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Abstract This paper addresses the Basic Cyclic Scheduling Problem where the
processing times are affected by uncertainties. We formulate the problem as a two-
stage robust optimization problem with polyhedral uncertainty set. We propose
three exact algorithms for solving the problem. Two of them use a negative circuit
detection algorithm as a subroutine and the last one is an Howard’s algorithm
adaptation. Results of numerical experiments on randomly generated instances
show that the Howard’s algorithm adaptation yields efficient results and opens
perspectives on more difficult robust cyclic scheduling problems.

Keywords Robust optimization · Cyclic Scheduling · Dynamic programming

1 Introduction

Scheduling problems are among the hardest combinatorial problems. In real world
applications, a further source of difficulty is represented by the uncertainties on
some parameters of the problem at hand. Indeed, the best solution for a determin-
istic problem can become quickly the worst one in the presence of uncertainties,
involving bad schedules and high costs. Many sources of uncertainty can be en-
countered in scheduling problems, for example activities duration can decrease
or increase, machines can breakdown, new activities can be incorporated, etc. In
this paper, we focus on scheduling problems that are cyclic and where activity
durations are affected by the uncertainties.

Several scheduling problems can be indeed simplified by considering them as
cyclic. The objective is then to organize the activities by repeating an optimized
pattern. Classical scheduling deals with a set of tasks that have to be executed
once and optimizes an objective function such as makespan, tardiness or maximum
tardiness, etc. In contrast, cyclic scheduling deals with a set of generic tasks that
have to be executed infinitely. Three objective functions are mainly used in the
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domain of the cyclic scheduling. The first objective is the minimization of the cycle
time, which is the time difference between two successive occurrences of the same
operation. The second one is the minimization of the work-in-process, which is a
bound on the number of jobs executed at the same time. The last one combines
the both precedent objectives. In this work, we focus only on the first objective.

Several applications of cyclic scheduling can be found in the literature, e.g. in
robotics industry ([1]; [2]), in manufacturing systems ([3]; [4]), in parallel comput-
ing and computer pipelining ([5]; [6]; [7]). Depending on the target application,
different mathematical models exist, based on graph theory, mixed linear pro-
gramming, Petri nets or (max,+) algebra. For more details, an overview of cyclic
scheduling and different approaches can be found in [8] and [9]. Several heuristic
and exact methods have been proposed for cyclic scheduling problems. However,
few works consider cyclic scheduling problems under uncertainty. Che et al [10]
investigate the cyclic hoist scheduling problem with processing time window con-
straints where the hoist transportation times are uncertain. The authors define
a robustness measure for cyclic hoist schedule and a bi-objective mixed integer
linear programming model to optimize the cycle time and robustness.

In this paper, we focus on the Basic Cyclic Scheduling Problem (BCSP) where
task durations are affected by uncertainties. The BCSP is a central problem in
cyclic scheduling, and represents a basis for modelling and resolving numerous ap-
plication problems. Several extensions of the problem have been considered in the
literature. the BCSP with deadlines is studied in [11]. The author proves the exis-
tence of the latest schedule and shows that its computation is generally difficult.
In [12], constraints called ”linear precedence constraints” are introduced. They
generalize the uniform constraints. The linear precedence constraints allow one
modelling more application problems, e.g., modelling cyclic assembly line prob-
lems where a given number of a first product is needed to build a second product.
Note that the BCSP corresponds to the cyclic version of the PERT scheduling
problem.

In order to handle uncertainties, we use a robust optimization approach. Robust
optimization deals with uncertain problems taking their parameters in a given
uncertainty set. The objective is to find a feasible solution within the uncertainty
set while optimizing a given criterion such as worst case or maximum regret. Two
classes of robust models exist. The first one is the classical static models class.
In this case, the decisions have to be taken before knowing any realization of the
uncertainty. The second one is the adjustable models class introduced in [13]. In
this case, a subset of variables has to be fixed before the uncertainty is revealed
and a second subset of variables is allowed to be adjusted and takes into account
the uncertainty.

The first study on robust linear programming was published by Soyster [14].
He considers the case where all parameters take their worst-case values. Thus, this
model leads to over-conservative solutions. Bertsimas and Sim [15] have extended
this framework to reduce the over-conservatism. More precisely, they introduce a
parameter called budget of uncertainty, that gives a full control on the conservatism
of each constraint of the problem.

Robust linear programming with right hand-side uncertainty is a special case of
the column-wise uncertainty model proposed by Soyster [14]. More recently, Thiele
[16] studies the two-stage robust linear program with uncertainties on the right
hand-side and proposes a cutting planes method. Finally, Minoux [17] investigates
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the class of two-stage robust linear programming problems with right-hand-side
uncertainty and provides some complexity results. He shows that the general case is
strongly NP-hard and exhibits some subclasses of polynomially solvable problems.
In this paper, we consider the uncertainty set proposed by Bertsimas and Sim [15].
Each task duration belongs to an interval, and the number of parameters that can
deviate from their nominal value is bounded by the budget of the uncertainty.
This parameter allows us to control the degree of conservatism of the resulting
schedule.

