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Abstract

The automatic reconstruction of 3D models from image
sequences is still a very active field of research. All exist-
ing methods are designed for a given camera model, and
a new (and ambitious) challenge is 3D modeling with a
method which is exploitable for any kind of camera. A
similar approach was recently suggested for structure-from-
motion thanks to the use of generic camera models. In this
paper, we first introduce geometric tools designed for 3D
scene modeling with a generic camera model. Then, these
tools are used to solve many issues: matching errors, wide
range of point depths, depth discontinuities, and view-point
selection for reconstruction. Experiments are provided for
perspective and catadioptric cameras.

1. Introduction
The automatic reconstruction of photo-realistic 3D mod-

els of scenes from image sequences taken by a moving
camera is still a very active field of research. Once the
camera parameters of the image sequence are recovered
by structure-from-motion, dense stereo and stereo merge
into a single 3D model are successively applied. Cur-
rently, many 3D modeling systems exist for perspective
cameras [12, 16, 10], catadioptric cameras [3, 9] and multi-
camera rig [2] (among others) sometimes with the help of
additional informations such as odometry. Even if the in-
trinsic parameters of the camera are unknown, the involved
methods are dependent on a given camera model.

Recently, it was suggested that the first sub-problem
(structure-from-motion) be solved using a generic camera
model and generic tools which are exploitable for any kind
of camera [5, 15], and the same challenge arises naturally
for the complete 3D modeling process. The practical advan-
tages would be obvious: a high ability to change one camera
model for another or to mix different cameras (e.g. cata-
dioptric camera for wide field of view and perspective cam-
era for a few parts of the scene where higher reconstruction
accuracy is needed). Many generic tools are already avail-
able for structure-from-motion: estimation of the general-

ized essential matrix [13, 15], pose calculation [14], bundle
adjustment [17, 11] and generic camera calibration [5, 8].
We have no additional contributions for this sub-problem
and assume that the camera parameters are known.

Dense stereo is the second sub-problem. It is recognized
that this step is very difficult in practice for uncontrolled en-
vironments. This difficulty increases in the generic context
since the use of the image projection function is prohibited
(this function is specific to the kind of camera). The epipo-
lar constraint is also unavailable since the camera may be
non-central. Optical flow methods [7] remain since they do
not use 3D. In this second step, a hypothesis is used to ob-
tain better results for 3D modeling: we assume that epipolar
constraints are locally available in the generic images such
that the standard pair-wise stereo methods [18] may be ap-
plied after local rectifications.

The third sub-problem is the following: once cameras
and matches between image pairs are known, how can a
3D model of the scene be recovered using generic tools ?
This model is a list of textured triangles in 3D which ap-
proximates the visible part of the scene where the camera
has moved. We have to reconstruct 3D points, approximate
them by a mesh, and deal with matching errors (false nega-
tives and false positives), depth discontinuities, and a wide
range of accuracies for reconstructed points (due to close
foreground and far background, or view-point selection).

1.1. Contributions and Paper Overview
Our generic camera model is slightly different from pre-

vious ones. Previous authors [5, 17] model arbitrary imag-
ing systems by a set of virtual sensing elements called rax-
els: a raxel is central or perspective camera with a small part
of the complete view field. In our case, a raxel is reduced to
a single ray (a point origin and a direction in 3D) such that
the raxel center is the ray origin. We know the calibration
function, which maps image pixels to rays. This function
also defines the choice of all ray origins (“the ray surface
choice” [5]). A central camera is a special case, where all
ray origins are the same point: the camera center.

Once the generic camera model is presented, Section 2
introduces a generic method to reconstruct points from
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image matches by ray intersection, a generalization for a
generic camera of virtual uncertainty [9], and a generaliza-
tion for n views of the 2-view-angle reliability [4]. Both
virtual uncertainty and reliability were introduced for cata-
dioptric cameras to select reconstructed points which are re-
tained in the final 3D model. Such selections are important
if parts of the scene are to be reconstructed at very different
accuracies depending on the view-point selected for recon-
struction. This is also true for any other camera with a wide
field of view. In this paper, both virtual uncertainty and reli-
ability have closely related and coherent definitions, which
is not the case in previous works [4, 9].

Section 3 describes how to obtain a (local) 3D model
for a few generic images given their corresponding camera
poses, the calibration function and point correspondences.
First, a reference image is chosen and segmented by a 2D
mesh using gradient edges and color information. Second,
points are reconstructed by our generic ray intersection.
Third, 2D triangles are back-projected in 3D to fit the re-
constructed points as best possible by taking into account
a wide range of point depths. Virtual uncertainty is useful
here to weight the minimized scores, to define the connec-
tions between triangles in 3D, and to fill holes. Finally, tri-
angles with the worst reliability are rejected.

