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Abstract

This paper presents a new real-time localization system for a mobile
robot. We show that autonomous navigation is possible in outdoor situa-
tion with the use of a single camera and natural landmarks. To do that,
we use a three step approach. In a learning step, the robot is manually
guided on a path and a video sequence is recorded with a front looking
camera. Then a structure from motion algorithm is used to build a 3D
map from this learning sequence. Finally in the navigation step, the robot
uses this map to compute its localization in real-time and it follows the
learning path or a slightly different path if desired. The vision algorithms
used for map building and localization are first detailed. Then a large part
of the paper is dedicated to the experimental evaluation of the accuracy
and robustness of our algorithms based on experimental data collected
during two years in various environments.
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1 Introduction

Localization is a key component in mobile robotics. The most popular local-
ization sensor for outdoor robotic vehicles is the GPS receiver. A Real Time
Kinematic (RTK) GPS allows a localization accurate to 1 cm. Such an accu-
racy is possible if enough satellites are visible from the receiver. Unfortunately,
in dense urban areas, buildings can mask some satellites and in this case the
accuracy of the localization drops considerably. For this reason, it is necessary
to develop other localization sensors. The use of vision is very attractive to
solve this problem because in places where the GPS is difficult to use such as
city centers or even indoors, there are usually a lot of visual features. So a
localization system based on vision could make a good complementary sensor
to the GPS. Of course, for satisfactory reliability of the localization in a real
world application, several sensors should be used (see for example [9]). But
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Figure 1: An overview of our vision system

each sensor itself should offer the best possible performance. Our purpose in
this paper is to show what can be done with monocular vision only. We did
not use odometry because it may not be available (for a hand held camera for
example). We focused on monocular vision as opposed to stereo vision because
it simplifies the hardware at the expense of a more complex software of course.
We think, this is a good way to reduce the cost and size of the localization
system.

In order to navigate autonomously, a robot needs to know where it must
go. It also needs some knowledge about the environment so that it is able
to compute its current localization. In our application, all these information
are given to the robot in a simple way : the user drives the robot manually
on a trajectory. After that the robot is able to follow the same trajectory in
autonomous navigation. To do that we use only monocular vision and there is
no artificial landmark. The robot is equipped with a wide angle camera in a
front looking position. An overview of the vision system is presented on Fig. 1.
In the learning step, the robot is manually driven and the camera records a
learning video sequence. This sequence is processed off line to build a map of
the environment with a structure from motion algorithm. Then the robot is able
to localize itself in real-time in the neighborhood of the reference trajectory. It
allows the robot to follow the same path as in the learning step or to follow a
slightly different path which is useful to avoid an obstacle for example.
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1.1 Related work

Several approaches for robot localization using vision have been proposed. Si-
multaneous Localization And Mapping (SLAM) is attractive because localiza-
tion is possible as soon as the system is started. But map building is something
complex, so real time SLAM using only monocular vision is a difficult task.
Some approaches using more sensors such as stereo vision and odometry have
been presented by Se et al. [26]. Real-time SLAM using only monocular vision
has been achieved by Davison [5], but only for a small environment with less
than 100 landmarks. This would work well in a room for example, but it is not
suitable if the robot needs to travel for hundreds of meters. It is also possible
to compute ego motion by using only visual data as done by Nistér et al. [20]
or, in the specific case of urban environment, Simond et al. [27]. In this case,
maintaining a large map is not required but the localization accuracy decreases
as the distance traveled increases. Moreover, in two successive navigation exper-
iments, the robot may not use the same landmarks and the resulting trajectory
may be different.

Another approach for achieving robot navigation according to a human
guided experience consists in representing the trajectory as a set of key im-
ages. Then the robot has to go from on key image to the next. With this
approach, the robot will go through a number of well defined positions and the
trajectory is repeatable from one navigation experiment to the next. The first
possibility to do that is to go from one key frame to the next by visual servoing
as done by Matsumoto et al. [17], Remazeilles et al. [21], Blanc et al [3]. In those
algorithms, the current pose of the robot is not computed, so it is not possible
to have the robot follow a path different from the one which was learnt. A
variant of these approaches which uses an omnidirectional camera is described
by Argyros et al. [2]. Another possibility was presented by Goedemé et al. [10].
In this algorithm, a relative localization of the robot with reference to the key
frame is computed from features matched using a wide baseline technique. After
that, a displacement vector is computed so that the robot can reach the next
key frame.

The last approach consists in building a map of the environment first in an
off line learning step. After that, the robot is able to localize itself with this map.
The main advantage of these approaches is that they allow the robot to localize
itself even if it is slightly off the path that was learnt. Since map building is
done offline, computationally intensive algorithms can be used, resulting in an
accurate and rich map. This is not always the case in SLAM approaches because
map building and localization must be done simultaneously in real-time. The
map can be built by using different techniques and different sensors. Vacchetti
et al. [31] use a CAD model given by the user and develop a very efficient
localization system. Cobzas et al. [4] use a rotating camera along with a laser
range finder to build a set of panoramic images enhanced with 3D information.
With this map, a single 2D image is enough to localize the camera. Kidono et
al. [14] build a 3D reconstruction from a stereo camera and an odometer under
the assumption that the ground is planar. Then they use the map generated
in the 3D reconstruction process to localize the robot in real-time. Our system
works on the same principle, but we don’t make the assumption that the ground
is planar and we use only one calibrated camera.
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1.2 Paper structure and contribution

This article is a synthesis of previously published conference papers ([22], [23],
[24]) with new theoretical developments and experimental data. The main added
contribution of this paper is the real-time computation of the localization un-
certainty and its experimental validation. Navigation on a closed loop sequence
or on a path different from the learning path are also discussed.

Section 2 describes the off-line map building process and details the struc-
ture from motion algorithm. The method used for matching images, which is
nearly the same for the reconstruction and the localization, is also detailed here.
Section 3 describes how the localization of the robot is computed from a video
frame. The computation of localization uncertainty is presented in section 4.
The experimental vehicle and the control law are presented in section 5. Then,
in section 6 we evaluate the performance of the algorithms with experimen-
tal data obtained with a robotic vehicle equipped with the localization system
presented in this paper.

2 Map building

2.1 Overview

The goal of the map building process is to obtain the pose of a subset of the
cameras in the reference sequence as well as a set of landmarks and their 3D
location in a global coordinate system. This must be done from a monocular
image sequence. The structure from motion problem has been studied for several
years and multiple algorithms have been proposed depending on the assumptions
we can make [13]. For our experiments, the camera was calibrated using a
planar calibration pattern [15]. Radial distortion is modelled with a fifth order
polynomial. Camera calibration is important especially when using wide angle
lenses with a strong radial distortion. We have used two lenses: a wide angle
lens with 60◦ field of view and a fish-eye lenses with 130◦ field of view. Both
lenses perform equally well for reconstruction, but a fish-eye is preferable for
localization because it reduces the chances of occultations. With a calibrated
camera, the structure from motion algorithm is more robust and the accuracy
of the reconstruction is increased. This is important for us because in our video
sequences with a front looking camera, the triangulation of the points must
be done with very small angles. In spite of this difficulty, we chose a forward
looking camera because there is always some free space in front of the vehicle,
which means the field of views contain both near and far objects. If the camera
was looking to the side, and the vehicle was moving along a wall very close
to the camera, features would move very fast in the image which would make
image matching very difficult (motion blur could also be a problem).

