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ABSTRACT
Industrial Internet of �ings (IIoT) applications found in domains

such as smart-grids, intelligent tranportation, manufacturing and

healthcare systems, are distributed and mission-critical in nature.

IIoT requires a scalable data sharing and dissemination platform

that supports qulaity of service properties such as timeliness, re-

silience, and security. Although the Object Management Group

(OMG)’s Data Distribution Service (DDS), which is a data-centric,

peer-to-peer publish/subscribe standard supporting multiple QoS

properties, is well-suited to meet the requirements of IIoT applica-

tions, the design of OMG DDS and current technology limitations

constrains its use to local area networks only. Moreover, even

though broker-based bridging services exist to inter-connect iso-

lated DDS networks, these solutions lack autonomous and dynamic

coordination and discovery capabilities that are needed to bridge

multiple, isolated networks on demand. To address these limita-

tions, and enable a practical and readily deployable solution for

IIoT, this paper presents PubSubCoord, which is an autonomous,

coordination and discovery service for DDS endpoints operating

over wide area networks (WANs). Empirical results evaluating the

feasibility and performance of PubSubCoord are presented for (1)

scalability of data dissemination and coordination, and (2) deadline-

aware overlays employing con�gurable QoS to provide low-latency

data delivery for topics demanding strict service requirements.

CCS CONCEPTS
•Computer systems organization →Cloud computing; Peer-
to-peer architectures; •Applied computing →Event-driven ar-
chitectures;
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Data Distribution Service, Pub/Sub, Discovery, Coordination

1 INTRODUCTION
Emerging paradigms, such as the Internet of �ings (IoT), connect

machines and devices in a loosely coupled manner to form intelli-

gent and large-scale systems. A class of IoT, referred to as Industrial

IoT (IIoT) [9], found in domains such as transportation, healthcare,

manufacturing, and energy requires di�erent quality of service

(QoS) properties, such as timeliness, reliability, and security, for

their applications that are geographically distributed and operate

over wide area networks (WANs). For example, wind farms have

di�erent requirements for data analysis depending on the type of

analysis (e.g., frequency of data arrival for machine-level analysis

is every 40 milliseconds and for plant-level analysis is every one

second). �e key to successful data analysis relies on how e�ective

is the system in collecting and delivering data across a large number

of entities at Internet-scale in a timely, and reliable manner.
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�e publish/subscribe (pub/sub) communication paradigm is

a�ractive for these emerging systems since it provides a scalable and

decoupled data delivery mechanism between communicating peers.

Speci�cally, the need to scalably and reliably disseminate large

volumes of IIoT data in real-time motivates the use of scalable, data-

centric pub/sub with support for con�gurable QoS properties that

can operate over WANs. Many pub/sub messaging solutions exist

today that can operate over multiple networks including industrial

solutions [28, 37, 45] and research e�orts [19, 24, 39]. Some of

these even support QoS properties, such as availability [24, 39],

con�gurable reliability [37], durability [28], and timeliness [18, 30].

However, these solutions either do not address the scalable data-

centric needs, or tend to support only a subset of properties at a

time and in most cases, support for con�gurable QoS properties,

security, and resilience is lacking.

�e Object Management Group (OMG)’s Data Distribution Ser-

vice (DDS) [38] standard for data-centric pub/sub holds substantial

promise for IIoT applications because of its support for con�gurable

QoS policies, dynamic discovery of end points, low-latency and

resilience due to its peer-to-peer architecture. However, there still

remain a number of unresolved challenges in using OMG DDS in

IIoT systems deployed over multiple, distributed networks. For

instance, DDS uses multicast as a default transport to automatically

discover peers in a system. If the endpoints are located in isolated

networks that do not support multicast, then these endpoints can-

not be discovered by each other. Secondly, even if these endpoints

were discoverable, because of network �rewalls and network ad-

dress translation (NAT), peers may not be able to deliver data to

the destination endpoints.

One approach to supporting OMG DDS over multiple distributed

networks relies on broker-based solutions [27, 33], where brokers

are used to inter-connect peers in di�erent networks. It is thus con-

ceivable to think that these broker-based solutions in conjunction
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with the data-centric and con�gurable QoS features provided by

OMG DDS can readily provide a solution for IIoT. However, it is still

challenging to realize such capabilities when the deployed system

spans a large number of networks comprising pub/sub endpoints

that illustrate heterogeneity in terms of topics, their types, and

requested versus o�ered QoS policies. Additionally, such solutions

tend to lack autonomous and dynamic discovery and coordination

of brokers to connect pub/sub peers in multiple, disparate networks

on demand.

Further, as industrial systems progressively integrate an increas-

ing number of sub-systems located in multiple disparate networks,

the number of deployed brokers may become very large. Conse-

quently, the amount of e�ort to manage these dispersed brokers

becomes unwieldy due to the distributed state and con�guration.

Moreover, forming an e�cient overlay network of brokers that

o�ers both scalability and low latency becomes even harder.

To address these technical concerns while still bene��ing from

technologies, such as OMG DDS, and to realize a practical and

readily deployable solution that IIoT applications can leverage, we

present PubSubCoord, which provides an autonomous and dynamic

coordination and discovery service for geographically distributed

brokers to transparently connect pub/sub endpoints and realize

scalable and low-latency, data-centric pub/sub systems. Our earlier

work presented only a vision of PubSubCoord [6, 7]. �is paper

signi�cantly extends this vision by delving into the technical details

of its design, and makes the following contributions:

• To address the scalability and low latency requirements of

data dissemination across multiple distributed networks,

and to limit the complexity of managing a broker network,

PubSubCoord introduces a two-level broker hierarchy de-

ployed over a pub/sub overlay network, which in turn

incurs only two hops in the worst case in the data dis-

semination path across the overlay of distributed, isolated

networks.

• To achieve autonomous and dynamic discovery and data

routing between brokers, PubSubCoord exploits and ex-

tends the open-source ZooKeeper coordination service [29]

in a novel way to create dissemination paths for the dy-

namic overlay network of brokers and endpoints.

• For those dissemination paths that need both low latency

and high-availability requirements, PubSubCoord trades

o� resource usage in favor of deadline-aware overlays that

build multiple, redundant paths between brokers.

