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Abstract

We introduce a generic and incremental Structure from Motion method.
By generic, we mean that the proposed method is independent of any
specific camera model. During the incremental 3D reconstruction, pa-
rameters of 3D points and camera poses are refined simultaneously by
a generic local bundle adjustment that minimizes an angular error be-
tween rays. This method has three main advantages: it is generic, fast
and accurate. The proposed method is evaluated by experiments on
real data with three kinds of calibrated cameras: stereo rig, perspective
and catadioptric cameras.

1 Introduction

The automatic estimation of scene 3D structure and camera motion from an image
sequence (“Structure from Motion” or SfM) has been largely studied. Different
camera models are used: pinhole, fish-eye, stereo, catadioptric, multi-cameras
systems, etc. A lot of specific algorithms (i.e. specific to a given camera model)
have been successfully developed and are now well known for perspective or stereo
rig models [11, 14]. The omni-directional central (catadioptric, fish-eye) or non-
central (multi-cameras) systems that offer a larger field of view have also been
widely explored [1, 9, 13]. It is a very interesting challenge to develop generic
tools for SfM that are exploitable for any camera model. This way has recently
been investigated with the introduction of generic camera models [7, 17]. In the
generic camera model, pixels define image rays in camera coordinate system that
can intersect or not in a unique point usually called “projection center”. In recent
work on generic SfM, camera motion can be estimated using generalization of the
classical essential matrix [15, 13] given by Pless Equation [13] and minimal relative
pose estimation algorithms [16].

A method is required for the refinement of 3D points and camera poses. The
best solution for accuracy is bundle adjustment (BA) [18] applied on all parameters
(global BA). However, it is clear that this method can not be real-time. In general,
fast SfM methods or Vision-based SLAM [12, 2] (Simultaneous Localization and
Mapping) are less accurate than off-line methods where an optimal solution is



calculated using global BA [18]. In this paper we present a method that makes
the most of the accuracy of BA in a generic real-time application. This is possible
because we developed an incremental method where not all the 3D structure is
refined, but only the lastly estimated parameters at the end of the sequence. In the
generic case where different cameras (pinhole, stereo, fish-eye, catadioptric...) are
possible, BA is quite different from the classical one used for perspective cameras.
Our generic method does not use image projections of a specific camera model
but is based on back-projected rays and minimization of an angular error between
rays. The first advantage is of course a high ability to change one camera model
for another. The second advantage is that the method is effective if the image
projection function is not explicit (as in the non-central catadioptric case) and
also avoids clustering rays as in [15].

Comparison with previous works on SfM To resume, previous works are:
� generic but not real-time [15].
� real-time but not generic [2, 12], not using bundle adjustment.
� generic thanks to the use of Pless Equation [13, 15] (generalization of the epipolar
constraint), but no details are given to solve this equation in common situations.
� using local bundle adjustment but not generic [10, 3], and [3] is not demonstrated
in a real-time system with real world data as ours in this paper.

Contributions The first contribution of our work is a generic and real-time
SfM method based on an incremental 3D reconstruction and local generic bundle
adjustment where an angular error is used. The second contribution is a detailed
method to solve Pless Equation (in most cases, it is not a “simple” linear problem
as suggested in [13, 15]). We also compare our results with GPS ground truth and
with results obtained with the most accurate (but not generic and not real-time)
method available: specific global BA.

The remainder of the paper is organized as follows: Section 2 summarizes
our approach and the generic camera model. The initialization method and our
modified bundle adjustment are respectively explained in Section 3 and 4. Finally,
experiments are presented in Section 5.

2 Overview of the Approach

2.1 Camera Model

For any pixel p of a generic image, the (known) calibration function f of the
camera defines an optical ray r = f(p). This projection ray is an oriented line
r = (s,d) where s is the starting point or origin and d is the direction of the
ray in the camera frame (||d|| = 1). For a central camera, s is a unique point
(camera center) whatever pixel p. In the general case, s could be any point given
by calibration.

2.2 Summary

The method is based on the detection and matching of interest points (Figure 1).
In each frame, Harris corners [5] are detected and matched with points detected



in a previous frame by computing a Zero Normalized Cross Correlation score in a
near region of interest (whatever the kind of camera). The pairs with the highest
scores are selected to provide a list of corresponding point pairs between the two
images. To ensure a stable estimation of the 3D, a set of frames called key frames
are selected. The selection criterion is based on the number of matched points
between two consecutive key frames, which must be greater than a constant.