In the first step of the reconstruction, we extract a set of key frames from
the reference sequence. Then we compute the camera pose for every key frame
by using interest points matched between key frames. Additionally, the interest
points are reconstructed in 3D. These points will be the landmarks used for the
localization process.
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2.2 Image matching

Every step in the reconstruction as well as the localization relies on image match-
ing. In order to match two images, interest points are detected in each image
with Harris corner detector [12]. Corner response R is computed as in Harris
work and local maxima of R are potential interest points. In order to have
interest points in each part of the image, we have divided the image area in 64
buckets. In each frame (512× 384 pixels), we keep the 20 best local maxima in
each bucket plus the 500 best maxima on the whole image. So we get at most
1780 interest points in each frame. For an interest point M 1 at coordinates
(x, y) in image 1, we define a search region in image 2. The search region is a
rectangle whose center has coordinates (x, y). For each interest point M 2

i inside
the search region in image 2, we compute a correlation score between the neigh-
borhoods of M1 and M2

i . We use a Zero Normalized Cross Correlation over a
11×11 pixels window. All the pairs with a correlation score above 0.8 are sorted.
The best one is kept as a good match and the unicity constraint is used to reject
matches which have become impossible. Then the second best score is kept and
so on until all the potential matches have been kept or discarded. This image
matching scheme is used for the localization part and as the first step in the
reconstruction part. In the reconstruction process, a second matching is done
after the epipolar constraint has been computed. In the second matching step,
the search region is a narrow strip around the epipolar line and the correlation
score threshold is lowered to 0.82.

2.3 Key frame selection

Before computing camera motion, it is necessary to extract key frames from
the reference video sequence. If there is not enough camera motion between
two frames, the computation of the epipolar geometry is an ill conditioned
problem. So we select images so that there is as much camera motion as possible
between key frames while still being able to find enough point correspondences
between the key frames. Some algorithms have been proposed to do that. For
example, Nistér [18] considers the whole video sequence then drops redundant
frames. Another method is possible based on the Geometric Robust Information
Criterion (GRIC) proposed by Torr et al. [29]. Our method is much simpler and
less general than these ones but works well for our purpose.

The first image of the sequence is always selected as the first key frame
I1. The second key frame I2 is chosen so that there are as many video frames
between I1 and I2 while there are at least M common interest points between
I1 and I2. When key frames I1 . . . In are chosen, we select In+1 so that:

• there are as many video frames as possible between In and In+1,

• there are at least M interest points in common between In+1 and In

• there are at least N common points between In+1 and In−1.

In our experiments we choose M = 400 and N = 300. Fig. 2 shows consecutive
key frames extracted from the city sequence.
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Figure 2: Consecutive key frames extracted from the city sequence

2.4 Initial camera motion computation

We compute an initial solution for camera motion and a hierarchical bundle
adjustment is used to refine this initial estimation.

For the first image triplet, the computation of the camera motion is done
with the method described in [19] for three views. It involves computing the
essential matrix between the first and last images of the triplet using a sample
of 5 point correspondences. This gives at most 40 solutions for camera motion.
The solutions for which at least one of the 5 points is not reconstructed in
front of both cameras are discarded. Then the pose of the remaining camera is
computed with 3 out of the 5 points in the sample. This process is done with a
RANSAC [8] approach : each 5 point sample produces a number of hypothesis
for the 3 cameras. The best one is chosen by computing the reprojection error
over the 3 views for all the matched interest points and keeping the one with
the higher number of inlier matches. With a calibrated camera, three 3D points
whose projections in the image are known are enough to compute the pose of
the second camera. Several methods are compared in [11]. We chose Grunert’s
method with RANSAC.

For the next image triplets, we use a different method for computing cam-
era motion. Assume we know the location of cameras C1 through CN , we can
compute camera CN+1 by using the location of cameras CN−1 and CN and
point correspondences over the image triplet (N − 1, N,N + 1). We match a
set of points P i whose projections are known in each image of the triplet. From
the projections in images N − 1 and N , we can compute the 3D coordinates of
point P i. Then from the set of P i and their projections in image N + 1, we
use Grunert’s calibrated pose estimation algorithm to compute the location of
camera CN+1. In addition the 3D locations of the reconstructed interest points
are stored because they will be the landmarks used for the localization process.
The advantage of this iterative pose estimation process is that it can deal with
virtually planar scenes. After the pose computation, a second matching step is
done with the epipolar constraint based on the pose that had just been com-
puted. This second matching step allows to increase the number of correctly
reconstructed 3D points by about 20 %. This is important for us for two rea-
sons. Those 3D points are used in the computation of the next camera, and
they are also the landmarks used in the localization process. So we need to get
as many as possible which wouldn’t be the case if the goal was just to recover
the motion of the camera.
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Figure 3: Top view of the 3D reconstruction computed from the city sequence.
The squares are the camera position for each key frame. The dots are the
reconstructed interest points projected on an horizontal plane.

2.5 Hierarchical bundle adjustment

The computation of camera CN depends on the results of the previous cameras
and errors can build up over the sequence. In order to greatly reduce this
problem, we use a bundle adjustment. The bundle adjustment is a Levenberg-
Marquardt minimization of the cost function f(C1

E , · · · , CNE , X1, · · · , XM ) where
CiE are the external parameters of camera i, and X j are the world coordinates of
point j. For this minimization, the radial distortion of the 2D point coordinates
is corrected beforehand. The cost function is the sum of the reprojection errors
of all the inlier reprojections in all the images :

f(C1
E , · · · , CNE , X1, · · · , XM ) =

N∑

i=1

M∑

j=1,j∈Ji
d2(xji , PiX

j)

where d2(xji , PiX
j) is the squared euclidian distance between PiX

j the projec-

tion of point Xj by camera i, and xji is the corresponding detected point. Pi is
the 3×4 projection matrix built from the parameters values in C iE and the known
internal parameters of the camera. And Ji is the set of points whose reprojec-
tion error in image i is less than 2 pixels at the beginning of the minimization.
After a few iteration steps, Ji is computed again and more minimization itera-
tions are done. This inlier selection process is repeated as long as the number
of inliers increases.

Computing all the camera locations and using the bundle adjustment only
once on the whole sequence could cause problems. this is because increasing
errors could produce an initial solution too far from the optimal one for the
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Figure 4: Matching interest points between the reference key frame learned with
snow (left) and the current video frame without snow (right)

bundle adjustment to converge. Thus it is necessary to use the bundle adjust-
ment throughout the reconstruction of the sequence. So we use a hierarchical
bundle adjustment as in [13]. A large sequence is divided into two parts with
an overlap of two frames in order to be able to merge the sequence. Each sub-
sequence is recursively divided in the same way until each final subsequence
contains only three images. Each image triplet is processed as described in sec-
tion 2.4. After each triplet has been computed we run a bundle adjustment over
its three frames.