In this paper, we focus on the Robust Basic Cyclic Scheduling Problem un-
der the budgeted uncertainty set. We propose a formulation of the problem in
accordance with a robust optimization framework. More precisely, a robust two-
stage linear program is proposed. A separation problem is then derived using the
Farkas’ Lemma. In the general case, the latter problem is NP-hard([17]), however
using some relevant properties of the solution structure, we show that the prob-
lem is equivalent to a negative circuit detection in a particular graph. To solve the
problem, we develop three algorithms. Two of them are based on negative circuit
detection on a given graph and the last one is an Howard’s algorithm [18] adap-
tation. Finally we perform numerical experiments on several instances to validate
and compare the three algorithms.

This paper is organized as follows: Section 2 describes the Basic Cyclic Schedul-
ing Problem. Section 3 introduces the uncertainty set on processing times, and
proposes the problem modelling as two-stage robust optimization problem. A sep-
aration problem is also derived to build solution algorithms. These algorithms are
proposed in Section 4. More precisely, three algorithms are presented for solv-
ing the Robust Basic Scheduling Problem. Section 5 describes the experimental
methodology and discusses numerical results. Section 6 concludes the paper.

2 Basic Cyclic Scheduling Problem

The Basic Cyclic Scheduling Problem (BCSP) is characterized by a set of n generic
operations T = {1, ..., n}. Each operation i ∈ T has a processing time pi and
must be repeated infinitely often. The kth occurrence of the generic operation i is
denoted by < i, k >.

A schedule is an assignment of starting time t(i, k) for each occurrence < i, k >
of tasks i ∈ T . A schedule is called periodic with cycle time α if it satisfies

t(i, k) = t(i, 0) + αk, ∀i ∈ T , ∀k ≥ 1. (1)

We denote by ti the starting time of the occurrence < i, 0 >. Since the schedule
is periodic, a schedule can be completely defined by the vector of the starting times
(ti)i∈T and the cycle time α.

The operations are subjected to a set of m precedence constraints (uniform
constraints). Each of these constraints is represented by a quadruple (i, j, pi, Hij)
and is given by

t(i, k) + pi 6 t(j, k +Hij), ∀i, j ∈ T , ∀k ≥ 1, (2)

where i and j are two tasks and Hij is an integer that represents the depth of
recurrence, usually referred to as height.
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Task 1 2 3 4
Processing time 2 1 3 1

Fig. 1: Instance data for Example 1.
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Fig. 2: Uniform graph G associated to the BCSP of Example 1.

Two successive occurrences of the same task i are not allowed to overlap. This
constraint corresponds to the non-reentrance constraint and can be modelled as
an uniform constraint with Hii = 1.

The objective of the BCSP is to find a schedule that minimizes the cycle time
α while satisfying precedence constraints. Note that other objective functions can
be considered, such as work-in-process minimization or both cycle time and work-
in-process minimization.

A directed graph (G = (T , E), L,H), called uniform graph, can be associated
with a BCSP such that a node v ∈ T (resp. an arc e ∈ E) corresponds to a generic
task (resp. uniform constraint) in the BCSP. The function L : E 7→ N represents
the length function and H : E 7→ Z the height function.

We denote by L(c) (resp. H(c)) the length (resp. height) of a circuit c in graph
G, representing the sum of lengths (resp. heights) of the arcs composing the circuit
c.

Example 1 Fig. 2 illustrates the uniform graph G of the instance of the BCSP
described in Fig. 1. The problem has 4 generic tasks and 6 precedence arcs. Each
arc (i, j) of G is equipped with two values, the processing time Lij = pi and and
the height Hij .

Let us recall the necessary and sufficient condition for the existence of a feasible
schedule.

Theorem 1 (C. Hanen [19]) There exists a feasible schedule if and only if any
circuit of has a positive height.

In the following, we assume that the graph G satisfies this property. In other words,
a feasible schedule always exists.
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Fig. 3: An optimal periodic schedule associated to the BCSP of Example 1.

The minimum cycle time is given by the maximum circuit ratio of the graph
that is defined by

α = max
c∈C

ρ(c)

where

ρ(c) =
L(c)

H(c)

and C is the set of all circuits in G.
The circuit c with the maximum circuit ratio is called critical circuit. Thus,

the identification of the critical circuits in graph G allows one to compute the
minimum cycle time.

Example 2 The graph G in Fig. 2 have three circuits, c1 = (1, 2, 4, 1), c2 = (2, 3, 2)
and c3 = (2, 4, 3, 2). The associated ratios are respectively, αc1 = 4, αc2 = 4 and
αc3 = 5. Thus, the optimal cycle time is α = max{αc1 , αc2 , αc3} = 5 and the
critical circuit is (2, 4, 3, 2).

Several algorithms have been proposed for the computation of critical circuits.
Gondran and Minoux [20] have proposed a binary search algorithm with time com-
plexity O(nm

(
log(n) + log(max(i,j)∈E(Lij , Hij))

)
). An experimental study about

maximum mean cycle algorithms was published in [18]. The author remarks that,
among the several tested algorithms, the most efficient one is the Howard’s al-
gorithm. Although the algorithm has a pseudo-polynomial complexity, it shows
noteworthy practical results. This motivates our choice to propose an Howard’s
algorithm adaptation for the robust version of the BCSP problem.

Once the optimal cycle time α is determined by one of the algorithms cited
above, the optimal periodic schedule can obtained by computing the longest path
in the graph G = (T , E) where each arc (i, j) ∈ E is weighted by pi − αHij .