• An implementation of PubSubCoord using Real Time Inno-

vation (RTI)’s implementation of OMG DDS as the underly-

ing pub/sub messaging system is presented and empirically

evaluated to demonstrate the feasibility of the solution and

its ability to support end-to-end QoS properties without

incurring any undue overhead introduced by the broker

architecture.

�e remainder of this paper is organized as follows: Section 2

describes the design and implementation of PubSubCoord; Sec-

tion 3 presents experimental results validating our claims; Section 4

compares PubSubCoord with related work; and Section 5 presents

concluding remarks and alludes to lessons learned and future work.

To make the paper self-contained, Appendix A provides background

information on the underlying technologies used in PubSubCoord.

2 DESIGN AND IMPLEMENTATION OF
PUBSUBCOORD

In the realm of (I)IoT, there is an emerging trend towards exploiting

the entire spectrum of resources ranging from the edge to the

cloud [15, 42]. �e separation of concerns and latency/scalability

bene�ts of edge-cloud architectures motivates the two levels of the

broker hierarchy in our PubSubCoord design.
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Figure 1: PubSubCoord Architecture

Figure 1 shows the PubSubCoord architecture depicting three lay-

ers: a coordination layer, a pub/sub overlay layer, and the physical

network layer. �e pub/sub overlay comprises the two-level overlay

network of brokers and pub/sub endpoints in a system. An edge
broker is directly connected to endpoints in a local area network

(LAN) to serve as a gateway to other endpoints placed in di�erent

networks. A routing broker serves as a mediator to route data be-

tween edge brokers according to assigned and matched topics that

are present in the global data space spread across the WANs. �e

coordination layer comprises an ensemble of ZooKeeper servers

used for coordination between the brokers. ZooKeeper has been

used by many industrial solutions, such as FaRM [23], Ambry [36],

CoRAL [46] and Net�ix’s Curator for distributed coordination. �e

routing broker layer resides in the cloud (or fog) along with the

coordination logic while the edge broker layer resides in the edge.

Data dissemination in PubSubCoord can be explained using an

example from Figure 1. Pi{T } denotes a publisher i that publishes
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topic T (similarly for a subscriber S). Since there are no endpoints

interested in topicA other than publisher P1 and subscriber S1, they

communicate only within the local networkA via either UDP-based

multicast or unicast for low latency without incurring a hop to the

routing broker layer. P2, P4, and S2 are interested in topic B but

are deployed in di�erent networks. So their communications are

routed through a routing broker that is responsible for topic B.

In the remainder of this section, we discuss the di�erent design

decisions and implementation aspects of PubSubCoord.

2.1 Scalability via Separation of Concerns
Context and challenges: Traditional WAN-based pub/sub sys-

tems tend to form an overlay network of brokers to which endpoints

can be connected. �e brokers exchange subscriptions they receive

from subscribers that are used to build routing paths from publish-

ers. �e main challenge in this approach stems from having to build

routing states among brokers to route data e�ciently according to

matching subscriptions. Maintaining such distributed state may

become unwieldy. Secondly, in traditional broker-based pub/sub

systems, if some broker were to fail, it halts not only the pub/sub

service for endpoints connected to this broker but also service for

endpoints connected to other brokers that use this failed broker

as an intermediate routing broker. Moreover, the dissemination

latency su�ers due to multiple broker hops.

Solution approach: To resolve these challenges, PubSubCo-

ord’s broker overlay layer is structured as just a two-tier archi-

tecture of brokers with strict separation of responsibilities: at the

bo�om tier are edge brokers that manage pub/sub issues within an

isolated network, and at the top tier are routing brokers in the cloud,

which route tra�c among di�erent edge brokers. �us, we incur

a maximum two-hop latency for communication across isolated

LANs.

Design details, consequences and their resolution: Our so-

lution clusters edge brokers by matching topics and routes data

through routing brokers. Each routing broker is responsible for

handling only a certain number of topics so as to balance the topic

load and number of connections between edge brokers.

An immediate consequence of our design decision is having to

decide how many routing brokers to maintain, how many topics

to be handled by each routing broker, and how to organize them

in the system. Having only one routing broker would be prob-

lematic since it cannot scale to handle the substantial routing load

stemming from the dissemination of multiple di�erent topic data

among the large number of endpoints. Having multiple routing

brokers and organizing them in multiple levels of hierarchy similar

to domain name service (DNS) would not be acceptable either since

it would complicate the management of topics and recovery from

failures because the routing state and topic management would get

distributed across multiple levels. Secondly, multiple levels as in

DNS introduces multiple routing hops, which will impact latency of

distribution and thereby scalability of the system. For that reason,

we maintain a �at tier of routing brokers.

�e number of routing brokers and topics managed by each

routing broker is determined by the end-to-end performance re-

quirements of the pub/sub �ows. �us, a solution that can elastically

scale the number of routing brokers and balance the number of top-

ics handled by each broker is needed. For that reason, the routing

broker tier is placed as a cluster in the cloud where resources can be

elastically scaled up/down depending on the demand. �e number

of routing brokers can thus be scaled up/down to dynamically adapt

to system load using cloud-based autoscaling algorithms, such as

the one we proposed in prior work [41]. �us, our design enables

dynamic adaptation to system load and autoscaling to existing de-

mand. �is design can also take care of faults in routing brokers

where a new routing broker can be spawned on demand in case of

failure and the failed broker’s topics can be re-distributed among

existing brokers.

2.2 Low Latency for Intra-LAN Data
Dissemination

Context and challenges: Systems that cater to supporting WAN-

scale operations may tend to overlook LAN-speci�c issues and force

a one-size-�ts-all WAN-scale solution even for a LAN-scale oper-

ation, thereby incurring unnecessary overhead and performance

penalties on applications. For PubSubCoord this implies that any

intra-LAN data dissemination should not incur the overhead of

WAN latencies stemming from having to utilize the cloud-based

routing broker layer.

Solution approach: It is in this regard that the two-level broker

solution of PubSubCoord and separation of concerns addresses

these potential problems, where the edge broker layer handles all

the LAN-speci�c pub/sub issues.