In order to merge two sequences S1 and S2, we use the last 2 cameras S1
N−1

and S1
N of S1 and the first 2 cameras S2

1 and S2
2 of S2. As the images are the

same, the cameras associated after merging must be the same. So we apply a
rotation and a translation to S2 so that S1

N and S2
2 have the same position and

orientation. Then the scale factor is computed so that d(S1
N−1, S

1
N ) = d(S2

1 , S
2
2),

where d(Sin, S
j
m) is the euclidian distance between the optical centers of the

cameras associated with Sin and Sjm. This doesn’t ensure that S1
N−1 and S2

1

are the same, so a bundle adjustment is used on the result of the merging
operation. Merging is done until the whole sequence has been reconstructed.
The reconstruction ends with a global bundle adjustment. The number of points
used in the bundle adjustment is on the order of several thousands. For example,
Fig. 3 shows the result of the 3D reconstruction computed for the city sequence.
There are 308 key frames and 30584 points. The path is about 600 meters long.

3 Real time localization

3.1 Camera localization

The output of the learning process is a 3D reconstruction of the scene : we have
the pose of the camera for each key frame and a set of 3D points associated with
their 2D positions in the key frames. At the start of the localization process,
we have no assumption on the vehicle localization. So we need to compare
the current image to every key frame to find the best match. This is done
by matching interest points between the two images and computing a camera
pose with RANSAC. The pose obtained with the higher number of inliers is a
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good estimation of the camera pose for the first image. This step requires a
few seconds but is needed only at the start. After this step, we always have an
approximate pose for the camera, so we only need to update the pose and this
can be done much faster.

The localization process can be divided in four steps. First, a set of the
landmarks which should be visible is selected by finding the closest key frame.
Then an approximate 2D position of each landmark in the current frame is
computed based on the pose of the camera of the previous frame. With this
information the landmarks are matched to the interest points detected in the
current frame. And finally the pose is computed with these matches. Fig. 4
shows interest points matched between the current video frame and the closest
key frame in the reference sequence recorded with different weather conditions.

The current image is denoted I . First we assume that the camera movement
between two successive frames is small. So an approximate camera pose (we
note the associated camera matrix P0) for image I is the same as the pose
computed for the preceding image. Based on P0 we select the closest key frame
Ik in the sense of shortest euclidian distance between the camera centers. Ik
gives us a set of interest points Ak reconstructed in 3D. We detect interest
points in I and we match them with Ak. To do that, for each point in Ak, we
compute a correlation score with all the interest points detected in I which are
in the search region. For each interest point in Ak we know a 3D position, so we
can project it with P0 so we know approximately its 2D position in the current
frame I . This is illustrated on Fig. 5. In the matching process the search region
is centered around the expected position and its size is small (20× 12 pixels).
After this matching is done, we have a set of 2D points in image I matched
with 2D points in image Ik which are themselves linked to a 3D point obtained
during the reconstruction process. With these 3D/2D matches a better pose is
computed using Grunert’s method through RANSAC to reject outliers. This
gives us the camera matrix P1 for I . Then the pose is refined using the iterative
method proposed by [1] with some modifications in order to deal with outliers.
This is a minimization of the reprojection error for all the points using Newton’s
method. At each iteration we solve the linear system Jδ = e in order to compute
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a vector of corrections δ to be subtracted from the pose parameters. e is the
error vector formed with the reprojection error of each point in x and y. J is
the Jacobian matrix of the error. In our implementation, the points used in the
minimization process are computed at each iteration. We keep only the points
whose reprojection error is less than 2 pixels. As the pose converges towards
the optimal pose, some inliers can become outliers and conversely. Usually, less
than five iterations are enough.

It would be relatively easy to introduce a motion model of the vehicle or
odometry measurements in this framework. For each new frame, we consider
that the pose of the camera is the same as the previous pose in order to match
features. Incorporating odometry would allow to have a better initial estimate
of the camera pose. We have not done that in order to keep the possibility to
use the localization algorithm with hand held cameras.

At this point we have a real-time algorithm that is able to compute the
pose of the camera. We always keep track of the camera pose with 6 degrees of
freedom, even if the control law works in a ground plane. It allows us to track
interest points even if the ground is irregular.

3.2 Robot localization

Since the localization algorithm is based only on vision the coordinate system
has its center at the optical center of the first camera in the reference sequence,
with one axis along the optical axis. Moreover, there is no scale information.
In order to control the robot, we need to provide a position for the robot in a
metric coordinate system. We achieve that by entering manually the length of
the path to set the scale factor. The position of the camera on the robot has
been measured so we can enter directly the rigid transformation between the
camera and the robot. Once the camera pose has been computed, we compute
the robot position and orientation with 3 degrees of freedom only because the
robot can be controlled only along three dimensions (translation on the ground
plane and rotation around the vertical axis). To do that, we assume that the
ground is locally planar and horizontal at the current position of the robot.

4 Computing the localization uncertainty

Knowing the uncertainty of the robot localization computed for the current
frame has some important applications. It allows data fusion with other lo-
calization sensors (such as an odometer). It could also be used for temporal
filtering of the localization result if vision is the only sensor.

Uncertainty in the localization can come from several sources. The main one
comes from the uncertainty in the position of interest points. Interest points can
be detected with an accuracy on the order of one pixel. In the structure from
motion algorithm, this causes uncertainty in the 3D positions of the cameras
and the points. When computing the localization of the camera, the result is
affected by the uncertainty of the landmarks positions in 3D space and by the
uncertainty on the positions of the interest points detected in the current frame.
This is the only source of uncertainty we considered in our computation. So the
first step is to compute the uncertainty in the 3D reconstruction which is detailed
in section 4.2, and we use that to compute the uncertainty for the localization

10



result in section 4.1. In both cases, we have a minimization problem and the
covariance matrix is obtained from the inverse or the pseudo-inverse of the
hessian [13]. Propagating the uncertainties throughout the reconstruction and
the localization process is possible but very time consuming. Since we want to be
able to compute the localization uncertainty in real-time, we had to make some
trade-offs between speed and accuracy. Therefore, some sources of uncertainty
were not taken into account in our computation. These include the inaccuracy
of the internal parameters of the camera for the vision part, and for the robot
localization part, uncertainty in the measurement of the transformation between
the camera coordinate system and the robot coordinate system (we assumed a
rigid transformation here, but in reality it is not rigid because of the suspension
system).

4.1 Uncertainty in the localization

Let’s assume that the uncertainties of the 3D points have been computed (the
method used to compute them will be detailed in section 4.2). We want to
compute the covariance matrix Covcam associated to the pose of the camera
computed from n 3D/2D correspondences. The projection of point Xj is de-
tected in the current frame at the 2D position mj . The reprojection error for
point Xj is ej = π(CXj) −mj where π(CXj) denotes the projection of point
Xj with the camera parameters C computed for the current frame. We assume
that ej follows the normal distribution N (0,Λj). The vector made with the 3D
points visible in the current frame is X = (. . . , Xj , . . .)

T . This vector follows
a normal distribution with mean X0 = (. . . , X0

j , . . .)
T given by the bundle ad-

justment and covariance matrix Cov3d (which will be computed in section 4.2).
Computing the maximum likelihood estimation of the camera pose means find-
ing the best values for (C,X1, . . . , Xn) so that ‖G(C,X1, . . . , Xn)‖2 is minimum,
with:

‖G(C,X1, . . . , Xn)‖2 =

n∑

j=1

eTj Λ−1
j ej +




. . .
Xj −X0

j

. . .



T

Cov−1
3d




. . .
Xj −X0

j

. . .