The initialization of the geometry is provided by a method based on the res-
olution of Pless Equation (Section 3). Then, the algorithm is incremental. For
each new video frame, (1) interest points are detected and matched with those
of the last key frame (2) the camera pose of the new frame is robustly estimated
(Section 3.4) (3) we check if the new frame is selected as a key frame (4) if yes,
new 3D points are estimated and a local bundle adjustment (Section 4) is applied.

Figure 1: Feature tracks for one image of a generic camera in three cases: per-
spective (left), catadioptric (middle), and stereo rig (right) cameras.

3 Generic Initialization

3.1 The Pless Equation

Given a set of pixel correspondences between two images, the relative pose (R, t) of
two cameras are estimated in a generic framework. For each 2D points correspon-
dence (x0, y0) and (x1, y1) between images 0 and 1, we have a correspondence of
optical rays (s0,d0) and (s1,d1). A ray (s,d) is defined by its Plücker coordinates
(q,q′) such that q = d and q′ = d ∧ s, which are convenient for this calcula-
tion. Let camera 0 be the origin of the global coordinates system and (R, t) the
pose of camera 1 in this frame. The two rays must verify the generalized epipolar
constraint (or Pless Equation [13])

q′
0

⊤
Rq1 − q⊤

0 [t]×Rq1 + q⊤
0 Rq

′
1 = 0 (1)

where [t]× is the skew symmetric cross-product matrix of the 3× 1 vector t.
We identify two cases where this equation has an infinite number of solutions.

Obviously, this number is infinite if the camera is central (the 3D is recovered up
to a scale). We note that Equation 1 is the usual epipolar constraint defined by
the essential matrix E = [t]×R if the camera center is at the origin of the camera
frame.

The second case is less obvious but it occurs in practice. In our experiments, we
assume that we have only “simple” matches: all projection rays (si,di) of a given



3D point go through a same camera center (in the local coordinate of the generic
camera). In other words, we have q′

0 = q0∧c0 and q′
1 = q1∧c1 with c0 = c1. For

a multi-camera system composed by central cameras (as the stereo rig), it means
that 2D points correspondences are only made with points of the same sub-image.
This is often the case in practice for two reasons: small regions of interest for
reliable matching, or empty intersections between field of views of compositing
cameras. If the camera motion is a pure translation (R = I3), Equation 1 becomes

q⊤
0 [t]×q1 = q′

0

⊤
q1 + q⊤

0 q′
1 = 0 where the unknown is t. In this context, the scale

of t can not be estimated. We assume in this work that the camera motion is not
a pure translation at the initialization step.

3.2 Solving the Pless Equation

Equation 1 is rewritten as

q′
0

⊤
R̃q1 − q⊤

0 Ẽq1 + q⊤
0 R̃q

′
1 = 0 (2)

where the two 3×3 matrices (R̃, Ẽ) are the new unknowns. We store the coefficients
of (R̃, Ẽ) in an 18×1 vector x and see that each value of the 4-tuple (q0,q

′
0,q1,q

′
1)

produces a linear equation a⊤x = 0. If we have 17 different values of this 4-tuple
for each correspondence k, we have 17 equations a⊤

k x = 0. This is enough to
determine x up to a scale factor [15]. We have built the matrix A17 containing
the 17 correspondences such that ‖A17x‖ = 0 with A

⊤
17 = [a⊤

1 |a
⊤
2 | · · ·a

⊤
17]. The

resolution depends on the dimension of the A17 kernel which directly depends on
the type of camera used. We determine Ker(A17) and its dimension by a Singular
Value Decomposition of A17. In this paper, we have distinguished three cases:
(1) central cameras with an unique optical center (2) axial cameras with collinear
centers and (3) non-axial cameras.

It is not surprising that the kernel dimension of the linear system to solve is
greater than one. Indeed, the linear Equation 2 has more unknowns (18 unknowns)
than the non-linear Equation 1 (6 unknowns). Possible dimensions are reported in
Table 1 and are justified below. Previous works [13, 15] ignored these dimensions,
although a (linear) method is heavily dependent on them.