Section 4 provides many experiments for central cam-
eras. Global models are obtained by combining the local
models with a simple view-point selection method [9] using
our (generic) virtual uncertainty. Last, Section 5 concludes
and explains what should be added for non-central cameras.

1.2. Assumptions
The proposed method involves many assumptions. First,

the scene surface should be smooth enough to be approxi-
mated by a list of triangles in 3D. Second, the majority of
occluding contours (and the tangent discontinuities of sur-
faces) should occur at gradient edges or color discontinu-
ities in images. Third, the generic camera should not be too
exotic to back-project connected image points (e.g. 2D tri-
angles) to connected points in 3D (e.g. planar scene parts):
we assume that the calibration function which maps pix-
els to rays in 3D is piecewise C0 continuous with known,
smooth and polygonizable discontinuities. These disconti-
nuities occur in practice for multi-camera rig (e.g. the line
between two composite images in the generic image of the
stereo-rig).

2. Geometric Tools for a Generic Camera
This Section presents a method to reconstruct points

(Section 2.1), virtual uncertainty (Section 2.2), reliability
(Section 2.3) and geometric tests (Section 2.4).

The calibration function of the camera is known and
maps pixels of a generic image to optical rays. An optical

ray is an oriented line defined by its origin and direction.
Thanks to the knowledge of camera pose in the world coor-
dinate system, origin o and direction d (||d|| = 1) of this
ray in the world coordinate system are also known and used
throughout the paper.

2.1. Point Reconstruction by Ray Intersection
Once point correspondences in images, calibration and

successive poses of the camera are given, 3D points of the
scene should be reconstructed. The standard method to re-
construct a point is the minimization of a sum of square of
reprojection errors in pixels using the Levenberg-Marquardt
method [6] (LM). However, these errors cannot be used in
the generic context since they require the image projection
function, which is specific to the kind of camera. Many
rays (oi,di) corresponding to observations in the ith image
of the 3D point P to reconstruct should be used instead.

One solution is the reconstruction of P by minimizing
the sum of squares of angles αi between vectors di and P−
oi. In practice, the definition αi(P) = arccos(d>

i
P−oi

||P−oi||
)

lead to poor LM convergence. This is not surprising: the C2

continuity of αi is recommended for a good (quadratic and
final) convergence of LM and it can be shown [1] that αi is
never C1 continuous at point P̃ such that αi(P̃) = 0.

Let Ri be a rotation such that Ridi = [0 0 1]> and π the
function π([x y z]>) = [x/z y/z]>. Once rays (oi,di) are
given (i ∈ {1, 2, · · · I}), we estimate P as the minimizer of

E(P̃) =

I
∑

i=1

||αi(P̃)||2 with αi(P̃) = π(Ri(P̃ − oi)). (1)

Now αi is C2 continuous and the LM convergence is good
in practice. Furthermore, ||αi(P)|| is the tangent of the an-
gle between di and P − oi. The tangent is a good angle
approximation near the expected solution where the angles
are small. P is retained if it is in front of the cameras (i.e.
d
>
i (P − oi) > 0) and if E(P)/I is less than a threshold.

2.2. Virtual Covariance and Uncertainty
Assume that angle errors αi defined in Eq. 1 follow in-

dependent and identical Gaussian noise N (02×1, σ
2
αI2×2).

Let J be the Jacobian of the function P̃ 7→ [α>
1 · · · α>

I ]>.
This noise propagates to a Gaussian noise for the estimated
parameter P with standard covariance matrix [6]

C(P) = σ2
α(J(P)>J(P))−1. (2)

An estimate of σ2
α is obtained from residuals E(P) for all

3D reconstructed points P.
Now, assume that a point P

′ ∈ R
3 and many ray ori-

gins o
′
i ∈ R

3, i ∈ {1, 2, · · · I} are given. Let d
′
i be the

direction d
′
i = P

′−o
′

i

||P′−o′
i||

. We can solve the minimization
problem defined by Eq. 1 for the new rays (o′

i,d
′
i) instead



of rays (oi,di) and obtain the minimizer P of E with its
standard covariance C(P) in Eq. 2. However,

αi(P
′) = π(Ri(P

′ − o
′
i)) = π(||P′ − o

′
i||Ridi) = 0

and we conclude that E(P′) = 0. Since the E minimizer is
unique (if P

′ and the o
′
i are not collinear points), we obtain

P
′ = P. Thus, the “virtual covariance matrix” of P

′ for ray
origins o

′
i is defined by C(P′) in Eq. 2.

