority

dynamic priority

Semaphores

create

initialize and
destroy

manipulate

security

fairness

Security

password cracking

memory dump

privilege escalation

denial of service

kernel panic

other

Page Replacement

second chance

not recently used

n
u

m
b

e
r 

o
f 

st
u

d
e

n
ts

Fig. 3. Assignments evaluation detailed.

B. Assignments Evaluation

Figures 4 and 3, presents the score of the students in the
assignments. These results were gathered during the third
academic year from a sample of 44 students.

In the Process Scheduling assignment 34 students submitted
their solutions on schedule. In average, 81% of them com-
pleted the requested tasks, and 58% implemented a priority-
based scheduler. They reported that the difficulty of the as-
signment was adequate, and the hardest part was to understand
how priorities were assigned by the kernel.

In the Semaphores assignment, 15 students submitted their
solutions on schedule. In average, 90% them were able to
successfully complete the requested tasks, and 30% of have
finished the extra ones. Students reported that the assignment
was challenging, but it helped them to understand how the
kernel manipulates the state of processes under the hood. Con-
cerning the difficulty of the assignment, students found that
the hardest part was to write the system call for manipulating
the semaphore itself. According to them, at first it was not
clear how to properly put processes to sleep and wake them
up, but once they figured out that the process management
module exported routines for doing so, these tasks became
straightforward.

p
ro

g
re

ss

Process
Scheduling

Semaphores Security Page
Replacement

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Tasks

Extra Tasks

Fig. 4. Assignments evaluation overview.



TABLE III
COURSE EVALUATION.

Academic Year Failure Rate Average Score

1st year 53.3% 57.9%
2nd year 16.0% 67.6%
3rd year 27.9% 65.2%

In the Security assignment, 31 students submitted their
solutions on schedule. In average, 93.9% of them were able to
find at least three vulnerabilities in the system, and 59.1% suc-
ceeded on exploiting more than three vulnerabilities. Students
reported that the assignment was challenging, but fun. They
enjoyed to deal with information security with a hands-on
approach, and according to them, the privilege escalation and
memory dump security breaches were the hardest to exploit.

In the Page Replacement assignment, 10 students submitted
their answers on schedule. In average, 83.3% were able to
successfully complete the requested task. The most popular
solution among the students was the second chance algorithm,
and 26.7% of them implemented the not recently used page
replacement policy. They found that the difficulty of the
assignment was adequate, and that the hardest part was to
know how to correctly inspect page table entries.

C. Course Evaluation

During the three academic years we measured the perfor-
mance and motivation of students. These results are presented
in Table III and discussed next. In a long-term perspective,
our teaching methodology helped students to enhance their
performance in the OSs course. With Nanvix, the average
score of students increased in 11.2% and the failure rate
dropped in 47.7%. Furthermore, the number of students who
scored more than 75% increased from 7% to 21% along
these academic years, which shows that our Nanvix-based
methodology motivated students to work hard and also to push
up their score in the course.

Additionally, during the two last academic years, several
students reported us that they enjoyed working with Nanvix.
Figure 5 presents a compilation of the feedback that we
received from students on emails, surveys and exams. In this
chart, keywords that have higher counts appear bigger than
those that have lower counts. Students found that Nanvix has
helped them to consolidate principles and concepts that they
studied in theoretical lectures, learn about OS’s internals, and
fell further motivation and interest for the field.

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

In this work, we (i) present Nanvix, an OS to be used in
OSs courses as supporting software; (ii) introduce a flexible
assignment-based teaching methodology that may be used with
it; and (iii) we presented an evaluation of this methodology
when applied in the OSs course in PUC Minas.

To introduce our teaching methodology, we adopted an
incremental three-year method. In the first one, we kept tra-
ditional lectures and assignments; in the second year, we kept

Fig. 5. Qualitative evaluation of Nanvix.

traditional lectures, but we adopted assignments in Nanvix;
and finally in the third academic year, we introduced Nanvix
in theoretical lectures and applied assignments on it. With our
teaching methodology, the average score of students in the
OSs course increased in 11.2%, and the failure rate dropped
to 47.7%. Moreover, students found that Nanvix helped them
to consolidate OS principles and felt more motivated.

Besides PUC Minas, Nanvix is already in use in the Federal
University of Santa Catarina (Brazil) and University of Greno-
ble Alpes (France). In future work, we intend to extend and
improve our teaching methodology based on the experience of
instructors of these partner universities.

REFERENCES

[1] A. S. Tanenbaum, Modern Operating Systems, 3rd ed. Upper Saddle
River, NJ, USA: Prentice Hall Press, 2007.

[2] W. A. Christopher, S. J. Procter, and T. E. Anderson, “The nachos
instructional operating system,” in USENIX Winter 1993 Conference
Proceedings, ser. USENIX’93. Berkeley, CA, USA: USENIX Associ-
ation, 1993.

[3] D. A. Holland, A. T. Lim, and M. I. Seltzer, “A new instructional oper-
ating system,” in Technical Symposium on Computer Science Education,
Cincinnati, Kentucky, USA, 2002, pp. 111–115.

[4] D. Hovemeyer, J. K. Hollingsworth, and B. Bhattacharjee, “Running
on the bare metal with geekos,” in Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science Education, ser. SIGCSE ’04.
New York, NY, USA: ACM, 2004, pp. 315–319.

[5] B. Pfaff, A. Romano, and G. Back, “The pintos instructional operating
system kernel,” in Proceedings of the 40th ACM Technical Symposium
on Computer Science Education, ser. SIGCSE ’09. New York, NY,
USA: ACM, 2009, pp. 453–457.

[6] A. S. Tanenbaum and A. S. Woodhull, Operating Systems: Design and
Implementation, 3rd ed., ser. The MINIX Book. Pearson Education
International, 2009.

[7] C. M. da Costa, J. L. Fragoso, L. Murliky, L. da Luz Silva, A. Fracalossi,
C. Brasil, G. Debom, and R. Matias Jr, “Nke-um nanokernel educacional
para microprocessadores arm,” 2014.

[8] C. L. Anderson and M. Nguyen, “A survey of contemporary instructional
operating systems for use in undergraduate courses,” J. Comput. Sci.
Coll., vol. 21, no. 1, pp. 183–190, Oct. 2005.

[9] S.-w. Hwang, “Blended learning for teaching operating systems with
windows,” SIGCSE Bull., vol. 41, no. 3, pp. 380–380, Jul. 2009.

[10] O. Laadan, J. Nieh, and N. Viennot, “Structured linux kernel projects for
teaching operating systems concepts,” in Proceedings of the 42Nd ACM
Technical Symposium on Computer Science Education, ser. SIGCSE ’11.
New York, NY, USA: ACM, 2011, pp. 287–292.

[11] R. Cox, M. F. Kaashoek, and R. Morris, “Xv6, a simple unix-like
teaching operating system,” 2011.

[12] P. H. Penna, “The Nanvix Operating System,” Pontifical Catholic
University of Minas Gerais, Tech. Rep., mar 2017. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01495741/

[13] M. J. Bach, The Design of the UNIX Operating System. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1986.

https://hal.archives-ouvertes.fr/hal-01495741/

	Introduction
	Related Work
	The Nanvix Instructional Operating System
	Teaching With Nanvix
	Assignments Organization
	Assignment Principles
	Process Scheduling and Semaphore Implementation
	Page Replacement
	I/O Prefetching
	Exploiting Security
	Evaluation Method

	Teaching Methodology Evaluation
	Background Experience
	Assignments Evaluation
	Course Evaluation

	Conclusions and Future Perspectives
	References