Design details, consequences and their resolution: In our

solution, any pub/sub tra�c that is local (i.e., where publishers

and subscribers reside in the same isolated network) is not allowed

to reach the routing brokers; rather the tra�c and dissemination

is handled by the edge brokers themselves thereby avoiding the

penalty of a round-trip WAN latency and in turn avoiding undue

overhead imposed on the routing brokers.

A consequence of our design is that the edge broker may get over-

loaded and/or fail. To that end, elastic solutions and load balancing

decisions similar to that used in the cloud can be used for edge

brokers. In fact, the emerging edge-cloud architectures are already

supporting elastic solutions across the spectrum of edge-cloud re-

sources [21]. Moreover, faults can be handled using a variety of

mechanisms including leveraging the range of fault tolerance solu-

tions we have developed in prior work [8, 10–12, 22, 24, 44].

2.3 WAN-scale Autonomous and Dynamic
Endpoint Discovery and Dissemination

Context and challenges: In IIoT systems, the publishers and sub-

scribers that are matched with each other are most likely distributed

across separate isolated networks, and moreover they may join or

leave the system dynamically. �us, publishers and subscribers

must be able to dynamically discover each other and a dissemi-

nation route needs to be established between the communicating

entities. As discussed earlier, the dynamic discovery mechanisms

of OMG DDS do not work at WAN scale due to limitations with IP

multicast in the WAN and NAT/�rewall issues.
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Solution approach: To address this need, PubSubCoord uses a

coordination layer (top layer shown in Figure 1) comprising an en-

semble of ZooKeeper [29] servers, which help brokers discover each

other and build broker overlay networks using the PubSubCoord co-

ordination logic. ZooKeeper is an open-source, highly e�cient, cen-

tralized and replicated service which provides generic distributed

coordination and synchronization primitives such as leader elec-

tion, barrier synchronization,locking, group membership,sharing

con�guration metadata, etc. �e data model of ZooKeeper is struc-

tured like a �le system in the form of znodes (i.e., a ZooKeeper data

object containing its path and data content). Applications using

the znodes are required to specialize the znodes to add application-

speci�c semantics. ZooKeeper provides a watch mechanism to

notify a client of ZooKeeper of a change to a znode that is being

watched by that client. Specializing the ZooKeeper znode structure

for our needs and using its watch mechanisms provides us with a

capability that can take autonomous and dynamic decisions.

Design details, consequences and their resolution: Figure 2

shows the znode data tree structure of PubSubCoord specialized

with pub/sub semantics. �e root znode contains three child znodes:

topics, leader, and broker. All unique topics de�ned in the pub/sub

/

/topics

/pub /sub

/dw1 /dr1

/leader /broker

/topic_A /topic_B

/pub /sub

/dw1 /dw2 /dr1

/rb1 /rb2 /rb3

Figure 2: Specialized ZNode Tree for PubSubCoord

system are rooted under the topics znode. �e child znodes for

every unique topic represent the endpoints, i.e., publishers and

subscribers, associated with it. �e leader znode is used to elect a

leader among the routing brokers. A leader routing broker makes

load balancing decisions for topic distribution among the cluster

of routing brokers. �e broker znode has child znodes for each

routing broker where its location information (i.e., IP address and

port number of a routing broker) is stored. �e leader uses this

information to associate a selected routing broker’s location to a

topic znode a�er topic assignment.

Dynamic changes in the system (e.g., broker or pub/sub endpoint

join/leave, topic creation/deletion) are re�ected in the creation, up-

date, and deletion of znodes in the znode-tree. Brokers use the

watch mechanism to set watches on interesting znodes to receive

change noti�cations and to take actions autonomously. PubSub-

Coord exploits the ephemeral mode feature of ZooKeeper, where a

speci�c znode in the tree (and its subtree) is automatically deleted

from the tree when the client session handling this znode is lost

thereby providing automatic cleanup of state.

We rely on ZooKeeper to provide the desired fault tolerance

and persistence of the znode tree. Details on all the interactions

that take place in this context are provided in Section 2.6 where we

show how brokers discover each other and establish communication

routes.

2.4 Overload Management and Fault Tolerance
Context and challenges: Performance of PubSubCoord can be

impacted by at least two factors: load and failures in the routing

and edge brokers; and network congestion on the two hop route

between edge and routing brokers over the broker overlay.
2

Load

on a routing broker depends on the number of topics it manages and

the number of edge brokers it interconnects through itself. �us,

appropriate strategies are needed for routing broker load balancing.

In the case of faults, although many kinds of faults are possible, we

focus only on tolerating failures in the routing broker layer.

2.4.1 Routing Broker Load Management
. Solution approach: Load balancing is handled by the leader

routing broker, which is elected among the routing brokers using

ZooKeeper. In the current implementation, the leader routing bro-

ker assigns a new topic to the least loaded routing broker in terms

of number of topics.

Design details, consequences and their resolution: To elect

a leader in a consistent and safe manner,PubSubCoord uses ZooKe-

eper’s leader znode for routing brokers to write themselves on the

znode so as to be elected as a leader (i.e., voting process). �e

routing broker that gets to write �rst becomes a leader since the

znode is locked therea�er (i.e., no one can write on the znode unless

the leader fails). �e remaining routing brokers become workers.

Worker routing brokers relay pub/sub data between edge brokers.

�e leader routing broker can also serve as a worker routing broker.

A leader routing broker must manage the cluster of routing

brokers and assign topics to workers in a way that balances the load.

It does this by selecting the least loaded worker, which currently is

decided based on the number of adopted topics by that worker. By

using the Strategy design pa�ern our design can allow plugging

in other load balancing schemes (e.g., least loaded based on CPU

utilization, the number of connections, QoS policies, or DHT-based

load balancing).

2.4.2 Deadline-aware Overlay Optimizations
. Solution approach: �e second cause of performance bo�le-

necks stems from the congested two-hop route connecting edge

brokers via a routing broker. To overcome this problem, PubSubCo-

ord also supports an optimization to both improve reliability and

latency by providing an additional one hop path over the overlay

that directly connects communicating edge brokers.

Design details, consequences and their resolution: Figure 3

illustrates the idea. �ese optimizations can be leveraged by pub/-

sub �ows that require stringent assurances on reliable and deadline-

driven data delivery. For example, OMG DDS uses deadline QoS as

a contract between pub/sub �ows, which can be used to express

the maximum duration of a sample to be updated. For those event

streams requiring strict deadlines, multi-path overlay networks

2
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build an alternative, additional path directly between edge brokers

thereby reducing the number of hops to just one.