At this point, the expression “virtual covariance matrix”
is clearer: C(P′) is the covariance matrix obtained by re-
constructing P

′ from “virtual” rays (o′
i,d

′
i) using LM, i.e.

rays which are not observation rays. In the special case
where P

′ was reconstructed before by LM from other rays
(oi,di) corresponding to real observations in images, the
corresponding standard covariance is similar to the virtual
covariance if oi ≈ o

′
i and di ≈ d

′
i.

Finally, the virtual uncertainty U(P′) is defined by the
length of the major semi-axis of the uncertainty ellipsoid
defined by C(P′) and a probability p. This ellipsoid is

∆x
>C−∆x ≤ X 2

3 (p), C− =
1

σ2
α

I
∑

i=1

I3×3 − d
′
id

′>
i

||P′ − o′
i||2

(3)

with X 2
3 (p) the quantile function of the X 2 distribution with

3 d.o.f, p a probability and C− the inverse [1] of C(P′).
Using notation e for the smallest eigenvalue of C−, we have

U(P′) =

√

X 2
3 (p)

e
. (4)

2.3. Reliability for 3D Modeling of a Scene
A point P reconstructed from observation rays

(oi,di), i ∈ {1, 2, · · · I} may be so inaccurate that the 3D
model should not contain it. At first glance, we can decide
that P is inaccurate for 3D modeling if U(P) is larger than
a given threshold U0. In this Section, we introduce and jus-
tify a reliability definition R(P) which is more adequate
than U(P) for thresholding.

If the generic camera is a central camera, the reconstruc-
tion is defined up to a global 3D scale and a scale change
of the whole reconstruction (3D points and camera centers)
implies the same scale change of the uncertainties. For a
central camera, the threshold U0 must be proportional to
the scene scale to obtain a decision which is independent of
the scale. This is a first reason to define

R(P) =
U(P)

mini ||P − oi||
(5)

and decide that P is inaccurate for 3D modeling if R(P) is
larger than a given threshold R0.

We see that the permitted maximal uncertainty by con-
dition R(P) < R0 is proportional to the distance between

point P and ray origins oi. More precisely, this inequal-
ity allows points with good accuracy (for 3D modeling of
the scene) to have greater uncertainties if they are a long
distance from the ray origins oi and smaller uncertainties
if they are close. As a consequence, we can expect to mod-
elize both close foreground and far background of the scene.
This is the second reason for this definition of R(P). Fur-
thermore, through this inequality it is possible to moderate
the ellipsoid size (uncertainty U(P)) in comparison with the
distance between ellipsoid center (the reconstructed point
P) and ray origins oi. It is not difficult to prove [1] that
R(P) is arbitrarily large in two cases: (1) nearly parallel
di and (2) large values of ||P − oi||. Case (1) occurs if all
oi are collinear points and P goes toward the line of the
oi. Case (2) occurs for distant point P. These cases should
be avoided for 3D modeling. This is a third reason for this
definition of R(P).

2.4. Geometric Tests
Let Π be the plane n

>
X + d = 0. Once virtual covari-

ance matrix C is defined, Mahalanobis point-to-point and
point-to-plane [1] squared distances are respectively

d2(P1,P2) = (P1 −P2)
>

C−1(P1)(P1 −P2)

d2(P1, Π) = min
P2∈Π

d2(P1,P2) =
(n>

P1 + d)
2

n>C(P1)n
.(6)

Here we introduce several tests which are systematically
used by mesh operations for 3D modeling. The point-to-
point neighborhood test T (P1,P2) is true if d2(P1,P2) ≤
X 2

3 (p) and d2(P2,P1) ≤ X 2
3 (p). The point-to-plane neigh-

borhood test T (P1, Π) is true if d2(P1, Π) ≤ X 2
3 (p). The

planarity test T ({Pi}) is true if there is a plane Π such that
all T (Pi, Π) are true. In practice, Π is estimated by random
samples of 3 points in the list {Pi}.

These tests implicitly requires for each 3D point Pi the
corresponding ray origins due to the virtual covariance def-
inition in Section 2.2. If the generic camera is central or
if the points are reconstructed by LM, the ray origins are
known. They are unknown in other cases, unless we ap-
ply the projection functions to Pi (but this is not a generic
method). More investigations are needed to estimate effi-
ciently ray origins in the non-central case.