The BCSP can be also solved by using linear programming. The problem can
be formulated as follows:

min α (3)

s.t. tj − ti + αHij ≥ pi ∀(i, j) ∈ E (4)

where ti represents t(i, 0), i.e., the starting time of the first occurrence of the task
i. Note that the precedence constraints (4) are obtained by replacing in (2) the
expression of t(i, k) given in (1).
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Example 3 Fig. 3 represents the Gantt diagram of the optimal periodic schedule
of the BCSP described in Example 1.

3 Robust Basic Cyclic Scheduling Problem

In this section, we propose a model for the robust version of the BCSP (R-BCSP)
where processing times are affected by uncertainties. We first give a brief intro-
duction on two-stage robust linear programming with right hand-side uncertainty.
Then we describe the uncertainty set used for modelling uncertain processing
times. Finally, we present a formulation of the R-BCSP based on this uncertainty
set and derive a separation problem that we use in the solution approach.

3.1 Robust two-stage linear programming with right hand-side uncertainty

Robust optimization problems can be formulated using multiple levels of deci-
sions [13]. In this paper, we focus on two-stage robust optimization. In two-stage
formulations, the first-stage variables x have to be fixed before the uncertainty
is revealed (without knowing the value of the uncertain parameters), while the
second-stage variables y are allowed to adjust themselves and take into account
the uncertainty. More precisely, our interest is in robust two-stage linear program-
ming where uncertainties are on the right hand-side.

The problem that we are interested in can be written as follows:

min cTx

s.t. Tx+Wy ≥ d
x ≥ 0, y ≥ 0

where c is the objective vector, T is the first-stage coefficient matrix, W is the
second-stage coefficient matrix and d the right-hand-side vector. We assume that
the vector d is uncertain and belongs to a given polyhedral uncertainty set. With-
out loss of generality, the objective of the problem considered here depends only
on the first stage variables.

Thiele et al. [16] study this class of problems and propose a cutting-plane
algorithm based on Kelley’s method. Gabrel et al [21] study a facility location
problem under demand uncertainty. The authors formulate the problem as ro-
bust two-stage linear program and propose a cutting plane algorithm for solving
the problem. More recently, Minoux ([22], [17]) provides complexity results. He
shows that the general case is strongly NP-hard and exhibits some subclasses of
polynomially solvable problems. The author studies in particular the robust ver-
sion of the classical PERT scheduling problem. He first presents a two-stage robust
formulation. He shows that, for a polyhedral uncertainty set, the problem is equiv-
alent to compute the longest path over the uncertainty set. Finally, he describes
a polynomial-time algorithm that solves the problem.
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3.2 Problem formulation for the R-BCSP

We define the uncertainty set through the concept of budget uncertainty intro-
duced in [15]. The processing times (pi)i∈T are uncertain and belong to the interval
[p̄i, p̄i + p̂i], where p̄i is the nominal value and p̂i the deviation of the processing
time pi from its nominal value. We associate a binary variable ξi to each task
i ∈ T . The variable ξi is equal to 1 if task i takes its worst-case value, 0 otherwise.
For a given budget of uncertainty Γ (a positive integer representing the maximum
number of tasks allowed to take their worst-case values), the uncertain parameters
can be modelled as follows:

pi(ξ) = p̄i + ξip̂i,∀ξ ∈ ΞΓ , i ∈ T

where

ΞΓ =

{
(ξi)i∈T

∣∣∣ T∑
i=1

ξi ≤ Γ, ξi ∈ {0, 1}

}
represents the uncertainty polytope.

In this case, the budget of uncertainty can be considered as an upper bound on
the number of deviating tasks. For Γ = n, the solution is the most conservative.
On the other hand, if Γ = 0, the schedule has no protection against uncertainties.

Example 4 Fig. 5 illustrates a uniform graph G of the the Robust Cyclic Schedul-
ing Problem instance described in Fig. 4. Contrary to the BCSP, the length of each
arc (i, j) belongs to an interval [L̄ij = p̄i, L̂ij = p̂i]. If we consider an uncertainty
budget of Γ = 1, there are 4 scenarios. The worst-case scenario is ξ = (1, 0, 0, 0)
and the optimal cycle time is α = 7.

Task 1 2 3 4
Processing time [2,5] [1,2] [3,4] [1,2]

Fig. 4: Instance data for Example 4.

Considering a given cycle time α, the uncertainty on the task durations (pi)i∈T
can lead to an infeasible schedule. In order to make the schedule robust, we look
for the minimum value of the cycle time such that, for each scenario ξ ∈ ΞΓ ,
there exist a vector (ti(ξ))i∈T satisfying the precedence constraints. We model
the Robust Basic Cyclic scheduling problem as a two-stage robust optimization
problem. The mathematical formulation of the R-BCSP is given below.

min α (5)

s.t. tj(ξ)− ti(ξ) + αHij ≥ pi(ξ) ∀(i, j) ∈ E, ∀ ξ ∈ ΞΓ (6)

The variable α corresponds to the cycle time. It represents the only first stage
variable and must be fixed before knowing the real values of the processing times.
The second-stage variables (ti(ξ))i∈T , which represent the starting times of the
first occurrences of the tasks i ∈ T , are fixed after the uncertainty is revealed. Since
the objective function depends only on the first stage variable α, the second stage
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Fig. 5: Associated uniform graph for Example 4.

variables have only to ensure the feasibility of the generic precedence constraints
for each scenario ξ ∈ ΞΓ .