(1)
In this expression, we assume that the n + 1 random vectors e1, . . . , en, X are
independent. Obviously, we have :

G(C,X1, . . . , Xn) = (eT1 Λ
− 1

2
1 , . . . , eTnΛ

− 1
2

n , (X −X0)TCov
− 1

2

3d )T (2)

Computing Λ
− 1

2

j and Cov
− 1

2

3d is possible because Λj and Cov3d are real symetric
definite positive matrices. The right member of equation (2) is a random vari-
able with the normal distribution N (0, I5n). Once the minimum is found, The
result on the backward tranport of covariance given in [13] gives us the covari-
ance matrix (JTGJG)−1 with JG the Jacobian matrix of G. However, even by
exploiting the sparseness of the matrices, doing a full minimization with these
equations would be too slow for the real-time localization. So, as we have seen in
section 3, the pose is computed by simply minimizing G̃(C)2 =

∑n
j=1 e

T
j Λ−1

j ej .
Several iterations can be done in a few milliseconds when using this approxima-
tion. The more complex formulation of equation 1 is used only for the covariance
matrix computation because it needs to be done only once per frame.
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Computing JG gives a sparse matrix :

JG =




A1 B1 0 . . . 0

A2 0 B2
. . . 0

...
...

. . .
. . . 0

An 0 0 0 Bn
0 . . . . . . . . . . . .
0 . . . . . . Ci,j . . .
... . . . . . . . . . . . .




(3)

with Aj = Λ
− 1

2
j

∂ej
∂C a 2×6 matrix, Bj =

∂ej
∂Xj

a 2×3 matrix, Ci,j a 3×3 matrix.

Cov
− 1

2

3d is a 3n× 3n matrix defined by blocks Ci,j .
The covariance matrix Covcam associated to the current camera pose is the

6× 6 upper left block of (JTGJG)−1. Computing JTGJG gives:

JTGJG =

(
U W
W T V

)
(4)

with U a 6× 6 block, W a 6× 3n block and V a 3n× 3n matrix:

U = ATA = AT1 A1 +AT2 A2 + . . .+ATnAn (5)

W =
(
AT1 B1 AT2 B2 . . . ATnBn

)
(6)

V =




BT1 B1 0 0 0
0 BT2 B2 0 0

0 0
. . . 0

0 0 0 BTnBn


+ Cov−1

3d (7)

Finally, the covariance matrix associated with the camera pose is:

Covcam = (U −WV −1W T )−1 (8)

In the general case, V is not a sparse matrix and the computation ofWV −1W T

can take a lot of time. In order to be able to compute the localization uncer-
tainty in real-time, an additional hypothesis should be done. If we assume that
the positions of the 3D points are independent random variables, then Cov3d

becomes a block-diagonal matrix and matrix V can be rewritten :

V =




BT1 B1 + CT1,1C1,1 0 0

0
. . . 0

0 0 BTnBn + CTn,nCn,n


 (9)

With this assumption Covcam can be computed very quickly. Additionally, the
computation of the covariance matrix of the 3D points can also be simplified
because we need to compute only the blocks on the diagonal. Section 4.2 details
the computation of the covariance matrix of the 3D points, then section 4.3
compares the various methods that can be used.
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4.2 Uncertainty in the 3D reconstruction

Note that the reconstruction of the reference sequence is obtained by minimiz-
ing the sum of squared reprojection errors using bundle adjustment. We obtain
a maximum likelihood estimation (MLE) of 3D points and extrinsic camera
parameters assuming that the reprojection errors obeys independent and iden-
tical zero mean Gaussian distributions. This perturbation of errors propagates
to a Gaussian perturbation of the estimated parameters, such that the covari-
ance matrix may be estimated [13]. Thus, for each key-frame of the reference
sequence, we estimate the covariance matrix of the 3D points seen by the key-
frame (named Cov3d in the previous paragraph) as a 3n× 3n diagonal block of
the full covariance matrix relating all the points and all the cameras.

We use the general method of gauge constraints to fix the reconstruction
coordinate system and choose our covariance matrix [30]. Among other choices,
the symmetric constraint on the reference camera location (e.g. [16]) is chosen
since it usually spreads evenly and minimizes the uncertainties on all reference
cameras. Many details about a practical computation of points and cameras
covariances for complex reconstructions like ours are given in [16].

A simplification of this method can also be used if we make the additional as-
sumption that there is no uncertainty for the cameras in the 3D reconstruction.
In this case, the covariance matrix for each point can be computed indepen-
dently. We consider a point Xj seen by n cameras Ci, i ∈ {1, . . . , n}. We
want to compute its covariance matrix Cj,j . We assume that the n reprojection
errors of this point denoted ei in image i follow independent and normal distri-
butions N (0,Λi). Furthermore, we assume that Λi = σ2I2, with σ2 an unknown
parameter. Thus, the probability density function of the statistical model is:

f(Xj , σ
2) =

1

(2πσ2)n
e−
∑

i
‖ei‖2

2σ2 (10)

The MLE of Xj and σ2 are X̂j minimizing Xj 7→
∑

i ‖ei‖2 and σ̂2 =

∑
i
‖ei‖2

2n .

We replace the MLE of σ2 by the unbiased estimator σ̂2 =

∑
i
‖ei‖2

2n−3 , with 2n
the number of observations, and 3 the number of degrees of freedom of Xj .

This gives us Λi = σ̂2I2. Finally, we obtain the estimation of Cj,j by the
inverse of JTF JF where JF is the jacobian matrix of the vector error F with

F = (eT1 Λ
− 1

2
1 , . . . , eTnΛ

− 1
2

n )T .
Fig. 6 shows the confidence ellipsoids computed with this method for the

points visible in one key frame of the loop sequence (see Fig. 20). Because of
the forward motion of the camera, most ellipsoids have a major axis much longer
than the minor axis.

4.3 Comparison

In order to choose between all the possible trade-offs we made a comparison of
four methods based on different assumptions:

• In method 1, Covcam is computed with the full matrix Cov3d.

• In method 2, Cov3d is computed with the general method, but only the
diagonal blocks are used in the computation of Covcam.
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Figure 6: 99% confidence ellipsoids computed for the points visible in one frame
(view from the top)

• In method 3, Cov3d is computed with the assumption that the camera
have no uncertainty in the reconstruction process.

• In method 4, we simply ignore the uncertainty of the 3D positions of the
points and the only source of uncertainty comes from the positions of the
2D points in the current frame.

Method 1 takes too much time to be used in a real-time system, but we in-
cluded it in this comparison to know if using the non diagonal blocks of Cov3d

was mandatory. We computed the length of the major semiaxis of the 90% con-
fidence ellipsoid associated to the camera positions for all four methods. The
result is shown on Fig. 7 for a few frames of the video used in section 6.6.

As we could expect, taking into account the uncertainty of the 3D points
increases the size of the ellipsoids. Taking into account the uncertainty of the
cameras in the reconstruction has the same effect. However, the difference
between method 1 and method 2 is small, and since method 2 can be used in real-
time, it seems that it is a good method for computing localization uncertainty.
Computation time is the same for methods 2 and 3, the difference lies in the
complexity of the implementation for computing the diagonal elements of Cov3d.
With the simplification made in method 3, the size of the confidence ellipsoid is
slightly underestimated, but the result is still much closer to the one obtained
with the full computation than with method 4. A comparison between the size
of the confidence ellipsoid and the localization error measured with the RTK
GPS is also done in section 6.6.3.
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Figure 7: Major semiaxis (in meters) of the 90% confidence ellipsoid with four
computation methods for a few frames localized with reference to a given key-
frame. Frame to frame variations are mostly due to changes of the 3D-2D
correspondences.