3. 3D Model from Generic Images
This Section describes how to obtain a 3D model for a

few generic images given their corresponding camera poses,
the calibration function and image point correspondences.

First, a reference image is chosen and segmented by a
2D mesh using gradient edges and color informations (Sec-
tion 3.1). Second, points are reconstructed by intersection
of observation rays as described in Section 2.1. Third, 2D
triangles are back-projected in 3D to fit the reconstructed



points by taking into account 3D point uncertainties and
depth discontinuities (Section 3.2). Last, the most unreli-
able parts of the resulting 2.5D mesh (Section 3.3) are re-
jected. Assumptions are given in Section 1.

3.1. 2D Mesh
The 2D mesh in the generic reference image should sat-

isfy many contradictory constraints: gradient edges at mesh
edges, small enough mesh edges for good approximation of
gradient edges, large enough mesh triangles for stable esti-
mation of triangles in 3D and efficient rendering, uniform
sampling of the field of view, and good aspect ratio for tri-
angles. A compromise is obtained as follows.

Mesh Initialization First, a Delaunay triangulation is ini-
tialized such that the solid angles of any triangles are
roughly the sames. In practice, simple checkerboards with
two triangles for each rectangular cell are good enough for
standard cameras like perspective, catadioptric, or stereo-
rig. The C0 discontinuities of the calibration function de-
fine the borders of independent 2D meshes in the reference
image. Borders enforce constrained edges on the Delau-
nay and enforce the global shape of the checkerboards (in
the catadioptric case, cell rows are concentric rings and cell
columns are radial sections). The mesh resolution is defined
by a mean length of cell edges equal to 8 pixels.

Gradient Edge Integration Second, the gradient edges
are integrated in the mesh by moving mesh vertices slightly
and forcing mesh edges to be constrained. We have not
taken into account all gradient edges since the mesh res-
olution has been previously fixed. So they are integrated
in a best first order. A contour is a list of connected pix-
els which have maximum local image gradient. Its score
is equal to the sum of gradient modulus for all its pixels.
We pick the contour with the highest score, and find the
list of closest vertices to its pixels such that the vertices
have not been used before for any other contour. Then two
consecutive vertices are moved slightly to approximate the
contour if the part of the contour between vertex ends is a
segment. Once all contours have been considered by de-
creasing score, a completion step is used in order to try to
constrain new mesh edges if they approximate a contour in
their immediate neighborhood.

Mesh Refinement Third, the 2D mesh is refined by al-
ternating continuous improvements (move vertices to mini-
mize a global cost combining color variance in triangles and
mesh smoothness) and discrete improvements (flip edges
and merge vertices to improve aspect ratio of triangles).

The continuous mesh improvement is useful for many
reasons. First, few (parts of) gradient edges may be missed
by the previous step, and minimizing the sum of color vari-
ances for each triangle is an other way to increase the proba-
bility that the gradient edges are on the mesh edges. Second,

the gradient edge integration deformed the initial mesh only
locally such that the constraint of a same solid angle for all
triangles is highly violated. Minimizing the mesh smooth-
ness (sum of squared modulus of an umbrella operator) is
a way to incite incident triangles to have similar solid an-
gles. Minimizing the mesh smoothness is also useful to im-
prove triangle aspect ratio and regularize the minimization
of color variance.

The cost function is defined by

e2d({pv}) =
∑

p∈t∈T

||cp−
∑

p′∈t

cp′

|t|
||2+λ

∑

v∈V

||
∑

v′∈Nv

pv−pv′ ||2

with T the list of mesh triangles, |t| the area of triangle t,
V the list of mesh vertices, Nv the list of vertices which
are connected to v by a mesh edge. Color cp at pixel p is
RGB, pv is the image location of vertex v and λ is equal
to 1000. The cost function is minimized using a simple de-
scent method with vertex locations {pv} as parametrization.
All mesh vertices are allowed to move in 2D, except ver-
tices which are incident to a constrained edge (vertices at
gradient edges). The latter are only allowed to move in 1D
along the detected gradient edges. This gives the priority
to detected gradient edges over the minimization of color
variance, which may sometimes be contradictory.

3.2. 2.5D Mesh
Assume that we have I ≥ 2 camera poses and a dense

list of 3D points P reconstructed by intersection of I obser-
vation rays (one for each pose) as described in Section 2.1.
A 2D mesh in a reference image is also given.