Since the PERT scheduling problem and the Basic Cyclic Scheduling Problem
have a different structure, the approach of Minoux ([22]) cannot be applied directly
to the R-BCSP. In [22], using the special structure of the constraints matrix arising
in the PERT scheduling problem, the author proposes a reformulation in terms
of paths and shows that the problem can be solved polynomially. In contrast, we
formulate a separation problem and propose a separation algorithm that solves it
in polynomial time. This separation algorithm is used in Section 4 to address the
R-BCSP.

3.3 Separation problem formulation

In the following, we show that we can decide whether a given cycle time ᾱ is
feasible or not in pseudo-polynomial time. Let us reconsider the two-stage robust
optimization problem (5)-(6). In order to decide if a given cycle time ᾱ is feasible
or not we define the following separation problem.

For fixed cycle time ᾱ and given scenario ξ̄ ∈ ΞΓ , according to the Farkas’
Lemma, the constraints (6) are satisfied if and only if :∑

e∈E
(pe(ξ̄)−Heᾱ)ue ≤ 0 ∀ue ∈ C, (7)

where C is the polyhedral cone defined by

C =

(ue)e∈E

∣∣∣ ∑
e∈σ−(i)

ue −
∑

e∈σ+(i)

ue = 0, ∀ i ∈ T and (ue)e∈E ≥ 0

 .

Note that σ−(i) and σ+(i) represent respectively the predecessor and the successor
of the task i ∈ T and (ue)e∈E are the dual variables of (ti)i∈T .

Equivalently, the constraints (6) are satisfied for each scenario ξ ∈ ΞΓ if and
only if the optimal objective value of the following bi-linear program
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max
∑
e∈E

(pe(ξ)−Heᾱ)ue (8)

s.t. ξ ∈ ΞΓ (9)∑
e∈σ−(i)

ue −
∑

e∈σ+(i)

ue = 0 ∀ i ∈ T (10)

ue ≥ 0 ∀ e ∈ E (11)

is non-positive.

We can show that the separation problem (8)−(11) is strongly NP-hard [17]. In
the following, we exhibit a property that allows us to develop an efficient algorithm.

Observation 1 A feasible solution of the bi-linear program (8)−(11) corresponds
to a circulation flow.

A circulation flow is a flow problem where each node of the associated graph is
balanced (the inflow is equal to the outflow). In the following, we recall a property
of circulation flows.

Property 1 (Ahuja et al. [23]) A circulation flow u can be represented as a
cycle flow along at most m directed cycles.

As a result, one can decompose each flow of the problem (8)− (11) into flows
along cycles and the cost of each cycle is equal to the sum of arcs composing the
cycles. Thus, the problem (8)− (11) can be reformulated as follows:

max
(uc)c∈C≥0

max
ξ∈ΞΓ

∑
c∈C

(Lc(ξ)−Hcᾱ)uc (12)

where uc is the flow variable along the circuit c ∈ C. The parameter Lc(ξ) rep-
resents the length of the circuit c ∈ C for the scenario ξ ∈ ΞΓ and is defined by
Lc(ξ) =

∑
i∈c pi(ξ).

Let us define Aξᾱ(e) = pe(ξ)−Heᾱ the amplitude of the arc e ∈ E with respect

to ᾱ and the graph G
′

= (G,Aξᾱ).

Theorem 2 Let ᾱ ∈ R be a fixed cycle time. Then ᾱ is feasible if and only if there
is no circuit with positive amplitude in the graph G

′
= (G,Aξᾱ).

Proof Let ᾱ ∈ R be a fixed cycle time.
(⇒) Assume that ᾱ is a feasible cycle time. According to the Farkas’ Lemma, the
optimal value of (12) is non-positive. Therefore, each circuit in the graph G′ has
non-positive cost.
(⇐) Now, suppose G′ has no positive circuit. We also suppose, that ᾱ is infeasible.
According to the Farkas’ Lemma, the problem (12) has a positive optimal solution
(or unbounded). Therefore, there exists at least one circuit with positive cost,
which is in contradiction with the initial assumption.

ut
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Let us denote the nominal length L̄

Theorem 3 The optimal cycle time α of the R-BCSP is characterized by

α = max
c∈C


∑

(i,j)∈c
L̄ij∑

(i,j)∈c
Hij

+ max
ξ∈ΞΓ


∑

(i,j)∈c
L̂ijξi∑

(i,j)∈c
Hij


 ,

where C is the set of all circuits in G.

Proof Let G be a graph associated to an R-BCSP. We showed in Theorem 2 that
a given cycle time α is feasible if and only if there is no positive-amplitude circuit
in the graph G

′
= (G,Aξα). Alternatively,

Lc(ξ)− αHc ≤ 0, ∀ c ∈ C, ∀ ξ ∈ ΞΓ

where C is the set of all circuits of the graph G
′
. Then we can deduce that

α ≥ Lc(ξ)

Hc
, ∀ c ∈ C, ∀ ξ ∈ ΞΓ .