5 Experimental vehicle and control law

This part is presented only for the completeness of the paper. It refers to a work
made by another team of the laboratory (see [28] for more details).

5.1 Vehicle Modeling

The experimental vehicle is called the Cycab. With its small dimensions (length:
1.90 m, width: 1.20 m), it can transport simultaneously two passengers. This
vehicle is entirely under computer control. For the experimentations detailed in
this paper, only the front wheels are steered, so the mobility is the same as a
common car.

A classical kinematic model, the tricycle model, where the two actual front
wheels are merged as a unique virtual wheel is used, see Fig. 8. The vehicle con-
figuration can be described without ambiguity by a 3 dimensional state vector
composed of s, curvilinear coordinate along the reference path of the projection
of vehicle rear axle center, and of y and θ̃, vehicle lateral and angular deviations
with respect to this path. On the other hand, the control vector is defined by the
vehicle linear velocity and the front wheel steering angle, denoted respectively
v and δ. Vehicle model is then given (see e.g. [6]) by:
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Figure 8: Tricycle model description.





ṡ = v cos θ̃
1−yc(s)

ẏ = v sin θ̃
˙̃θ = v

(
tan δ
l −

c(s) cos θ̃
1−y c(s)

) (11)

where l is the vehicle wheelbase and c(s) denotes the reference path curvature
at coordinate s. It is assumed that: y 6= 1

c(s) (i.e. the vehicle is not on the

reference path curvature center) and θ̃ 6= π
2 [π]. In practical situations, if the

vehicle is well initialized, such difficulties never arise.

5.2 Control Law

The control objective is to bring and maintain state variables y and θ̃ to 0, rely-
ing uniquely on control variable δ (v is considered as a possibly varying free pa-
rameter). The whole vehicle state vector (s, y, θ̃) is available with a satisfactory
accuracy by comparing vehicle absolute position and heading, provided by the
vision algorithm, with the reference path. Via invertible state and control trans-
formations, the nonlinear vehicle model (11) can be converted, in an exact way,
into the so-called chained form, see [25]. (a1, a2, a3) = (s, y, (1 − yc(s)) tan θ̃)
is the chained state vector and M = (m1,m2)T = Υ(v, δ)T is the chained con-
trol vector. From this, a large part of linear systems theory can be used (but,
since the transformations are exact, it is not required that the vehicle state is
in a specific configuration, contrarily to tangent linearization techniques). More
precisely, it can be noticed that path following (i.e. control of a2 and a3) can
be achieved by designing only m2 as a linear proportional derivative controller.
The expression of the actual control variable δ can then be obtained by inverting
the chained control transformation. Computations, detailed in [28], lead to:

δ(y, θ̃) = arctan

(
l

[
cos3 θ̃

(1−c(s) y)2

(
d c(s)
d s

y tan θ̃

−Kd (1− c(s) y) tan θ̃ −Kp y

+ c(s) (1− c(s) y) tan2 θ̃
)

+
c(s) cos θ̃
1−c(s) y

])
(12)
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with Kp,Kd > 0 the proportional derivative gains.

6 Experimental results

6.1 Methods for performance evaluation

6.1.1 Using GPS data as the ground truth

Most of the results presented in this paper, show the accuracy of the system by
comparing the results of the algorithms with the data recorded by a Real Time
Kinematic (RTK) GPS mounted on the Cycab. But comparing data obtained by
two different sensors is not completely straightforward. This paragraph explains
how results from the vision algorithms are compared to GPS measurements.

Two operations are needed so that both data sets can be compared. First
the GPS sensor is not mounted on the vehicle at the same place as the camera.
The GPS receiver is located above the mid-point between the rear wheels of the
car, while the camera is in front of the vehicle (1.15 meters in front of the GPS
sensor). So the two sensors don’t have the same trajectory. From the GPS posi-
tions, we computed a ”virtual” GPS which indicates what a GPS would record if
it was mounted on the Cycab at the same place as the camera. In addition, the
3D reconstruction is done in an arbitrary euclidian coordinate system, whereas
the GPS positions are given in another coordinate system. So the whole 3D
reconstruction has to be transformed using a global rotation, translation and
scale change. The approach described by Faugeras et al. [7] is used to compute
this global transformation. After this transformation has been made, the cam-
era and GPS positions are available in the same metric coordinate system. This
process is done for the 3D reconstruction of the reference video sequence. After
that, the localization algorithm gives directly the camera positions in the same
metric coordinate system.

The GPS sensor we use is a Real Time Kinematics Differential GPS (Thalès
Sagitta model). It is accurate to 1 cm (standard deviation) in an horizontal
plane when enough satellites are available. The accuracy on a vertical axis is
only 20 cm on our hardware platform. So we discard the vertical readings and
all the localization errors reported in this article are measured in an horizontal
plane only. In any case, vertical errors could be interesting for a flying robot
but not for our application.

6.1.2 Reconstruction and localization error

We want to distinguish between the error that is attributed to the reconstruc-
tion process and the error coming from the localization algorithm. So we define
two errors to measure the reconstruction and the localization accuracy. The
reconstruction error is the average distance between the camera positions com-
puted in the structure from motion algorithm and the true positions given by
the RTK GPS (after the two trajectories have been expressed in the same coor-
dinate system). This error is mostly caused by a slow drift of the reconstruction
process. It increases with the length and complexity of the trajectory. That
means the 3D model we build is not perfectly matched to the real 3D world.

The definition of the localization error is a bit more complex. To understand
why, suppose the robot is exactly on the reference path and the localization al-
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Figure 9: Computing the lateral deviation from the reference trajectory

gorithm indicates that the robot is on the reference path. In this case, the
localization error should be zero, and controlling the robot so that this error is
kept zero would result in the robot following the reference path. But if we com-
puted directly the difference between the 3D position given by the localization
algorithm and the position given by the GPS, we would get the reconstruction
error which is not zero in most cases. In fact, in our application, a global lo-
calization is not necessary, only a relative position with respect to the reference
trajectory is needed.

We define the localization error in order to measure the error we make in
computing this relative localization with the vision algorithm. First we compute
the lateral deviation between the current robot position G1 and the closest robot
position G0 on the reference trajectory. This is illustrated on Fig. 9. The robot
position is always defined by the position of the middle point of the rear axle
of the vehicle. This position is directly given by the RTK GPS. When working
with vision it must be computed from the camera position and orientation.
The 3D reconstruction used as the reference has already been transformed so
that it is in the same metric coordinate system as the GPS data. We start
with the localization of the camera C1 given by the localization part of the
vision algorithm. From C1 we compute the corresponding GPS position G1

(it is possible because we measured the positions of the GPS receiver and the
camera on the vehicle). Then we find the closest GPS position in the reference
trajectory : we call it G0. At point G0 of the reference trajectory, we compute
the tangent

−→
T and normal

−→
N to the trajectory. The lateral deviation computed

with vision is yv =
−−−→
G0G1 · −→N . The lateral deviation is computed from the GPS

measurements as well and we get yg (in this case we have directly G0 and G1).
yg and yv are the same physical distance measured with two different sensors.
Then the localization error is defined as ε = yv − yg .
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Figure 10: A few images from outdoor1

6.2 3D Reconstruction results

The problem we want to solve is robot localization. Our goal is not to build
the best reconstruction of the environment. In fact, we are convinced that an
accurate reconstruction is not absolutely necessary for robot navigation, espe-
cially if the robot stays on the learning path. The map should be accurate on
a small scale (less than about 50 meters) but long term drift is acceptable. We
will discuss this point in more detail when we examine the case of closed trajec-
tories. Nevertheless, it is interesting to see how accurate our reconstruction is,
and to make sure it is accurate on a small scale. The results presented in this
section concern only the reconstruction of the camera motion. The accuracy of
the structure was not measured.