Camera Central Axial Non-Axial
dim(Ker(A17)) 10 4 2

Table 1: dim(Ker(A17)) depends on the kind of camera.

Central Camera For central cameras (e.g. pinhole cameras), all optical rays
converge at the optical center c. Since q′

i = qi∧c = [−c]×qi, Equation 2 becomes
q0

⊤([c]×R̃− Ẽ− R̃[c]×)q1 = 0. We note that (R̃, Ẽ) = (R̃, [c]×R̃− R̃[c]×) is a possible
solution of equation 2 for any 3×3 matrix R̃. Such solutions are “exact”: Equation 2
is exactly equal to 0 whatever (q0,q1). Our “real” solution is (R̃, Ẽ) = (0, [t]×R) if
c = 0, and it is not exact due to image noise. Thus the dimension of Ker(A17) is at
least 9+1. Experiments have confirmed that this dimension is 10 (up to noise). In
this case, we simply solve the usual epipolar constraint constraint q0

⊤[t]×Rq1 = 0
as described in [6].



Axial Camera This case includes the common stereo rig of two perspective
cameras. Let ca and cb be two different centers of the camera axis. It is not
difficult to prove that “exact” solutions (R̃, Ẽ) are defined by

Ẽ = [ca]×R̃− R̃[ca]× and R̃ ∈ V ect{I3×3, [ca − cb]×, (ca − cb)(ca − cb)
⊤}

based on our assumption of “simple” matches (Section 3.1). Our real solution is
not exact due to image noise, and we note that the dimension of Ker(A17) is at
least 3+1. Experiments have confirmed that this dimension is 4.

We build a basis of 3 exact solutions x1,x2,x3 and a non-exact solution y with
the singular vectors corresponding to the four smallest singular values of A17. The
singular values of x1,x2,x3 are 0 (up to computer accuracy) and that of y is 0
(up to image noise). We calculate the real solution (R̃, Ẽ) by linear combination
of y, x1, x2 and x3 such that the resulting matrix R̃ verifies R̃⊤R̃ = λI3×3 or Ẽ is

an essential matrix. Let l be the vector such that l⊤ = [λ1 λ2 λ3]
⊤, and thus we

denote as R̃(l) and Ẽ(l) the matrix R̃ and Ẽ extracted from solution y− [x1|x2|x3]l.

Using these notations, we have R̃(l) = R0 −
∑3

i=1
λiRi and Ẽ(l) = E0 −

∑3

i=1
λiEi

with (Ri, Ei) extracted from xi.
Once the basis x1,x2,x3 is calculated, we compute the coordinates of the

solution by non-linear minimization of the function (λ, l)→ ‖λI3×3− R(l)⊤.R(l)‖2

to obtain l and thus Ẽ. An SVD decomposition is applied to Ẽ, and we obtain
4 solutions [6] for ([t]×, R). The solution with the minimal epipolar constraint
‖A17x‖ is then selected. Lastly, we refine the 3D scale k by minimizing k →∑

i(q
′
0i

⊤
Rq1i − q⊤

0ik.[t]×Rq1i + q⊤
0iRq

′
1i)

2 and perform t← kt.

Non-Axial Camera For a non-axial camera (e.g. a multicamera system with
perspective cameras such that centers are not collinear), the problem is also dif-
ferent. In this case, the “exact” solutions are (R̃, Ẽ) ∈ V ect{(I3×3, 03×3)} based on
our assumption of “simple” matches (Section 3.1). The real solution is not exact
due to image noise, and we see that the dimension of Ker(A17) is at least 1+1. Ex-
periments have confirmed that this dimension is 2. We have not yet experimented
this case on real data.

3.3 Initialization with Three Views (RANSAC process)

The first step of the incremental algorithm is the 3D reconstruction of a sub-
sequence containing the first key frames triplet {0, 1, 2}. A number of random
samples are taken, each containing 17 points. For each sample, the relative pose
between views 0 and 2 is computed using the abovedescribed method and matched
points are triangulated. The pose of camera 1 is estimated with 3D/2D correspon-
dences by iterative refinement minimizing the angular error defined in Section 4.2.
The same error is minimized to triangulate points. Finally, the solution produc-
ing the highest number of inliers in views 0, 1, and 2 is selected from among all
samples. The j-th 3D point is considered as an inlier in view i if the angular error
||ǫi

j || is less than ǫ (ǫ = 0.01 rad in our experiments).