First, the 2.5D mesh is initialized as a list of fully dis-
connected triangles in 3D. Then, this mesh is refined by
alternating discrete improvements “Triangle Connection”,
“Hole Filling”, “Triangle Removal”, “Triangle Damping”
and continuous improvements “Mesh Refinement”. These
mesh improvements are defined below thanks to the virtual
covariance for the I poses (Sections 2.2 and 2.4).

At any step, the 2.5D mesh in 3D is a back-projection of
the 2D mesh in the reference image. In other words, each
triangle t2d of the 2D mesh corresponds to (at most) one
triangle t3d of the 2.5D mesh with vertices vi ∈ R

3. The
t3d vertices are parameterized by depths zi > 0 such that
vi = oi + zidi with (oi,di) the observation rays of t2d

vertices. Vertices in the 2D mesh may have many depths
depending on current connections between triangles in 3D.

Mesh Initialization In this step, each triangle t2d of the
2D mesh is individually back-projected to fit the 3D points
as best possible with a RANSAC procedure.

First, all 3D points reconstructed from matched pixels
inside t2d are collected in a list Lt2d . Second, planes are
calculated for random samples of three 3D points taken in



Lt2d . Let Π be the plane minimizing

E2

t2d =
∑

P∈L
t2d

min{X 2
3 (p), d2(P, Π)} (7)

with X 2
3 (p) and d(P, Π) introduced in Eq. 3 and 6.

Then, we estimate depths zi at the 3 vertices of t2d such
that oi + zidi ∈ Π with (oi,di) the observation rays of
these vertices. The triangle in 3D with vertices oi + zidi is
added in the 2.5D mesh if zi > 0.

Pair-Wise Triangle Connection Triangles in 3D should
be interconnected to obtain a more realistic 3D model.

Let t3d
a and t3d

b be two 3D triangles such that the asso-
ciated triangles t2d

a and t2d
b in the 2D mesh have a common

edge (t2d
a and t2d

b are “weakly” connected). This edge has
two vertices 0 and 1 in 2D, which correspond to triangle
vertices {va

0 ,vb
0} and {va

1 ,vb
1} in 3D. The connection be-

tween t3d
a and t3d

b is effective if the point-to-point neighbor-
hood tests T (va

0 ,vb
0) and T (va

1 ,vb
1) defined in Section 2.4

are true.
The connection between t3d

a and t3d
b is defined as fol-

lows. Let za
i and zb

i be depths such that v
a
i = oi + za

i di

and v
b
i = oi + zb

i di with (oi,di) the observation rays of
2D vertices i ∈ {0, 1}. New values of za

i and zb
i are set

to former value of 1

2
(za

i + zb
i ). Henceforth, the 2.5D mesh

parameters za
i and zb

i are linked by constraints za
i = zb

i for
further processing.

Group-Wise Triangle Connection The “Pair-Wise Tri-
angle Connection” above connects any triangle pair in 3D
if they satisfy neighborhood conditions. Here we intro-
duce the “Group-Wise Triangle Connection”, which con-
nects any k-group of triangles in 3D if they satisfy a pla-
narity condition (typically k ∈ {2, 3, 4}).

A k-group of triangles in 3D is a list of k triangles t3d
j

such that the corresponding triangles t2d
j are “strongly” con-

nected in the 2D mesh. Two triangles are strongly con-
nected if they have a common edge which is not constrained
in the 2D mesh. We avoid constrained edges since they are
potential surface discontinuities in 3D. Section 2.4 defines
the planarity condition by T ({vi}) with {vi} the list of all
triangle vertices of the k-group.

Any triangle pair {t3d
a , t3d

b } in 3D is connected as in the
pair-wise case if it is included in a k-group satisfying the
planarity condition and if the corresponding t2d

a , t2d
b in 2D

have a common edge.

Triangle Removal A smooth surface is expected to be
approximated by a list of connected triangles in 3D. If a
triangle is not connected to (at least) one of its neighbors
after trials of triangle connections, we have some doubt as
to its quality and may decide to remove it from the 2.5D
mesh. They are many reasons for fully disconnected and
bad triangles in 3D: false positive matches in images (e.g.

in the neighborhood of occluding contours), triangle esti-
mations using 3D points in both close foreground and far
background, too few points for reliable estimation.

Triangle Damping The main drawback of “Triangle Re-
moval” is the lack of triangles in scene parts which are not
smooth such as tree foliages. If a triangle t3d without con-
nection is not removed, it may produce a major degradation
of visual quality if it is very stretched in 3D in the direc-
tion di of rays which goes across t3d vertices. In this case,
the angle θ between t3d normal n and di is greater than a
threshold θ0.