Four sequences called outdoor1 through outdoor4 were recorded by driving
manually the vehicle on a 80 m long trajectory. The four sequences were made
approximately on the same trajectory ( with at most a 1 m lateral deviation),
the same day. The lens used was a standard wide angle lens with a field of view of
roughly 60◦. We computed a 3D reconstruction from each of the four sequences.
Depending on the sequence, the automatic key frame selection gave between 113
and 121 key frames. And at the end of the reconstruction there were between
14323 and 15689 3D points. A few images extracted from outdoor1 are shown
on Fig. 10. The positions of the key frames computed from this sequence are
shown on Fig. 11 (as seen from the top) along with the trajectory recorded by
the GPS. The reconstruction error for each of the sequences was 25 cm, 40 cm,
34 cm and 24 cm for a 80 m long trajectory with two large turns. This error is
mostly caused by a slow drift of the reconstruction process.

6.3 Localization accuracy

6.3.1 positional accuracy

The localization accuracy was computed from the same sequences outdoor1

through outdoor4 we used in section 6.2. Each sequence was used in turn as the
reference sequence. We computed a localization for outdoori using outdoorj as
the reference sequence for each j ∈ {1, 2, 3, 4} and i 6= j. So we made twelve
experiments.
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Figure 11: Position of the key frames (circles) with reference to the trajectory
recorded by the RTK GPS (continuous line). Units in meters.

The localization error was computed with the method explained in sec-
tion 6.1.2. From this we can compute the standard deviation of ε for a whole
trajectory : we call this the average localization error. We computed the av-
erage localization error for each of the twelve experiments : the smallest was
1.4 cm, the largest was 2.2 cm and the mean over the twelve videos was 1.9 cm.
Fig. 13 shows the lateral deviation and localization error for one experiment
with a 1.9 cm average localization error. The error measured in this experiment
is very close to the GPS accuracy (1 cm of standard deviation in the best con-
ditions). So the noise in the GPS measurements contributes to the localization
error given in this paragraph.

6.3.2 rotational accuracy

In order to evaluate the rotational accuracy, we made an indoor experiment
because the GPS can’t give accurate angular measurements. The camera was
mounted on a rotating platform, with the optical center on the rotational axis.
The angle of the platform can be read with about ±0.1◦ accuracy. We compared
the orientation α provided by the localization part of the vision algorithm to
the angle α0 given by the platform. For this experiment (and the following ones
till the end of the article), we used a fish eye lens providing a 130◦ field of view
(in the diagonal) and we made a measurement for each angle from α0 = −94◦

to α0 = 94◦ with a 2◦ increment. The reference trajectory was a straight line
(1 m long) oriented along the optical axis (which was in the 0◦ direction). The
result of this experiment appears on Fig. 14. The algorithm was not able to
provide a reliable pose of the camera when the angle reached 95◦ because there
were not enough point correspondences. The angular accuracy measured with
this setup is about ±0.1◦, which is about the same as what can be read on the
platform. The algorithm provides a useful angular information for a deviation
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Figure 12: Lateral deviation measured with the RTK GPS yg (blue) or with
vision yv (red). The two curves are nearly the same.

up to 94◦ on either side with this camera. Of course, with such an angular
deviation from the reference frame, the part of the image which can be used is
very small, and the localization becomes impossible if there is an occultation in
this area. Images captured at different orientations are shown on Fig. 15.

6.4 Autonomous navigation

We also made some experiments where we tested the whole system. A reference
video sequence was recorded and a 3D reconstruction was computed from it.
Then the robot had to follow the same path in autonomous navigation. We
recorded GPS measurements at the same time we recorded the learning video
sequence. Then we also recorded GPS measurements in autonomous navigation.

The learning path was 127 meters long. It was chosen so that there are both
straight lines and tight turns, and because the buildings are sometimes far (less
visual features) and sometimes closer. Vehicle speed was chosen constant and
equal to 2 km/h. The result of the structure from motion algorithm is displayed
on Fig. 16 as seen from the top. There were 182 key frames and 16295 points
correctly reconstructed.

The reference video sequence was recorded on a cloudy day. The first two
navigation experiments were made a few days later with a cloudy weather too.
But the second set of two was made on a clear day with the sun low in the sky
and sometimes in the field of view of the camera. A few images from the video
recorded during the last navigation experiment as well as the corresponding
key frame are displayed on Fig. 17. The last image outlines the necessity of
having a wide field of view and local visual features all over the frame. It shows
the interest points which are used in the localization. The center of the image
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Figure 13: Localization error ε.
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Figure 14: Angular error

is completely overexposed because the sun is in front of the camera, but the
building on the left can still be used for computing the camera pose.

For comparison purposes, a fifth experiment has also been performed, rely-
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Figure 15: Images taken at −90◦, −60◦, −30◦, 30◦, 60◦ and 90◦ orientation,
with interest points correctly matched

ing on the RTK GPS sensor (instead of the vision algorithms) to provide the
vehicle state vector which is used in the control law. Lateral deviations from
the reference path recorded during 3 of these experiments are displayed with
the same scale on Fig. 18. Letters enable to identify each part of the trajectory,
with respect to the letters shown on Fig. 16.

Sunny 1 Sunny 2 Cloudy 1 Cloudy 2 GPS
B 3.5cm 4.8cm 3.4cm 2.8cm 2.7cm
D 2.4cm 1.9cm 1.8cm 2.3cm 1.8cm

Table 1: Mean of the lateral deviation in straight lines

Sunny 1 Sunny 2 Cloudy 1 Cloudy 2 GPS
C max 22.0cm 26.8cm 20.1cm 20.4cm 37.9cm
C min -20.2cm -25.4cm -22.2cm -21.1cm -14.3cm
E max 29.1cm 35.4cm 30.0cm 29.2cm 13.9cm
E min -16.5cm -19.7cm -16.5cm -16.1cm -16.3cm

Table 2: Maximum and minimum deviation in curves

It can be observed that the vision algorithms detailed in this paper appear
as a very attractive alternative to RTK GPS sensor, since they can provide with
roughly the same guidance accuracy. It can also be noticed that these vision
algorithms are reliable with respect to outdoor applications since they appear
robust to weather conditions: guidance accuracy is not significantly altered in
as harsh conditions as the sunny ones. More precisely, guidance performances
during straight lines and curves following are investigated separately on Table 1
and 2. Table 1 reports the mean value of the lateral deviation (|y|) during
straight lines part of the trajectory, denoted B and D. In the most favorable
situation (cloudy weather), vision algorithms meet the performances obtained
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Figure 16: 3D reconstruction computed from the reference video sequence (top
view). Black squares are the position of the key frames. The landmarks appear
as dots. Letters indicate different parts of the trajectory.

with the RTK GPS sensor. In the worst case (sunny weather), performances are
slightly damaged, but are still very satisfactory. Table 2 displays the extremum
values of y recorded during curved parts of the trajectory, denoted C and E.
Once more, it can be observed that guidance performances are roughly similar.