R

E1 E2

P S

L2 L3

L1

Figure 3: Multi-path Deadline-aware Overlay Concept

Note that this strategy is vulnerable to abuse by applications,

and doing this for every edge broker will be infeasible due to the

very large connection state that every edge broker must manage.

�us, higher level policies and admission control mechanisms will

be needed to restrict such optimizations to the most critical �ows.

2.4.3 Broker Fault Tolerance
. Solution approach: PubSubCoord o�ers tolerance to routing

broker failures, which can be of two kinds: worker failure and

leader failure. When the worker fails, the leader reassigns topics

handled by that failed broker to another worker routing broker

to avoid service cessation. If the load is too high, the cloud will

elastically scale the number of routing brokers. If a leader fails, the

routing brokers vote for another leader again. On (re)assignment

or failure of routing broker, PubSubCoord leverages ZooKeeper’s

watch mechanism to notify the appropriate edge brokers to update

their paths to the right routing broker.

Design details, consequences and their resolution: �ere

may be transient periods of time when brokers fail and their load

has to be migrated. We have not yet evaluated the impact of such

transient unavailability of service and its impact on loss of samples

being disseminated. Our ongoing work is designing solutions to

minimize the impact of these situations. Second, the ZooKeeper

server itself may fail. To provide a scalable and fault-tolerant service

at the coordination layer, ZooKeeper supports the notion of an

ensemble, and a leader of the ensemble synchronizes data between

distributed servers to provide consistent coordination events to

clients (i.e., brokers in our solution) and avoid single points of

failure.

2.5 Concrete Instantiation of PubSubCoord
with OMG DDS

To demonstrate our ideas and enable a readily deployable solution,

we have implemented PubSubCoord in the context of OMG Data

Distribution Service (DDS) where the pub/sub endpoints use the

OMG DDS technology, speci�cally the RTI Connext DDS implemen-

tation, along with its requested-o�ered QoS model. We have used

Curator,
3

which is a high-level API that simpli�es using ZooKeeper,

and provides useful recipes such as leader election and caches of
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znodes. We use the cache recipe to locally reserve data objects that

are accessed multiple times for fast data access and reduce the load

on ZooKeeper servers. �e edge and routing brokers are entities we

provided beyond existing DDS so�ware entities. �e edge brokers

collocate themselves with RTI Connext’s Routing Service, which

provides edge-based routing capabilities. We have evaluated our

design in an experimental testbed as we show later.

2.6 PubSubCoord with OMG DDS in Action
So far we have presented the architectural elements and imple-

mentation details of PubSubCoord. We now present details on the

runtime interactions among the architectural elements that real-

izes the various capabilities of PubSubCoord. We describe how

the brokers interact and the algorithms they execute to update

their internal states used in routing the streamed pub/sub data. We

show these interactions concretely in the context of publishers and

subscribers that use OMG DDS and its QoS policies.

2.6.1 Routing Broker Responsibilities. Figure 4 illustrates the

sequence diagram showing the runtime interactions of the routing

brokers. �e corresponding algorithm executed by the routing

broker is captured in Algorithm 1. �is algorithm is predominantly

event-driven, i.e., it is made up of callback functions that are invoked

when some condition is satis�ed. �ese callback functions are

invoked by ZooKeeper due to the di�erent watch conditions. �e

Routing Service shown in the �gure and used in the algorithm are

the capabilities at the edge broker that bridge the isolated network

to the outside world. In our case, it is supplied by RTI’s DDS

implementation.

Leader
Routing Broker

Routing Service
ZooKeeper

Server

Run 
Routing Service

Initiate connection

Elect a leader

Register a listener to receive 
topic creation/deletion events

Creation event of Topic 'A'

Assign Topic 'A' 
to a worker routing broker

Elected as a leader

Update the znode 
for Topic 'A' with the assigned 

routing broker's locator

Worker
Routing Broker

Elect a leader

Assignment event of Topic 'A' to this worker routing broker

Register a listener to receive events of endpoints for Topic 'A'

Creation event of an endpoint for Topic 'A' 
with edge broker's locator (IP and port)

Initiate connection

Create a route for 
Topic 'A' Add a path to 

the  edge broker

Register a listener to receive topic assignment events

Figure 4: Routing Broker Sequence Diagram

�e algorithm and sequence of steps for the routing broker

operate as follows: Each routing broker initially connects to the

ZooKeeper leader as a client of the ZooKeeper service. �e cluster

of routing brokers subsequently elect a leader among themselves

using the process described in Section 2.3 that uses the leader znode.

Once a leader is elected, it registers a listener (i.e., event detector

5
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Algorithm 1 Routing Broker Callback Functions

function broker node listener(broker node cache)

topic set = broker node cache .get data()

for topic : topic set do
if ! topic list .contains(topic) then

ep cache = create children cache (topic)

set listener(ep cache)

topic list .add(topic)

function endpoint listener(ep cache)

ep = ep cache .get data()

switch ep cache .get event type() do
case child added

if ! eb peer list .contains(epeb locator ) then
eb peer list .add(epeb locator )

routinд service .add peer(epeb locator )

if ! topic list .contains(eptopic ) then
routinд service .create topic route(ep)

topic multi set .add(eptopic )

case child deleted
topic multi set .delete(eptopic )

if ! topic multi set .contains(eptopic ) then
eb peer list .delete(epeb locator )

routinд service .delete topic route(ep)

that is noti�ed when the registered znode changes) on the topics
znode (shown in Figure 2) to receive topic relevant events (e.g.,
creation or deletion of topics).

�e following callback functions are implemented by the routing

brokers:

• broker node listener – �is function is invoked when

a znode for a worker routing broker is updated with an

assigned topic by a leader routing broker.

• endpoint listener – �is function is invoked when chil-

dren pub/sub endpoints of a znode for an assigned topic

are created, deleted, or updated.