Thus, “Triangle Damping” reduces such degradations as
follows: if θ0 < θ, the t3d depths zi are disturbed such
that (1) the t3d center is fixed and (2) n is replaced by
cos(θ0)di + sin(θ0)

d̃i

||d̃i||
with d̃i = n − (n>

di)di. “Tri-
angle Damping” may be preferred to “Triangle Removal” to
obtain more triangles in the 3D model.

Hole Filling In our context, a hole is a connected compo-
nent of triangles t2d

j in the 2D mesh without corresponding
triangles t3d

j in the 2.5D mesh. “Hole Filling” is the defini-
tion of the lacking t3d

j by interpolation of depths available
in the hole border. Holes are mainly due to false negative
matches in low textured areas and degrade the visual quality
of 3D model rendering if they are not properly filled.

The main risk is depth interpolation between foreground
and background which also degrades the rendering quality,
especially if foreground and background have different col-
ors. We have the choice between strong connectivity (used
in “Group-Wise Triangle Connection”) and weak connec-
tivity (used in “Pair-Wise Triangle Connection”) between
two triangles in the 2D mesh to define a hole as a connected
component. The former is preferred to the latter which in-
cludes potential surface discontinuities at constrained edges
too easily in the hole. As a consequence, the hole border is
a list of edges in the 2D mesh such that (1) edges are con-
strained or (2) edges are not constrained and have depths
at their two vertices. All 3D points corresponding to these
vertices with depths are collected in a list {vi}. We also de-
fine r as the ratio between the sum of 2D lengths of edges
of type (2) and the sum of 2D lengths of all border edges.

To obtain a well defined interpolation and reduce the risk
of depth interpolation between foreground and background,
we require that the hole border is planar thanks to the pla-
narity condition T ({vi}) defined in Section 2.4. We also re-
quest enough 3D information at the hole border by r thresh-
olding (0.5 < r). If T ({vi}) is true, there is a plane Π
which approximates the vi and “Hole Filling” is defined as
follow. Each vertex in the hole (including border) has a cor-
responding observation ray (oi,di) and a depth zi defined
by oi + zidi ∈ Π. Any hole triangle t2d with positive zi

at its vertices defines a new triangle t3d in the 2.5D mesh.



Depth constraints are set for further processing such that
these vertices have only one depth.
Mesh Refinement The parameters of the 2.5D mesh is
the list of depths zi for each triangle vertex in 3D with
many constraints (equalities) between the zi. Improvements
“Hole Filling” and “Pair/Group-Wise Triangle Connection”
are useful to increase the rendering quality of the 3D model,
but they reduce the number of independent zi and disturb
the initial values of zi obtained from the 3D point cloud.
The consequence is an increasing discrepancy between 3D
points and the 2.5D mesh. This problem is reduced by min-
imizing a global cost function including a discrepancy term
and a smoothness term. The smoothness term is useful to
reduce noise and enforce a prior knowledge of a smooth
surface on the 2.5D mesh.

The cost function to minimize is defined by

e3d({zi}) =
∑

t∈T

E2
t +λ

∑

{t1,t2}∈E

1

2
(|t1|+ |t2|)(nt1 −nt2)

2

with T the list of 2D mesh triangles which has a triangle
in 3D, {t, t1, t2} ⊂ T , {t1, t2} the edge between triangles
t1 and t2, |t| the surface (in pixels) of t, E the list of un-
constrained edges in the 2D mesh, and nt the normal of the
3D triangle corresponding to the 2D triangle t. Weight λ
is equal to 1 and E2

t is defined in Eq. 7. The cost func-
tion is minimized by a descent method with depths {zi}
as parametrization. Depths have a wide range due to close
foreground and far background, and this should be taken
into account to reduce the cost efficiently. Given a depth
value zn

i at iteration n of the descent method, we choose the
value zn+1

i ∈ {zn
i − δi(z

n
i ), zn

i , zn
i + δi(z

n
i )} which mini-

mizes the partial function zi 7→ e3d(zi). Virtual uncertainty
is used to scale the increment δi by δi(z) = εU(oi + zdi)
with ε = 0.02.

Algorithm Summary Many combinations of the mesh
operations above are possible and have been the subject of
experiments. Our favorite strategy currently is

1. Mesh Initialization
2. apply Group-Wise Triangle Connection (k = 4), Hole

Filling and Mesh Refinement alternatively
3. Triangle Removal or Triangle Damping (θ0 = 7

20
π)

4. apply Pair-Wise Triangle Connection, Hole Filling and
Mesh Refinement alternatively.