For these experiments, guidance accuracy seems to be limited by the ability
of the control law to keep the robot on the trajectory. This explains the simi-
larity between the two vision based lateral deviations (”Cloudy 2” and ”Sunny
1” on Fig. 18). The difference between the RTK GPS and vision based control
may be explained because vehicle heading is not computed in the same way
with both sensors. This is especially visible in curves. When relying on the
RTK GPS sensor, vehicle heading is inferred from velocities measurements (ob-
tained by differentiating successive position data) under non-slipping assump-
tions, smoothed via a Kalman filter. The filter introduces a delay and the result
may not be as accurate as the orientation computed with vision.
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Figure 17: Three frames taken during the autonomous navigation (bottom) and
the corresponding key frames (top)
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Figure 18: Lateral deviation from the reference trajectory
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6.5 Navigation on a closed loop

Figure 19: 3D Reconstruction for the loop sequence

Figure 20: Some frames from the loop sequence

The case of a closed loop is very interesting because it is a good way to
visualize the influence of the reconstruction error on robot navigation. Of course,
it would be possible to treat specifically the case of closed loops by searching
point correspondences between the last image of the sequence and the first
one in order to reduce reconstruction error. But that’s not our purpose. We
want to use closed loops as a way to illustrate what happens in the presence of
reconstruction error. An example of a closed loop trajectory appears on Fig. 19
with a few images from the video sequence on Fig. 20. The position of the
first and last cameras should be the same. But because of some drift in the
reconstruction process, the reconstruction of the loop is not exactly closed (the
gap measures 1.5 m). In that case, some points are reconstructed twice : once
when they are seen at the beginning of the sequence and once when they are
seen at the end of the loop. In spite of this reconstruction error, the robot could
navigate continuously on this trajectory (for several loops), without a hint of
jerky motion at the seam.

To understand why, we have to recall which variables are used in the control
law. Along with the curvature of the path, the two other variables are the lateral
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deviation from the reference path yv and the angular deviation. Figure 21 helps
to understand what happens. The localization is computed with reference to the
points cloud visible at one moment by the camera (the points which appear on
only one key frame). The absolute localization is not used for the computation
of the lateral and angular deviations. What is important is the localization in a
local reference frame whose center is the position of the robot at the key frame.
On Fig. 21, this local reference frame is drawn for the beginning of the loop
(I1,
−→
T1,
−→
N1) and for the end of the loop (IN ,

−→
TN ,
−−→
NN ), where

−→
T and

−→
N are the

unit vectors tangent and normal to the reference trajectory. The change from
the end of a loop to the beginning of the next one corresponds to a change of the
local reference frame which affects simultaneously the reference trajectory, the
current localization, and the 3D points currently visible. In this case, the lateral
deviation yv has no discontinuity. The same is true for the angular deviation.
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Figure 21: Lateral deviation computed at the beginning or at the end of a loop

This characteristic suggests that it should be possible to link several short
trajectories (of about 100 m) to provide the robot with enough information to
travel for several kilometers. A global bundle adjustment would be too costly
for trajectories of several kilometers, but we see here that a global optimization
of this scale should not be necessary. Good accuracy on the small scale (50 m
to 100 m) is enough.
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6.6 Navigation on a path different from the learning path

6.6.1 Experiment

From a practical point of view, exactly following the path that was recorded
can cause some problems. Ideally, if there is an obstacle on the trajectory, the
robot should be able to go around it. That’s were the expense of computing
the 3D structure of the environment pays off. Knowing the 3D position of the
interest points allows the robot to localize itself outside the learning path and
to navigate in the neighborhood of this path. We made an experiment to see
how much the robot could depart from the learning trajectory.

Figure 22: Images extracted from the learning video sequence

Figure 23: 3D reconstruction of the learning trajectory (black squares) and
target trajectory (broad green line) viewed from the top

First, a learning video sequence was recorded on a 70 meters long trajectory.
From this video sequence, a map was computed. A few images from the learning
video sequence are shown on Fig. 22. This sequence was reconstructed with 102
key frames and 9579 points. For this experiment we defined a new trajectory
(target trajectory), slightly different from the learning trajectory. The robot
had to follow the target trajectory while using the learning trajectory and video
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sequence to localize itself. The experiment was conducted two weeks after the
learning trajectory was recorded. Fig. 23 shows the 3D reconstruction of the
learning sequence (black squares) and the target trajectory that was defined
in a graphic editor (broad green line). The target trajectory was defined so
that it reproduces what would happen if the robot had to avoid two obstacles.
The target path departs from the learning path on the right at the beginning
and then on the left a few meters later. The maximum lateral deviation from
the learning trajectory is about 3 meters. The angular deviation is at most
20◦. We parked a vehicle on the learning trajectory to add some occultations
(see Fig. 24) to simulate the images the robot would use if it had to avoid a
real obstacle. Some pedestrians were also passing by, occulting some parts of
the image from time to time. The target trajectory was simply defined with the
mouse in a graphical editor. Defining a new trajectory doesn’t require expensive
computations so this could be done online if necessary. For example, we could
use a sensor (radar, sonar or laser range finder) to detect obstacles in front of
the robot. If an obstacle was detected and localized by this sensor in the robot’s
coordinate system, it would be possible to modify the trajectory in 3D space in
the same coordinate system without stopping the vehicle.

6.6.2 Localization and navigation results

Figure 24: Interest points correctly matched between the reference key frame
and the current image. Left : when the robot is nearly on the learning path.
Right : when the lateral deviation is maximal. The reference frame is on top.

Let’s examine the path that was really followed by the robot during this
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experiment. We will call it the result path. It was accurately recorded by the
RTK GPS sensor. The robot nearly followed the target path. This is visible
on Fig. 25. The blue curve shows the lateral deviation of the target path with
reference to the learning path. The red curve is the lateral deviation of the result
path with reference to the learning path. The red curve was obtained by using
the GPS measurements. The lateral deviation from the learning path directly
computed from the result of the localization algorithm is displayed on the top
row of Fig. 26. At this time, we don’t use any filters to smooth the result of the
localization algorithm. The result path deviates slightly from the target path in
the turns. That is probably because we defined the target path in a graphical
editor without knowing if the robot could steer fast enough to really follow the
path. The lateral deviation computed with the vision algorithm matches the
GPS measurements well in those parts of the trajectory.