Every worker routing broker registers a listener on the znode for

itself to receive topic assignment events updated by a leader routing

broker. In the broker node listener callback function, the znode

for the routing broker stores a set of topics. When the topic set is

updated by the leader (e.g., the leader assigns a new topic to the

worker routing broker), it applies the changes by creating a cache

for the assigned topic and its listener to receive events relevant to

endpoints interested in the assigned topic.

When an endpoint is created or deleted in an isolated network,

their edge brokers create or delete znodes for endpoints and these

events will trigger the endpoint listener function in the rout-

ing brokers that are responsible for the topics involved with the

endpoints. �e metadata of the znode cache for an endpoint (ep in

the endpoint listener callback function) contains the locator of

an edge broker where the endpoint is located as well as the topic

name, type, and QoS se�ings.

If the event type is creation, it adds the locator of the edge broker

to the DDS Routing Service running in the routing broker if it does

not exist. �erea�er, it requests the DDS Routing Service to create

a route for the topic based on the information provided by the

content of the ep znode from this routing broker to the edge broker,

if it does not exist. If the event type is deletion, it has to delete the

locator and the topic route from the DDS Routing Service on the

condition that no endpoints for that topic still exist.

Consider a concrete example. Using Figure 4, when TopicA is

created, the leader routing broker assigns the topic to the least

loaded worker, which currently is decided based on the number of

adopted topics by that worker. Next, the leader updates a locator

of the assigned worker broker on the corresponding znode that is

created for TopicA, i.e., a child of topics znode – see the le�most

node in row three of Figure 2. �is locator information will then

be used by edge brokers interested in TopicA.

A worker routing broker initially registers listeners on a znode

for itself (i.e., a child of broker znodes) to receive topic assignment

events, which occur when the assigned topics znode is updated by a

leader routing broker. When the worker routing broker is informed

that it must handle a speci�c topic, such asTopicA, it then registers

a listener on pub/sub znodes for that particular assigned topic (e.g.,
children of topic A znode) to receive endpoint discovery events,

such as creation of publisher or subscriber endpoints interested in

TopicA. When an endpoint for TopicA is created and the worker

routing broker is noti�ed, it establishes data dissemination paths

to edge brokers. For this data dissemination, PubSubCoord relies

on the underlying pub/sub messaging systems’ broker capabilities.

2.6.2 Edge Broker Responsibilities. Figure 5 shows the corre-

sponding sequence diagram for edge brokers, and Algorithm 2

describes the logic of the callback functions implemented by the

edge broker.

Edge Broker Routing Service
ZooKeeper

Server
Endpoint

(Pub or Sub)

Discovery event 
via Multicast

Run 
Routing Service

Initiate connection

Create a znode for the created endpoint 
with edge broker's locator (IP and port) 

Register a listener to receive 
events for routing broker assignment 

Assignment event of 
a routing broker for Topic 'A' with its locator 

Create a route
for Topic 'A' Add a path to 

the routing broker

Create an endpoint 
for Topic  A 

Publish/Subscribe data

Destroy or move
the endpoint 
for Topic  A 

Liveliness timeout 
of the endpoint

Delete the znode 
for the disappered endpoint

Delete the route
for Topic 'A'

Create a znode for Topic 'A' 
if it does not exist

Figure 5: Edge Broker Sequence Diagram

�e algorithm implements the following callback functions for

edge brokers which are invoked under the following conditions:

• endpoint created: �is function is invoked when an

endpoint in an isolated network is created.
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Algorithm 2 Edge Broker Callback Functions

function endpoint created(ep)

create znode (ep)

if ! topic multi set .contains(eptopic ) then
ep node cache = create node cache(ep)

set listener (ep node cache)

routinд service .create topic route(ep)

topic multi set .add(eptopic )

function topic node listener(topic node cache)

rb locator = topic node cache .get data()

if ! rb peer list .contains(rb locator ) then
rb peer list .add(rb locator )

routinд service .add peer(rb locator )

function endpoint deleted(ep)

delete znode (ep)

topic multi set .delete(eptopic )

if ! topic multi set .contains(eptopic ) then
delete node cache(ep)

routinд service .delete topic route(ep)

• topic node listener: �is function is invoked when a

topic znode managed by an edge broker is updated with a

locator of an assigned worker routing broker.

• endpoint deleted: �is function is invoked when an

endpoint in a network is deleted.

�e edge broker operates as follows: Like routing brokers, edge

brokers initially connect to the ZooKeeper servers as clients of the

ZooKeeper service. In the context of OMG DDS, edge brokers make

use of built-in entities (i.e., special pub/sub entities for discovering

peers and endpoints in a network supported by OMG DDS) to

discover endpoints in local networks. For example, when a pub or

sub endpoint interested in TopicA is created within some isolated

network, the built-in entities receive discovery events via multicast,

and then edge brokers create znodes for the created endpoints.

Edge brokers register a listener on a topic znode (e.g., topic A in

Figure 2) in which the created endpoint is interested in to obtain

the locator of the routing broker that is in charge of that particular

topic. Once a locator of a routing broker is obtained, an edge broker

initiates a data dissemination path to the routing broker through

the routing capabilities that are assumed to be collocated with the

edge broker.

�e endpoint created callback function �rst creates a znode

for a created endpoint (i.e. ep in Algorithms 2) that contains the

topic name, type, and QoS se�ings. If a relevant topic to the created

endpoint has not appeared in an edge broker before, a cache for

the topic znode and its listener for the topic are created to receive

locator information of an assigned worker routing broker. When

the znode for the topic is updated by a leader routing broker, it

triggers the topic node listener callback described in Algorithm 2.

In the topic node listener callback function, each topic znode

stores the locator of the worker routing broker that is responsible

for the topic. �e locator of a routing broker is added to the routing

capability of the edge broker to establish a communication path

between the edge broker and a worker routing broker.

�e endpoint deleted callback function deletes the znode for

the existing endpoint, and deletes it from the multi-set for topics.

Next, it checks if the multi-set contains the topic of the deleted

endpoint. If the topic is contained in the multi-set, it means other

endpoints are still interested in the topic. If it is empty, it means

no other endpoints that are interested in the topic exists, and that

the cache and its listener need to be removed. �e multi-set data

structure for topics is used because there may still exist endpoints

interested in topics relevant to deleted endpoints.