3.4 Pose Estimates (RANSAC)

The generic pose calculation is useful for both steps of our approach (initialization
and incremental process). We assume that the i-th pose P i = (Ri, ti) of the
camera is close to that of the i-1-th pose P i−1 = (Ri−1, ti−1). P i is estimated by
iterative non-linear optimization initialized at P i−1 with a reduced sample of five
3D/2D correspondences, in conjunction with RANSAC. For each sample, the pose
is estimated by minimizing an angular error (Section 4.2) and the overall number
of counted inliers (points) includes this pose. The pose with the maximum number
of inliers is then selected and another optimization is applied with all inliers.

4 Generic and Incremental Bundle Adjustment

4.1 Definitions

Bundle adjustment (BA) is the refinement of 3D points and camera poses by
minimizing a cost function. The number of unknown parameters is 3 for each
3D point and 6 for each camera pose (3 for translation + 3 for rotation). Let
Pj = [xj , yj, zj , tj]

⊤ be the homogeneous coordinates of the j-th point in the
world frame. Let Ri and ti be the orientation (rotation matrix) and the origin of
the i-th camera frame in the world frame.

If (si
j ,d

i
j) is the optical ray corresponding to the observation of Pj through the

i-th camera, the direction of the line defined by si
j and Pj is Di

j = R
i⊤[I3 | −ti]Pj−

tjs
i
j in the i-th camera frame. In the ideal case, directions di

j and Di
j are parallel

(which is equivalent to an image reprojection error of zero pixels).

4.2 Error choice

The classical approach [18, 3] consists in the minimization of a sum of square ||ǫi
j||

2

where ǫi
j is a specific error depending on the camera model (the reprojection error

in pixels). In our case, we should minimize a generic error. We define ǫi
j as the

angle between the directions di
j and Di

j defined above.

Some experiments show that convergence of BA is bad with ǫi
j = arccos(di

j .
Di

j

||Di
j
||
)

and satisfactory with ǫi
j defined as follows (a theoretical explanation of this is given

in [8]. We choose ǫi
j = π(RijD

i
j) with R

i
j a rotation matrix such that Rijd

i
j = [0 0 1]⊤

and π a function R
3 → R

2 such that π([x y z]⊤) = [x
z

y

z
]⊤. Note that ǫi

j is a 2D

vector whose Euclidean norm ||ǫi
j || is equal to the tangeant of the angle between

di
j and Di

j . The tangeant is a good approximation of the angle if it is small.

4.3 Local Generic Bundle Adjustment

In the incremental 3D reconstruction, when a new key frame Ii is selected, new
matched points are triangulated. Then, a stage of optimization is carried out. It
is a bundle adjustment or Levenberg-Marquardt minimization of the cost function
f i(Ci,P i) where Ci and P i are respectively the generic camera parameters (ex-
trinsic parameters of key frames) and 3D points chosen for this stage i. As it is



Camera i(Ri, ti)

Point j(xj , yj , zj , tj)

Di
j

di
j

ǫi
j

sij

Figure 2: Angular bundle adjustment: the angle between observation ray (si
j ,d

i
j)

and 3D ray Di
j which goes from si

j to 3D point is minimized.

well known that BA is very time consuming, our idea is to reduce the number of
calculated parameters and avoid redundancies in computations. In our modified
BA, not all the extrinsic cameras parameters are optimized but only the n last
cameras parameters. Coordinates of all 3D points seen in the last n key frames are
refined including new points. To bring consistency to the incremental process and
ensure that new parameters are compatible with firstly estimated ones, we take
account of points reprojections in the N (with N ≥ n) last frames (typically n = 3
and N = 10 are good values [10]). Thus, Ci is the camera list {Ci−n+1 . . . Ci}
and P i contains all the 3D points projected on cameras Ci. Cost function f i is
the sum of squared angular errors for all available observations in last key frames
Ci−N+1 . . . Ci of all 3D points in P i:

f i(Ci,P i) =
∑

Ck∈{Ci−N+1 ... Ci}

∑

pj∈Pi

||ǫk
j ||

2.

Ci

Ci−1

Ci−2

Ci−3

Pi

Ci

N

n

Figure 3: Local angular bundle adjustment when camera Ci is added. Only sur-
rounded points P i and cameras Ci parameters are optimized. Nevertheless, the
minimized criterion takes account of 3D points projections in the N last images.