Hence, the optimal value of the cycle time α is achieved when

α = max
c∈C


∑

(i,j)∈c
L̄ij + max

ξ∈ΞΓ

{ ∑
(i,j)∈c

L̂ijξi

}
∑

(i,j)∈c
Hij

 .

ut

Corollary 1 Let P be the value of the longest circuit in terms of the number of
nodes. The optimal cycle time for R-BCSP under the uncertainty set ΞΓ takes the
same value for all Γ ∈ [P, n].

Proof Let (G = (T , E), L(ξ), H) be an associated graph to an R-BCSP problem
under the uncertainty set ΞΓ and C the set of all circuits of the graph. Suppose
Γ is greater than P , the longest circuit of the graph in terms of nodes. Then,
according to Theorem 3, the optimal cycle time α can be expressed as follows:

α = max
c∈C


∑

(i,j)∈c
L̄ij∑

(i,j)∈c
Hij

+ max
ξ∈ΞΓ


∑

(i,j)∈c
L̂ijξi∑

(i,j)∈c
Hij


 .

Since the longest circuit has P nodes, allowing more than P deviations does not
affect the following term:

max
ξ∈ΞΓ


∑

(i,j)∈c
L̂ijξi∑

(i,j)∈c
Hij

 .

Thus, the optimal cycle time for R-BCSP under the uncertainty set ΞΓ takes the
same value for all Γ ∈ [P, n]. ut
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In the Basic Cyclic Scheduling Problem, the cycle time can be bounded (see
[18]). In the following, we extend the lower and upper bounds of the Basic Cyclic
Scheduling Problem to the case of the uncertainty set ΞΓ . We denote by α∗min

(resp. α∗max) the optimal cycle time where all processing times are fixed to the
minimum (resp. maximum), L̄max the maximum arc nominal length and L̂max
the maximum arc deviation length.

Proposition 1 Let us consider a R-BCSP instance and α∗ is the associated op-
timal cycle time under the uncertainty set ΞΓ , where 0 ≤ Γ ≤ n. Then,

L̄max ≤ α∗min ≤ α∗ ≤ α∗max ≤ nL̄max + ΓL̂max.

Proof Let us consider an R-BCSP problem under the uncertainty set ΞΓ where
0 ≤ Γ ≤ n.

It is easily seen that the optimal cycle time is greater than the cycle time where
Γ = 0 and lower than the cycle time where Γ = n.

The second lower bound holds from the non-reentrance constraints. More pre-
cisely, a cycle time cannot be lower than the difference between the starting times
of two successive occurrences of the same task. This value is bounded by L̄max,
which represents the maximum nominal duration. Finally, the second upper bound
concerns the case where tasks belong to the critical circuit and the height of the
critical circuit is equal to 1. Hence, the sum of the nominal values is bounded by
nL̄max and the sum of the Γ worst deviations is bounded by ΓL̂max ut

3.4 Separation procedure

We develop an algorithm detecting, for a given cycle time ᾱ, circuits having positive
amplitude Aξᾱ according to a given scenario ξ ∈ ΞΓ . To exploit the negative circuit
detection algorithms (see [24]), instead of looking for a positive-amplitude circuit in

a graph G
′

= (G,Aξᾱ), we look for a negative-amplitude circuit in a graph G
′

neg =

(G,−Aξᾱ). Several algorithms exist for negative circuit detection. They combine
shortest path algorithms with negative circuit detection strategies. We examined
two algorithms for negative circuit detection. The first one is the Bellman-Ford
algorithm and the second one is the Floyd-Warshall algorithm. We performed
numerical experiments, and it appears that the Floyd-Warshall algorithm is better
than the Bellman-Ford algorithm in terms of running time. Thus, we keep only
the Floyd-Warshall algorithm for our numerical experiments.

Let us denote by dkij [γ] the value of the shortest path from i to j with un-
certainty budget γ (γ ∈ 1, ..., Γ ) such that intermediate vertices on the path are
chosen from the set {1, 2, ..., k}. Then, the recursion adapted to the case under
investigation can be expressed as follows:

∀ i, j ∈T , γ ∈ 1, ..., Γ :

dk+1
ij [γ] = min min

0≤l≤γ

{
dkij [γ], dkik[γ − l] + dkkj [l]

}
.

(13)

A pseudo-code of the adapted Floyd-Warshall algorithm is given in Algorithm 1,
where at each iteration we reuse for variable dk+1

ij [γ] the same space as dkij [γ], so we
neglect the iteration index k. Note that c̄ and ĉ represent respectively the nominal
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Algorithm 1 Modified Floyd-Warshall algorithm

input : A digraph G = (T , E), a budget of uncertainty Γ ∈ [0, |T |] and weights c̄ : E 7→ R,
ĉ : E 7→ R.

output: report whether a negative circuit exists or not.

\\ Initialization
dij [γ]←∞ , ∀ i 6= j, γ ← 0, ..., Γ ;
dii[γ]← 0 , ∀ i← 1, ..., n, γ ← 0, ..., Γ ;
dij [0]← c̄i,j , ∀ (i, j) ∈ E;
dij [γ]← c̄i,j + ĉi,j , ∀ (i, j) ∈ E, γ ← 1, ..., Γ ;
\\ Distance computation
for k ← 1, ..., n do

for i← 1, ..., n do
for j ← 1, ..., n do

for γ ← 0, ..., Γ do
if dij [γ] > min

0≤l≤γ
{dik[γ − l] + djk[l]} then

dij [γ]← min
0≤l≤γ

{dik[γ − l] + dkj [l]};

predij [γ]← k; . predij [γ] is a predecessor pointer
indij [γ]← arg min

0≤l≤γ
{dik[γ − l] + dkj [l]};

end

end

end

end

end
\\ Negative circuit checking
for i← 1, ..., n do

if dii[Γ ] < 0 then
return (”A negative circuit exists”);

end

end

value and the deviation value of an arc. The value c̄ corresponds to p̄e −Heᾱ and
ĉ to p̂e in the R-BCSP.