To support mobility or termination of endpoints, PubSubCoord

relies on a timeout event that occurs by virtue of using the DDS live-
liness QoS policy (which is used to detect disconnected endpoints

where the timeout values are con�gurable) and accordingly the

znodes (which operate in the ephemeral mode) for those endpoints

are deleted from the coordination servers and the route maintained

at the edge broker is also terminated.

3 EXPERIMENTAL VALIDATION OF
PUBSUBCOORD

�is section presents the experimental results we conducted to eval-

uate the latency bene�ts, scalability and deadline-aware overlays

of PubSubCoord.

3.1 Overview of Testbed Con�gurations and
Testing Methodology

Our testbed is a private cloud managed by OpenStack comprising 60

physical machines each with 12 cores and 32 GB of memory. Both

Edge and Routing broker instances run in their own Virtual Machine

(VM), while multiple publisher and subscriber test applications

share a VM. Each Virtual Machine (VM) used in our experiment

was con�gured with one virtual CPU and 2 GB RAM. To experiment

in a multi-network environment, we used Neutron
4
, an OpenStack

project for networking as a service, to create virtual networks.

All publish/subscribe end-points, were implemented using RTI

Connext 5.1
5

and were con�gured to use reliable reliability QoS to

avoid data loss at the transport level through data retransmission;

keep all history QoS to keep all historical data; and transient

durability QoS to make it possible for late-joining subscribers to

obtain previously published samples. �e lifespan QoS is set to 60

seconds so publishers guarantee persistence for 60 seconds. De-

pending on the application’s requirements, the QoS policies can be

varied and hence the performance results may change according to

di�erent QoS se�ings.

Each publisher test application sends a 64 byte data sample every

50 milliseconds (other sizes could be used). We used netem6
network

emulator to emulate 20 milliseconds roundtrip LAN latencies and

80 milliseconds roundtrip WAN latencies. We measure the end-to-

end latency from publishers to subscribers to evaluate our solution.

End-to-end latency was calculated as the time di�erence between

the send timestamp at the publisher and reception timestamp at

the subscriber. �e Precise Time Protocol (PTP) [17] was used

for �ne-grained time synchronization across all VMs. We collect

4
h�ps://wiki.openstack.org/wiki/Neutron

5
h�ps://community.rti.com/rti-doc/510/ndds.5.1.0/doc/pdf/RTI

CoreLibrariesAndUtilities UsersManual.pdf

6
h�ps://wiki.linuxfoundation.org/networking/netem
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latency values of 5,000 samples in total for each subscriber and

use values only a�er 1,000 samples since the latency values of

initial samples are not consistent due to coordination and discovery

overhead (e.g., time for discovery of brokers and creation of routes).

�e broker CPU usage is also measured along with the latency

values to understand how di�erent se�ings, i.e., number of topics

per network and number of routing brokers, a�ect dissemination

scalability.

3.2 Data Locality Results
Edge Broker layer in PubSubCoord is responsible for dissemination

of local tra�c thereby preventing WAN latencies in sending data

all the way to a cloud back-end for local data dissemination. To

evaluate the latency bene�ts of the Edge Broker layer, we measure

the end-to-end latency of data dissemination under di�erent values

of data locality, i.e, fraction of topics in an isolated network which

are local to the network and do not have interested subscribers in

another network which would necessitate going through the cloud

Routing Broker layer.

We created �ve local networks each serviced by its own Edge

Broker VM and �ve Routing Broker VMs. In each of the �ve iso-

lated networks we used upto 10 client VMs for hosting pub/sub

test applications where each client VM can host a maximum of

20 pub/sub test applications. We created upto 100 topics in each

isolated network with di�erent values of data locality to observe

its e�ect on the dissemination latency. For example, in case of 100

topics per isolated network and a data locality of .9, 90 topics are

local to this isolated network and the remaining 10 topics are global

(i.e have interested subscribers in some other networks).
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Figure 6: End-to-end Latency with increasing values of data
locality

Figure 6 shows the end-to-end latency of data dissemination for

increasing values of data locality for 60, 80 and 100 topics per iso-

lated network. As seen in Figure 6, as the data locality increases, the

end-to-end dissemination latency decreases since an increasingly

large fraction of messages are local to an isolated network and do

not incur WAN latencies for their dissemination thus validating the

design of the Edge Broker Layer.

3.3 Scalability Results
We used a total of 400 VMs in our scalability experiments: 160 VMs

were used for the brokers (120 VMs for edge brokers and 40 VMs

for routing brokers) and of the remaining 240 VMs, 40 VMs were

used for publishers and 200 VMs for subscribers. Each of these

VMs runs either 25 publisher or 50 subscriber test applications. We

placed 50 publishers or 100 subscribers in each network (i.e., 2 VMs

for each network, thereby creating a total of 1000 publishers and

10,000 subscribers). Subscribers in each network are interested in

100 topics out of 1000 topics in the system.

3.3.1 Scalability of the Broker Overlay Layer. Since the edge

brokers are responsible for delivering data incoming from other

brokers to subscribers in a local network, the computation overhead

on edge brokers grows linearly as the number of adopted topics

increases. Figure 7a and 7d show the latency and Edge Broker CPU

utilization results for increasing number of topics in each local

network. �e CPU utilization increases linearly with the number

of adopted topics; the average and maximum latency values grow

as well.

Our solution supports load balancing at the Routing Broker

layer, allowing the system to scale with the number of topics in

the system. Figure 7b and 7e present latency and CPU usage for

di�erent number of routing brokers. When the number of routing

brokers is small, in this case 5, the CPU of the routing brokers

becomes saturated and latency gets adversely impacted. However,

a�er autoscaling the number of routing brokers to 10, latency values

improve. �e results in Figure 7e also validate that CPU usage

decreases linearly by increasing the number of routing brokers.

3.3.2 Scalability of the Coordination Layer. We evaluate the

scalability of a ZooKeeper-based centralized coordination service

by increasing the number of simultaneously joining subscribers

from 2,000 to 10,000 in steps of 2,000. Figure 7c shows latency, i.e.,
the amount of time it takes for the server to respond to a client

request, increases from 10ms to 20ms. We used mntr, a ZooKeeper

monitoring service
7
, to retrieve the number of used znodes and

watches. Figure 7f presents results for increasing number of used

znodes and watches as the system scales. �ese results show that

the overhead of ZooKeeper based centralized coordination service

remains acceptable even at scale. In our experiments, we have

used zookeeper in standalone mode, however, as we increase the

number of ZooKeeper servers in the ensemble, the latency overhead

is expected to decrease further.