The localization is more noisy when the robot departs from the learning
trajectory but the localization is still accurate enough to drive the robot. We
recorded the ground truth with the GPS so were are able to measure the er-
ror that was made by the localization algorithm when computing the lateral
deviation from the target path. This error appears on the middle of Fig. 26.
When the robot is on the learning path, the error is less than 2 centimeters
(the same accuracy as our GPS). When the robot is farther from the learning
path, this error increases to more than 10 centimeters. The reason lies in the
number of points matched. Fig. 24 shows the interest points that were correctly
matched between the current frame and the reference frame for two robot posi-
tions during the navigation experiment. We can see that the algorithm matches
less points when the robot is far from the learning path. This is also visible at
the bottom of Fig. 26 which displays the number of points used in the local-
ization process for the whole experiment. When the robot is on the learning
path, more than 200 points are matched. This number drops to 100 when the
robot is 3 meters away. What is also important to notice is that the points close
to the camera are lost first, and those points are those which provide the best
positional accuracy. Points at infinity on the other hand can only give some
rotational information. Table 3 shows how localization accuracy is related to
the number of points matched. The graph of Fig. 26 was divided in three parts.
Zones A and C correspond to parts where the robot was far from the learning
trajectory and zone B correspond to a part where the robot was on the reference
trajectory. For each zone, the average number of points matched was computed
as well as the standard deviation of the error of the vision algorithm.

Zone A B C
Time limits 20 s - 70 s 70 s - 115 s 115 s - 170 s

Average number of points 119 220 110
Localization error 8 cm 1 cm 8 cm

Table 3: Number of points matched and localization error

The robot can depart from the learning trajectory up to a limit which de-
pends on the number of points that can be matched between the reference video
sequence and the current image. Points can be lost because they may be seen
from a different point of view and the correlation score is not high enough to
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Figure 25: Lateral deviation of the target trajectory (blue), and lateral deviation
measured by the GPS during the navigation experiment (red)
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Figure 26: Lateral deviation computed by the vision algorithm (top), Lateral
deviation error (middle) and number of interest points correctly matched (bot-
tom).
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make a valid match. This is the case if the lateral deviation is large. When
angular deviation is important, points are lost because they go out of the field
of view of the camera. Nothing can be done to correct that except going to
an omnidirectional camera. On the other hand, we could take into account the
difference in point of view by using wide baseline matching techniques or by
predicting the appearance of the landmarks based on the camera position.

6.6.3 Validation of the localization uncertainty

The aim of this analysis is to make sure that the size of the confidence ellipsoids
varies in the same way as the localization errors measured with the RTK GPS.
The experiment presented in section 6.6 gives us an opportunity to make an
experimental validation of the computation of the localization uncertainty. In
the experiments described in paragraph 6.3.1, the confidence ellipsoids were too
small compared to the accuracy of the RTK GPS to have some meaningful
results.

Figure 27: Comparison between the major semiaxis of the 90% confidence ellip-
soid computed with the vision algorithm (black) and localization error measured
with the RTK GPS (grey). Vertical scale in meters.

For each video frame taken during the autonomous navigation, we computed
the length a of the major semiaxis of the 90% confidence ellipsoid with methods
2,3 and 4 as explained in section 4. Method 1 was not included in this com-
parison because it is not a real-time method. The localization error ε was also
computed by using the RTK GPS measurements in a way slightly different from
what is explained in section 6.1.2. In paragraph 6.1.2, the measurements from
both sensors were brought in the same coordinate system and the position of
the cycab was computed. Then the localization error was measured along the
normal to the trajectory. Here, the same computations are done to bring the
data sets from both sensors in the same coordinate system, but the localization
error is the distance between the position computed with vision and the position
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Figure 28: Histogram of log2(aε ) for methods 2,3 and 4.

computed with the GPS. It includes the error along the normal and the error
along the tangent to the trajectory. Figure 28 shows the localization error ε
compared to the length a2 of the major semiaxis of the 90% confidence ellip-
soid computed with method 2. The major semiaxis computed with method 2 is
roughly of the same size as the localization error and that both quantities vary
in the same way. This experiment shows that method 2 is a valid method for
computing the localization uncertainty.

A comparison can be made between the three methods used to compute
the localization uncertainty. Figure 28 shows for each method the histogram of
log2(aε ) for every frame in the video sequence. If we assume zero uncertainty
on the cameras in the 3D reconstruction (in method 3), the length of the ma-
jor semiaxis is nearly half of the length computed with method 2. Ignoring
the uncertainty on the 3D points (in method 4) conducts to an even larger
underestimation of the size of the ellipsoid.

6.7 Computation times

The computation times given here were measured on a 3 GHz Pentium 4 pro-
cessor with an image size of 512 × 384 pixels. The code of the interest point
detection and matching uses the SSE2 instruction set. Off line map building for
a sequence with 100 key frames such as the one on Fig. 23 takes about 15 min-
utes. For a larger sequence such as the one on Fig. 3 with approximately 300
key frames, map building is done in 60 minutes. Most of the time is spent in
the bundle adjustment. The localization runs at 15 frames per second (which
is also the frame rate of our camera). The computation time can be roughly
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divided as: 35 ms for interest points detection, 15 ms for matching, 10 ms for
the pose computation and 5 ms for the uncertainty computation.

6.8 Database management

The memory needed to store the 3D model of the environment is very reasonable
because we don’t need to keep the whole key frames. We need to keep only image
data around the interest points to compute the ZNCC as well as the 2D and 3D
coordinates of the points. With about 150 bytes per interest point and about 500
interest point per key frame, each key frame takes less than 100 Kb of memory.
Since the model is built with one key frame per meter on average, storing a
1 kilometer long trajectory needs about 100 Mb. Computers can handle this
amount of data without difficulty.

From a practical point of view, keeping the model of the environment up
to date is needed even if localization is possible with some modifications of the
environment (see [24] or Fig. 24 for example). We have made a lot of experiments
during the past two years in different places. We found that once a model is
built, it can be used during a few weeks or more depending of the season and
the kind of place. Buildings don’t change much, but trees can change quickly in
spring and fall. We have not developed a method to update the model yet, but
we have some ideas about how to do that. During autonomous navigation, the
pose of the camera is computed and the interest points are detected for each
frame. We can store this data every time the camera is near a key frame so that
at the end of a navigation experiment we have all the necessary information to
update the database. Then we could match the interest points in the sequence
recorded and compute the 3D position of the points. A bundle adjustment could
be used to refine the structure. New points could be added to the model, and
points which have not been used since a long time could be removed.

7 Conclusion

We have presented a sensing device which enables a robotic vehicle to follow
a trajectory obtained from a human guided experience, relying uniquely on
monocular vision. When following the same path, the localization accuracy is
approximately 2 cm, nearly the same as a RTK GPS sensor. The vision system
also provides with an orientation accurate to 0.1 ◦. In practice, both sensors
allow the robot to navigate autonomously with the same accuracy. When the
robot departs from the learning path, the performance of the vision algorithm
is somewhat degraded but still satisfactory in the case of obstacle avoidance
fro example. These two sensing devices appear complementary: autonomous
navigation in urban environments cannot satisfactorily be addressed by RTK
GPS sensors since tall buildings can disturb satellite receiving. These buildings
however offer a lot of visual features which can be used to feed vision algorithms.

The main difficulty with the vision algorithm is to keep a map of the en-
vironment up to date. Even if the experiments presented in this paper have
shown that the localization algorithm is robust to some changes, it may not be
enough for an ever changing environment. For example in a city, cars parked
along the side of the road change from day to day, trees evolve according to the
season, some buildings are destroyed while others are built or modified. So our
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goal is to have a method to update the map automatically in order to take these
modifications into account.
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