Step 2 merges triangles with strong conditions before step
3. Once step 3 has removed improbable and unconnected
triangles, step 4 connects triangles with weaker conditions.

3.3. Unreliable Parts
Once the 2.5D mesh is obtained, the reliability for 3D

modeling (Eq. 5) allows the detection of unreliable vertices
vi by thresholding such as R0 < R(vi). Any triangle which
has an unreliable vertex is removed.

Figure 1. Virtual uncertainty U and reliability R in a plane for
a generic (central) camera in three cases: two camera poses
on the left, three collinear poses in the middle, and three non
collinear poses on the right. Camera poses are black points in
this plane. Black edges are the main axes of uncertainty ellip-
soids centered at some points P (their length is 2U(P). Ev-
ery point P has a gray level depending on the interval where
R(P) lies: [0, 1

40
[, [ 1

40
, 2

40
[, [ 2

40
, 3

40
[, [ 3

40
, 4

40
[, [ 4

40
, +∞] (darkest

gray levels for largest reliabilities). On the left, we check that
curves R(P) = R0 with R0 ∈ { 1

40
, 2

40
, 3

40
, 4

40
} are very similar

to circles (in black). Typical values are obtained for U and R with
σα = 0.001 radian and X 3

2 (0.9) = 6.25.

4. Experiments
Once camera poses and matching between image pairs

are given, all experiments are done for the generic camera
model restricted to central cameras (ray origins at the cen-
tre). Actually, specific pose methods [10, 9] are prefered to
generic method [11] since they also estimate calibration and
have more successful automatic matching. Furthermore, the
dense matching method between image pairs involves local
rectifications which are specific to camera model [9].

4.1. Properties of U(P) and R(P)

In the first case (on the left of Figure 1), U(P) and R(P)
are shown for two camera locations or ray origins A and B.
U(P) and R(P) are defined everywhere (except on the line
defined by A and B). Due to the symmetry of the problem,
U and R are the same for any plane in 3D containing A and
B. As expected, they increase in two cases: (1) if P goes
toward line defined by A and B or (2) if P goes long away
from A and B. We also see at the bottom that our reliability
is very similar to the reliability given in [4]: curves implic-
itly defined by R(P) = constant are very similar to circles
defined by angle(A,P,B) = constant.

In the second case (in the middle), a camera pose C is
added in the middle of A and B. The result is unexpected:
there is no improvement (i.e. U or R decrease) by adding
the third camera pose. In fact, the results are nearly the
same. In the third case (on the right), C is moved toward
the bottom. As expected, the improvement is noticeable in
the neighborhood of the line defined by A and B. In these
two last cases, our R definition is naturally derived from U
for any numbers of views. This was not the case for the R
definition of [4], which was only defined for two views.



Figure 2. Image projections of circular cones (with apex at camera
center) for perspective (left) and catadioptric (middle) cameras.
The former is a 35mm camera with a 30mm lens. The latter is
equiangular and has a field of view of ±50◦ above and below the
plane orthogonal to the symmetry axis. Cone apertures are π

25

radian. An image taken by this catadioptric camera is also shown.

4.2. Comparing Specific and Generic Cameras
It is wished that the virtual covariance obtained from the

generic error (angle) be the same as the virtual covariance
obtained from the specific error (image reprojection). We
prove a simple condition [1] in image space to check this.

Assume that a point P, a specific camera model and I
camera poses are given. We also consider any point X such
that the image projection pi(X) is in the immediate neigh-
borhood of pi(P) in the i-th image. The condition is

||αi(X)|| =
σα

σp

||pi(X) − pi(P)|| + o(||pi(X) − pi(P)||) (8)

with αi defined from camera center oi and direction di =
P−oi

||P−oi||
as described in Eq. 1. In other words, the projec-

tions of all circular cones (with apex at camera center) of
aperture 2ε radians should be circles of radius ε

σp

σα
pixels.

Figure 2 draws some of these projections for perspec-
tive and catadioptric cameras. In both cases, we note that
the main differences between specific and generic virtual
covariances occur at the borders of view fields where the
circles have the largest distortions.