3.4 Deadline-aware Overlays
Deadline-aware overlays can be used for topics which have stricter

data delivery requirements in case of congested, lossy and slow

WAN links. To evaluate deadline-aware overlays in PubSubCoord,

we compare the dissemination latency and broker overhead for

deadline-aware multi-path vs single-path overlays. We used the

topology shown in Figure 3 for our experiments. Verizon’s
8

delay

7
h�p://zookeeper.apache.org/doc/trunk/zookeeperAdmin.html

8
h�p://www.verizonenterprise.com/about/network/latency
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Figure 7: Scalability Experiments
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Figure 8: Deadline-aware Experiments

and loss dataset was used for emulating WAN link behavior with

Dummynet [40]. We categorized delay and loss data into two groups

(i.e., A with 30ms delay and no packet loss, and B with 250 msec

delay and 1% packet loss in Table 1) and experimented with 8

possible combinations on the given links (i.e., L1, L2, and L3 as

shown in Figure 3). �ese test cases are described in Table 1.

Figure 8a, shows the average and maximum latencies for single-

path overlays for increasing values of emulated network latencies

under both conditions- with and without packet loss. Figure 8b,

shows the average and maximum latencies for deadline-aware

multi-paths for all 8 cases as described in Table 1. We see that

test cases 1 to 5 for multi-path overlays perform be�er than any

of cases for single-path overlays; and all cases of multi-path over-

lays outperform single-path overlay with 125 milliseconds network

delay and 1% packet loss. Hence, topics with strict delivery require-

ments can bene�t from deadline-aware overlays under adverse

WAN link conditions.

Table 1: Deadline-aware Overlays Experiment Cases

Test Cases L1 L2 L3
Case 1 A A A

Case 2 A A B

Case 3 A B A

Case 4 A B B

Case 5 B A A

Case 6 B A B

Case 7 B B A

Case 8 B B B

A = 30ms delay, no packet loss

B = 250ms delay, 1% packet loss

However, maintaining multi-path overlays does impose addi-

tional computation and network transfer overhead at the edge

broker. We measured the network transfer overhead for 10,000

samples from a publisher to a subscriber for both single-path and
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multi-path overlays by using tcpdump9
. Figure 8c, shows the addi-

tional network transfer overhead imposed by multi-path overlay.

4 RELATEDWORK
Publish-Subscribe systems can be classi�ed into three types (based

on the trade-o� between simplicity and performance on one hand

and expressiveness on the other) [25] as follows: (1) Topic-based, (2)

A�ribute-based, and (3) Content-based systems. �e most expres-

sive form is Content-based publish-subscribe [13], where subscrip-

tions can be arbitrary boolean functions on the entire content of

messages (e.g., XML documents). In A�ribute-based pub-sub [32],

messages are annotated with various a�ributes and subscriptions

are expressed as predicates over these a�ributes. A publication

matches a subscription if and only if all its a�ribute values sat-

isfy the corresponding predicates of the subscription. Topic-based

pub-sub [26, 49] is the simplest form in which publishers tag their

publications with a topic name; subscribers declare their interest by

submi�ing subscriptions to speci�c topic names and all subscribers

that have subscribed to a topic receive the message. Despite its

simplicity, Topic-based pub-sub is widely used in industry, for exam-

ple: Google Cloud Messaging (GCM) [3], Amazon SNS [1], Apache

Ka�a [31], Apache Hedwig [2], Spotify [43], etc.

However, not many solutions support a variety of con�gurable

QoS policies [14, 18] such as reliability, persistence, durability, dead-

line based delivery, security etc., which is much needed for IIoT

application domains. �e OMG DDS [38] is a Topic-based pub-

lish subscribe standard which supports low latency, peer-to-peer

data delivery with a variety of con�gurable QoS se�ings. It has

been deployed in many critical application domains such as health-

care
10

,smart-grids
11

, etc. However, as noted earlier, current tech-

nology limitations restrict the use of DDS to a LAN.

To support WAN-scale data dissemination, pub/sub systems tend

to form an overlay network of brokers. On the basis of the overlay

topology, pub/sub systems can be categorized into: (1) Tree-based

overlays [20], (2) cluster-based overlays [16], (3) structured/un-

structured peer-to-peer overlays [5, 47], and (4) cloud-based over-

lays [13, 26, 32, 34, 35, 48]. In tree-based overlays, brokers are

organized into a tree overlay. Tree-based overlays incur multi-hop

routing latencies, lack recon�guration �exibility and impose costly

maintenance of routing state information. In cluster-based overlays,

brokers are organized into an unstructured overlay, where seman-

tically similar brokers are grouped into the same cluster. However,

due to frequent churn of nodes, maintaining semantic overlays

leads to high latency. In peer-to-peer overlays, there are no dedi-

cated brokers; instead each participating client is responsible for a

small portion of the subscription space.

Although the peer-to-peer architecture is amenable to operate

in wide-area networks with unreliable links and high node churn,

it incurs high latency due to multi-hop routing and is not suit-

able for taking advantage of a well-engineered cloud environment

where network links and server membership are much more sta-

ble. Cloud-based solutions o�er low-latency, scalable, single-hop

overlay routing of messages to all interested subscribers. However,

9
h�p://www.tcpdump.org

10
h�ps://www.rti.com/industries/healthcare

11
h�ps://www.rti.com/industries/energy

most of the proposed solutions [32, 35, 48] are for a�ribute-based

pub/sub where they support only a �xed a�ribute space for par-

ticipating clients. If there are multiple applications with di�erent

a�ribute spaces, these cloud-based solutions do not o�er a way in

which multiple a�ribute spaces can be supported simultaneously.

Dynamoth [26] is similar to our solution but it provides a load-

balanced topic-based pub/sub service in the cloud with single-

hop routing. Taking inspiration from recent edge/fog computing

advances, PubSubCoord introduces a second Edge Broker layer,

which allows us to gain latency bene�ts for local data dissemina-

tion. Similarly, for edge/fog centric low-latency data dissemination,

FogMQ [4] supports online migration of message brokers to facili-

tate near-the-edge data analytics.