The computational complexity of the adapted Floyd-Warshall algorithm can
be computed as follows.

Proposition 2 The modified Floyd-Warshall algorithm runs in O(n3Γ 2) time.

Proof Each value dij [γ] can be computed in O(Γ ) time. Since i, j and k all iterate
from 1 to n and γ from 0 to Γ , the total complexity is O(n3Γ 2). ut

Note that both the negative circuit and the associated scenario can be extracted
using the matrix predij [γ] and indij [γ].

4 Resolution approaches for the R-BCSP

We present three algorithms for solving the Robust Basic Cyclic Scheduling Prob-
lem. Two of them are based on the separation procedure defined in Section 3 and
the last algorithm is an adaptation of the Howard’s algorithm.
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4.1 Negative circuits cancelling algorithm

Algorithm 2 Negative circuits cancelling algorithm (NCC)

Step 1 : Start with a lower bound αlb.

Step 2 : Run the negative circuit detection algorithm with G
′
neg .

Step 3 : If a negative circuit c is detected Then
Let ξ be the scenario realizing the negative circuit c.

update αlb to the circuit ratio of c (αlb =
Lc(ξ)
Hc

).

return to step 2.
Else the cycle time αlb is optimal.

To solve the Robust Basic Cyclic Scheduling Problem, we develop an iterative
algorithm based on the modified Floyd-Warshall algorithm. A pseudo-code of the
procedure is presented in Algorithm 2.

The algorithm starts with a lower bound αlb on the optimal cycle time. Then
the negative circuit detection algorithm is executed on the graphG

′

neg = (G,−Aξᾱ).
If a negative circuit is detected, then the lower bound ᾱ is updated to the mean
value of this circuit. The algorithm stops when there is no more negative circuit
in the graph G

′

neg.

Proposition 3 The negative circuits cancelling algorithm runs in O(n3Γ 2|C|)
time, where |C| is the number of simple circuits in the graph G

′

neg.

Proof The complexity of the negative cycle detection algorithm is O(n3Γ 2). This

subroutine is executed until there is no negative cycle in the graph G
′

neg. Then,

the number of passes is bounded by |C|, the number of simple circuits of G
′

neg.
Consequently, the algorithm runs in O(n3Γ 2|C|). ut

4.2 Binary search algorithm

This algorithm performs a binary search over the possible values for the optimal
cycle time αopt. The search interval is [αlb, αub] = [L̄max;nL̄max + ΓL̂max] (see
Proposition 1). The algorithm sets αmid to the middle of the interval, then invokes

the negative circuit detection algorithm on the graph G
′

neg = (G,−Aξαmid). If a
negative circuit is detected, then the interval search is reduced to [αmid, αub],
otherwise, the next interval search is [αlb, αmid]. These iterations are repeated
until the interval becomes small enough. A pseudo-code of the algorithm is given
in Algorithm 3.

Proposition 4 The binary search algorithm algorithm runs in O(n3Γ 2 log(nL̄max+
ΓL̂max)) time.

Proof The complexity of the binary search algorithm is equal to the complexity of
the negative circuit detection algorithm, which is equal to O(n3Γ 2), multiplied by
the number of passes over the interval search with is bounded by O(log(nL̄max +
ΓL̂max)) Consequently, it runs in O(n3Γ 2 log(nL̄max + ΓL̂max)). ut
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Algorithm 3 Binary search algorithm (BS)

Compute a lower bound αlb and an upper bound αub on the optimal cycle time αopt
while ub− lb > ε do

αmid ← αlb+αub
2

Run negative circuit detection algorithm with G
′
neg

if no negative circuit then
αub ← αmid

else
αlb ← αmid

end

end
if αlb > αub then

the problem is infeasible
else

αopt ← αlb
end

4.3 Howard’s algorithm adaptation

The Howard’s algorithm, proposed in [25], is originally designed for Markov deci-
sion processes. The algorithm was adapted for maximum circuit ratio computation
in [26].

Algorithm 4 Robust Howard’s algorithm (R-HOW)

for i← 1, ..., n do
for γ ← 0, ..., Γ do

dγi ← L̄i;
end

σ+(i)← i;
end
while True do

< αlb,h>← compute maximum circuit ratio(Gσ+ ); . h is a given node that belongs
to the critical circuit
if h 6= Nil then

if ∃ a path from i to h in Gσ+ then

dγi ← max{dγ−1

σ+(i)
+ L̄iσ+(i) + L̂iσ+(i) − αlbHiσ+(i); d

γ

σ+(i)
+ L̄iσ+(i) −

αlbHiσ+(i)};
end

end
changed ← False;
for each arc (i, j) ∈ E do

for γ ← 0, ..., Γ do

if dγi < max{dγ−1
j + L̄ij + L̂ij − αlbHij − ε; dγj + L̄ij − αlbHij − ε } then

dγi ← max{dγ−1
j + p̄i + L̂ij − αlbHij − ε; dγj + p̄i − αlbHij − ε};

σ+(i)← j; changed ← True;
end

end

end
if not changed then

return αlb;
end

end
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In the following, we adapt the Howard’s algorithm to take into account the
uncertainty set ΞΓ presented in Section 3. A pseudo-code of the robust Howard’s
algorithm is given in Algorithm 4.