5 Experiments

The incremental generic 3D reconstruction method has been tested on real data
with 3 different cameras: a perspective camera, a catadioptric camera and a stereo
rig. Examples of frames are available in Figure 1 and sequence characteristics in
Table 2. Computation performances are reported on Table 3. In the following
experiments, the trajectory obtained with our generic method is compared to
GPS ground truth or global specific BA result. A rigid transformation (rotation,
translation and scale factor) is applied to the trajectory as described in [4] to fit
with reference data. Then, a mean 3D error or 2D error in the horizontal plane
can be measured between the generic and the reference trajectory.

5.1 Comparison with Ground Truth (Differential GPS)

The following results are obtained with a pinhole camera embedded on an exper-
imental vehicle equipped with a differential GPS receiver (inch precision). The
vehicle trajectory is a “S” of 88 m long (Sequence 1). The calculated motion
obtained with our algorithm is compared to data given by the GPS sensor and
Figure 4 shows the two trajectories registration. As GPS positions are given in a
metric frame we can compare camera locations and measure positioning error in
meters: mean 3D error is 1.57 m and 2D error in the horizontal plane is 1.16 m.
Computation time is 2 min 32 s for the whole sequence and a mean frame-rate of
6.55 fps.

Figure 4: Left: Registration of generic vision trajectory with GPS ground truth.
Continuous line represents GPS and points represent vision estimated positions.
Right: 3D error (y-axis) along the trajectory (x-axis: key-frame index)



5.2 Comparison with Specific and Global Bundle
Adjustment

In the two following examples, ground truth is not available. So, we compare our
results with those of the best method available: a global and specific BA (all 3D
parameters have been refined so as to obtain an optimal solution with a minimal
reprojection error). Sequences characteristics and results are reported on Table 2.

Sequence 2 is taken in an indoor environment with a hand-held pinhole camera.
A very accurate result is obtained: the mean 3D error is less than 6.5 cm for a
trajectory length of (about) 15 m. The relative error is 0.45%.

Sequence 3 is taken in an outdoor environment with a hand-held catadioptric
camera (the 0-360 mirror with the Sony HDR-HC1E camera visible on Figure 5,
DV format). The useful part of the rectified image is contained in a circle whose
diameter is 458 pixels. The accuracy is also good: the mean 3D error is less than
9.2 cm for a trajectory length of (about) 40 m. The relative error is 0.23%.

Sequence 4 is taken with a stereo rig (baseline: 40 cm) in a corridor (Figure 5).
The image is composed of two sub-images of 640× 480 pix. The trajectory (20 m
long) is compared to results obtained with left/right camera and global BA. The
mean 3D error is 2.7/8.4 cm compared to left/right camera and the relative error
is 0.13/0.42%.

Sequence Camera #Frames #Key frames #3D Pts #2D Pts Traj. length

Sequence 1 pinhole 996 66 4808 17038 88 m

Sequence 2 pinhole 511 48 3162 11966 15 m

Sequence 3 catadioptric 1493 132 4752 18198 40 m

Sequence 4 stereo rig 303 28 3642 14189 20 m

Table 2: Characteristics of video sequences.

Camera Image size Detection+Matching Frame Key frame Mean rate

Pinhole 512 × 384 0.10 0.14 0.37 6.3 fps

Catadioptric 464 × 464 0.12 0.15 0.37 5.9 fps

Stereo rig 1280 × 480 0.18 0.25 0.91 3.3 fps

Table 3: Computation times in seconds for our three cameras (detection and
matching are included in Frame or Key frame times)

Figure 5: Left: catadioptric camera and stereo rig. Middle and right: top views
of 3D reconstructions for Sequence 3 (middle) and Sequence 4 (right). Trajectory
in blue and 3D points in black.



6 Conclusion

We have developped and experimented a generic method for the real-time Struc-
ture from Motion problem. We presented a complete process that starts with a
generic initialization followed by an incremental 3D reconstruction of the scene and
camera motion. The accuracy is brought by a local bundle adjustment minimizing
an angular error. Experiments proved that it is easy to change one camera model
for another, and promising results have been obtained on real data with three
different kinds of cameras. Now, we are interested in experimenting our approach
on more complex multi-camera systems.
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