PubSubCoord adopts a two-layer architecture for low latency

data dissemination; transparent and autonomous bridging of iso-

lated DDS LANs and separation of local data dissemination con-

cerns from the cloud. Like many cloud-based solutions, the Routing

Broker layer in PubSubCoord allows us to use elastic cloud re-

sources. Although architecturally di�erent from pub/sub systems

like Ka�a [31] and Hedwig [2], PubSubCoord also uses Zookeeper

as its centralized coordination service.

Recent research including our prior work [27, 33] has broadened

the scope of DDS to WANs by bringing in routing engines to dis-

seminate data from a local network to others. Many of these prior

e�orts require either invasive changes to existing applications or

need speci�c changes at di�erent layers of the networking stack,

which makes it hard to readily deploy such solutions. Our proposed

solution utilizes similar routing engines introduced in the related

work and additionally solves the automatic discovery and coordi-

nation problem between routing engines that otherwise requires

signi�cant manual e�orts for large-scale systems.

5 CONCLUDING REMARKS
Emerging paradigms such as the Industrial Internet of �ings il-

lustrate the need to disseminate large volumes of data between

a large number of heterogeneous entities that are geographically

distributed, and require stringent QoS properties for data dissemi-

nation from the publishers of information to the subscribers. �is

paper presents the design, implementation, and evaluation of Pub-

SubCoord, which is an autonomous and dynamic coordination and

discovery service for WAN-scale pub/sub applications. PubSubCo-

ord supports scalability in terms of data dissemination as well as co-

ordination, autonomous discovery, and con�gurable QoS properties.

�e test harness and capabilities in PubSubCoord are available for

download from www.dre.vanderbilt.edu/∼kyoungho/pubsubcoord.
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A BACKGROUND ON UNDERLYING
TECHNOLOGIES USED IN PUBSUBCOORD

Since we use the OMG DDS as the concrete pub/sub technology and

ZooKeeper as the coordination service to describe PubSubCoord’s

contributions, this section provides an overview of these underlying

technologies.

A.1 OMG Data Distribution Service (DDS)
�e OMG DDS speci�cation de�nes a distributed pub/sub com-

munications standard [38]. At the core of DDS is a data-centric

architecture (i.e., subscriptions are de�ned by topics, keyed data

types, data contents, and QoS policies) for connecting anonymous

data publishers with data subscribers in a logical global data space,

as shown in Figure 9.

Data Bus (DDS Domain)
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Data
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Data
Writer
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Figure 9: DDS Architecture

A DDS data publisher produces typed data streams identi�ed

by names called topics. �e coupling between a publisher and

subscriber is expressed in terms of topic name, its data type schema,

and QoS a�ributes of publishers and subscribers.

A domain is used to logically partition the global data space into

groups that are isolated from each other within which the partici-

pants, i.e., publishers and subscribers can communicate. To ease the

management, each publisher is made up of one or more DataWriters

and each subscriber is made up of one or more DataReaders. Each

DataWriter and DataReader can be associated with only one topic

and perform the action of writing and reading, respectively.

A Topic is a logical channel between DataWriters and DataRead-

ers that speci�es the data type of publication and subscription. �e

topic names, types, and QoS of DataWriters and DataReaders must

match for them to communicate with each other.

A.2 OMG DDS QoS Policies
OMG DDS supports a number of di�erent QoS policies that can be

mixed and matched. Each QoS policy has o�ered and requested

semantics (i.e., o�ered by publishers and requested by subscribers)

and are used in conjunction with data types of topics to match

pairs of endpoints, i.e., the DataReader and DataWriter. We brie�y

describe only those policies that we have used either in the design

of PubSubCoord or in our empirical studies.

�e reliability QoS controls the reliability of data �ows between

DataWriters and DataReaders at the transport level. It can be of two

kinds: best effort and reliable. �e durability QoS speci�es

whether or not the DDS middleware stores and delivers previously

published data samples to endpoints that join the network later. �e

reliability and persistency can be a�ected by thehistory QoS policy,

which speci�es how much data must be stored in in-memory cache

allocated by the middleware. Along with the history QoS policy,

the lifespan QoS helps to control memory usage and lifecycle of

data by se�ing expiration time of the data on DataWriters, so that

the middleware can delete expired data from the cache.

�e deadline QoS policy speci�es the deadline between two

successive updates for each data sample. �e middleware will no-

tify the application via callbacks if a DataReader or a DataWriter

breaks the deadline contract. Note that DDS makes no e�ort to

meet the deadline; it only noti�es if the deadline is missed. �e

liveliness QoS speci�es the mechanism that allows DataReaders

to detect disconnected DataWriters. �e ownership QoS speci�es

whether it allows multiple DataWriters to write data on a stream

simultaneously. If it is set to have an exclusive owner, the exclusive

owner is determined by the con�gured strength values of DataWrit-

ers. �e primary DataWriter with the highest strength is switched

to a backup if it violates the deadline QoS or is disconnected.

A.3 DDS Routing Service
Since PubSubCoord relies on a broker-based architecture, we lever-

age and extend an existing DDS broker solution. Speci�cally, we

use the DDS Routing Service, which is a content-aware bridge ser-

vice for connecting geographically dispersed DDS systems [33]. It

integrates DDS applications across LANs as well as WANs. DDS

Routing Service leverages all the entities of DDS so that it supports

bene�cial features already supported by DDS such as diverse QoS

policies, content-based �ltering, and dynamic type checking. In

addition, it enables DDS applications to publish and subscribe data

across domains in multiple networks without any changes to the

applications.

A.4 ZooKeeper
ZooKeeper is a service for coordinating processes within distributed

applications [29]. �e ZooKeeper service consists of an ensemble

of servers that use replication to accomplish high availability with

high performance and relaxed consistency. ZooKeeper provides the

watch mechanism to notify a client of a change to a znode (i.e., a

ZooKeeper data object containing its path and data content). �ere

exist many coordination recipes using ZooKeeper that are o�en

needed for distributed applications, such as leader election, group

membership, and sharing con�guration metadata. PubSubCoord

exploits these capabilities in its design.
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