The principle of the algorithm is the same as the negative circuits cancelling
algorithm. It starts with a lower bound αlb and improves this bound until the
optimality.

The algorithm uses a graph Gσ+ = (T , Eσ+ , Aξαlb) called policy graph, where
Eσ+ = {(i, σ+(i)), i ∈ T } and σ+(i) denotes the successor of node i. Each node of
this graph has only one out-degree. The algorithm starts by initializing the policy
graph by n disjunctive circuits. Then, the algorithm determines the circuit c with
a maximum ratio and sets αlb to:

αlb =
1∑

(i,j)∈cHij

 ∑
(i,j)∈c

L̄ij + max
ξ∈ΞΓ

 ∑
(i,j)∈c

L̂ij(ξ)


 .

Afterwards, the policy graph Gσ+ is changed such that it contains only one circuit
c and paths from each node i /∈ c to a chosen node h ∈ c and computes the longest
path dγi , from each node i ∈ T to h, under the uncertainty set ΞΓ . The final step
is to check if the labels dγu can be improved by adding some arc e ∈ E to the graph
Gσ+ . These operations are repeated until there is no possible improvement.

Proposition 5 The robust Howard’s algorithm runs in O(n2mΓ 2|C|) time, where
|C| is the number of simple circuits in the graph G.

Proof Determining the maximum ratio of the policy graph can be achieved in
O(n + nlog(n)). Then, the step of changing the policy graph Gσ+ such that it
contains only the circuit c and paths from each node i /∈ c to h can be performed
in O(mnΓ ). The computation of the longest path can be done in O(mnΓ ) in
backward breadth first search by using the following formula:

∀ i ∈ T , γ ∈ [1, Γ ] :

dγi = max{dγ−1
σ+(i) + L̄iσ+(i) + L̂iσ+(i)−αlbHiσ+(i), d

γ
σ+(i) + L̄iσ+(i)−αlbHiσ+(i) }.

(14)
Finally, the last step of the while loop can be achieved in O(mΓ ). So, an

iteration of the while loop can be achieved in O(mnΓ ). Note that, in the robust
Howard’s algorithm, the cycle time α is improved at most every nΓ iterations of
the while loop (this can be proved as in Dasdan et al. [27]). Finally, the while loop
is repeated until there is no possible improvement of the distance labels dγi , hence,
the robust Howard’s algorithm turns in O(n2mΓ 2|C|), where |C| is the number of
simple circuits in the initial uniform graph G. ut

Example 5 We reconsider the Example 4 and we apply the robust version the
Howard’s algorithm.

Fig. 6 displays the initial policy graph Gσ+ . The maximum circuit ratio of the
graph is α = 5, the associated circuit is (1, 1) and the scenario giving this value
is ξ = (1, 0, 0, 0). The longest paths from node 1 to the other nodes, under the
uncertainty set ΞΓ , are computed and the policy graph is updated. Both of the
label values and the policy graph Gσ+ are given respectively in Fig. 7 and Fig. 8.
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4

1

3

2([1,2],1)

([2,5],1)

([3,4],1)

([1,2],1)

Fig. 6: The initial policy graph Gσ+ .

Then, other arcs of the original graph G are checked for possible improvements.
The label values and the policy graph Gσ+ are given in Fig. 9 and Fig. 10.

The maximum circuit ratio of the graph is α = 7, the associated critical circuit
is (1, 2, 4, 1) and the scenario giving this value is ξ = (1, 0, 0, 0).

Node 1 2 3 4
γ = 0 0 -3 0 6
γ = 1 0 -2 1 7

Fig. 7: The label values dγi of the iteration 1.

Note that, once the optimal cycle time αopt is computed by one of the three
above algorithms, the worst case scenario ξ can be obtained. Hence, one can com-
pute the vector of the starting times (ti(ξ))i∈T , in the worst case scenario, by

computing the longest path in the graph G
′

= (G, pe(ξ)− αoptHe).

5 Experimental study

In order to validate the proposed approaches, we present numerical experiments
that we performed on randomly generated instances. We first describe how the
instances are built, then we discuss the numerical results.

Since there is no benchmark available in the literature, even for the determin-
istic Basic Cyclic Scheduling Problem, we randomly generate the instances. We
consider instances where the number of tasks varies from 10 to 200. In order to
build the instances, we proceed as follows. First, we generate a precedence graph
using the library GGen (see [28]). We vary the probability of having an arc from i
to j from 0.5 until 0.9. Once the precedence graph is obtained, we add two dummy
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([3
,4

],0
)

Fig. 8: The policy graph Gp of the iteration 1.

tasks s and e. For each node i of the graph having zero in-degree (rep. zero out-
degree), we add an arc (s, i) (resp. (i, e)) and finally, we add a return arc from e
to s. Next, we generate the arc valuation uniformly. The nominal processing times
take values from 1 to 10 and the deviations from 0% to 30%.