4.3. 3D Model from Catadioptric Images
The field of view and an image taken by the catadiop-

tric camera are also shown in Figure 2. The definition of
the calibration is completed by the radii of the large and
small circles: 563 and 116 pixels respectively. The image
sequence has 208 images (closed turn around a church).
Once the camera parameters and dense matching between
image pairs are estimated, each local model is reconstructed
from 3 consecutive views with σα = 0.0011 radian and
X 2

3 (0.9) = 6.25 as described in Section 3.
Figure 3 shows 3D models obtained with this sequence.

The local model in the first row is obtained with the ref-
erence image given in Figure 2. The most unreliable parts
drawn on the left are discarded in the middle with R0 =
0.08. A part of the ground (circular hole) and the upper part
of the facade are in the blind cones defined by the small and

large circles of the catadioptric images and can not be re-
constructed for this reason. The second row shows views of
an other local model. In both examples, we see that a suc-
cessful gradient edge integration in the meshes allows sharp
modeling of C0 and C1 depth discontinuities (in spite of the
low resolution of catadioptric images).

The third row of Figure 3 shows a top view and a height
map of the global model. The global model is obtained from
208 local models around the church as follows. Let Ul(P)
be the virtual uncertainty defined at point P with ray origins
defined by the centers of cameras of a local model l. A
triangle of local model l0 is retained in the global model
if Ul0(P) ≤ β minl Ul(P) with β = 1.1 and P a vertex
of the triangle. In other words, the triangle is retained if
l0 provides one of the best (smallest) virtual uncertainties
available from all local models [9]. This condition ignores
the visibility of P in the images since Ul(P) is well-defined
everywhere in the generic context. In practice, the result is
improved by taking into account the visibility as follows:
we reset Ul(P) = +∞ if P is not in the view fields of l.
The global model contains 567757 triangles.

The video shows a walkthrough in the scene. The recon-
struction is difficult in several parts including trees and low
textured areas (e.g. street parts) which are not filled. Fur-
thermore, the simple triangle selection above has two weak-
ness referenced in [9]: the model redundancy increases with
depth and the self-occlusions of the surface are ignored. We
have noted that the triangle selection confines the case (1) of
bad reliability (Section 2.3) at the ends of image sequences,
and case (1) does not occur for a closed sequence like this.
Here we choose to not reject the most unreliable areas and
include the far background (case (2) of bad reliability).

4.4. 3D Model from Perspective Images
Figure 4 shows results of the method applied to 28 (816×

1088) images taken by a perspective camera with a lateral
motion. The focal length and radial distortion estimations
are f = 1234 and ρ = −0.073. Local and global models are
reconstructed as in the catadioptric case with σα = 0.00059
radian, β = 1.02 and R0 = 0.05. The global model has
129635 triangles. Table 1 provides an estimate of the 3D
noise for a few planes of the global models. The perspective
camera has smaller noise than the catadioptric camera.

5. Conclusions
This paper presents geometric tools and results for 3D

scene modeling using a generic camera model. First, virtual
uncertainty and reliability are extended for generic cameras
and compared with those of previous works. Second, these
tools are systematically applied in the 3D model generation:
fit and connect triangles in 3D, fill the holes due to matching
errors, set depth resolution for 2.5D mesh optimization, re-



Figure 3. Several views of 3D models obtained with the catadiop-
tric camera. Top and middle: views of two local models (3 con-
secutive poses) with rejection of unreliable triangles (R0 = 0.08),
except at the top left corner. Triangle orientations are also drawn
using gray levels. Bottom: top view and height map of the global
model (208 poses) with rejection (R0 = 0.05).

Figure 4. Left: two images (among 28) taken by the perspective
camera. Right: the global 3D model.

ject the most unreliable triangles, and view-point selection
to obtain a global model. Finally, 3D models of a scene are
obtained for both perspective and catadioptric cameras.

A problem should be solved to apply the method on non-
central camera naturally: the ray origin calculation for a
3D point expressed in the camera coordinate system. Fu-
ture works also include efficient matching methods in the
generic context.

Camera per. per. per. per. cat. cat. cat. cat
Vertex 208 74 153 139 78 71 405 157
Depth 188 246 358 524 212 283 319 358
RMS 0.23 0.37 0.55 0.74 0.92 0.98 1.77 1.21

Table 1. 3D noise for planar parts of global models. Each col-
umn provides information about a part: camera (perspective or
catadioptric), number of vertices, mean distance between vertex
and closest camera (cm), RMS of distances between vertex and
estimated plane (cm). Vertices are selected for a part if they are
projected in an ellipse of an image (white ellipses in Fig. 2 and 4).
Distance between two consecutive camera poses is about 30 cm.
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