Node 1 2 3 4
γ = 0 0 -3 0 6
γ = 1 2 -2 1 7

Fig. 9: The label values dγi of the iteration 2.

The three algorithms have been coded using the C++ language and compiled
with GNU G++ 5.4.

We present in Table 1 the average running times of each algorithm, the bi-
nary search algorithm (BS), the negative circuits cancelling algorithm (NCC) and
the robust Howard’s algorithm (R-HOW), according to the number of tasks and
different values of the budget of uncertainty.

Table 1 shows that the R-HOW algorithm outperforms the NCC algorithm
and the BS algorithm. The running times are comparable on small-size instances,
but at least 100 times smaller for the most of the other cases. Note that in this
table we report only results on instances having at most 70 tasks. The robust
Howard’s algorithm solves all the instances (from 10 to 200 tasks), contrary to the
binary search algorithm and the negative circuits cancelling algorithm that exceed
the time limits with instances having respectively 70 tasks and 80 tasks. We also
remark that, for instances with 70 tasks, the average running time of the negative
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Fig. 10: The policy graph Gσ+ of the iteration 2.

cycle cancelling algorithm is smaller than the one of robust Howard’s algorithm
when Γ = 0. However, this is not the case when the level of the deviations increases.

Fig. 11 displays some plots, each one representing, for a fixed budget of the
uncertainty varying from 0% to 100%, the average running time of the robust
Howard’s algorithm according to the number of the tasks. The figure shows also
that the robust Howard’s algorithm is insensitive to the variation of the level of
the deviations, since the running times with different budget of the uncertainty are
quite stable. This behaviour is not present in the case of the two other algorithms.
Table 1 shows that the running times for these two algorithms are very sensitive
to the variation of the budget of the uncertainty and increase significantly.

6 Conclusions and perspectives

In this paper, we consider the Basic Cyclic Scheduling Problem where processing
times are affected by uncertainties. We model the problem as a robust optimization
problem with polyhedral uncertainty set. We derive a separation procedure and
propose three algorithms to solve the problem. The two first are based on negative
circuits detection and the last one is an adaptation of the Howard’s algorithm.
In order to validate the three algorithms, we perform numerical experiments on
randomly generated instance. The NCC and BS algorithms solves instances having
less than 70 tasks and the Howard’s algorithm adaptation solve all the instances.
Numerical experiments show that the robust Howard’s algorithm is the most effi-
cient, in terms of the running times, among the three algorithms.

The next step is considering additional constraints such as disjunctive con-
straints or deadlines. More precisely, a relevant perspective is to tackle the robust
version of the cyclic job shop problem. The main difference with the R-BCSP
is that the disjunctions occur since the tasks are mapped into limited resources.
Note that when the disjunctions are fixed, the problem can be solved as Robust
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# Tasks Γ (%) BS Time (s) NCC Time (s) R-HOW Time (s)

10

0 0.019 0.004 0.000
10 0.038 0.006 0.000
20 0.063 0.010 0.000
30 0.083 0.013 0.000
40 0.104 0.017 0.000
50 0.125 0.021 0.000
70 0.174 0.030 0.000
90 0.232 0.039 0.000
100 0.26 0.047 0.000

20

0 0.18 0.020 0.002
10 0.544 0.088 0.002
20 0.914 0.145 0.002
30 1.305 0.222 0.002
40 1.715 0.289 0.002
50 2.157 0.359 0.002
70 3.094 0.532 0.003
90 4.144 0.696 0.003
100 4.634 0.794 0.003

30

0 0.709 0.076 0.018
10 2.902 0.464 0.018
20 5.23 0.845 0.019
30 7.75 1.260 0.019
40 10.512 1.679 0.020
50 13.424 2.142 0.021
70 19.049 3.136 0.022
90 25.789 4.280 0.024
100 29.467 4.913 0.024

40

0 2.11 0.227 0.095
10 10.735 1.726 0.097
20 20.431 3.244 0.101
30 30.067 4.825 0.101
40 41.538 6.496 0.106
50 52.875 8.301 0.110
70 75.958 12.210 0.114
90 104.761 16.324 0.119
100 120.002 19.057 0.120

50

0 4.646 0.499 0.369
10 29.588 4.717 0.375
20 57.57 8.932 0.392
30 86.651 13.539 0.399
40 119.545 18.489 0.404
50 151.41 23.592 0.419
70 222.526 34.975 0.411
90 299.486 47.818 0.425
100 342.912 55.292 0.430

60

0 9.669 1.007 0.942
10 71.619 10.912 0.959
20 138.336 21.100 0.983
30 206.963 31.967 0.983
40 284.244 44.397 0.994
50 364.813 55.376 1.016
70 530.786 83.376 1.071
90 719.544 112.423 1.085
100 793.328 132.045 1.101

70

0 17.979 1.871 2.381
10 149.431 22.453 2.353
20 290.334 43.947 2.322
30 444.957 66.400 2.374
40 596.621 92.408 2.393
50 747.239 119.380 2.509
70 938.809 173.000 2.590
90 - 237.221 2.580
100 - 290.837 2.547

Table 1: Average solution times in seconds for BS, NCC and R-HOW.
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Fig. 11: Average running times for R-HOW with respect to different budget of uncertainty.

Basic Cyclic Scheduling Problem, therefore a Branch and Bound method can be
combined with the presented algorithms to solve the problem.
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