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Abstract

Fully automatic methods are presented for the estimation of scene structure and
camera motion from an image sequence acquired by a catadioptric system. The first
contribution is the design of bundle adjustments for both central and non-central
models, by taking care of the smoothness of the minimized error functions. The
second contribution is an extensive experimental study for long sequences of cata-
dioptric images in a context useful for applications: a hand-held and equiangular
camera moving on the ground. An equiangular camera is non-central and provides
uniform resolution in the image radial direction. Many experiments dealing with ro-
bustness, accuracy, uncertainty, comparisons between both central and non-central
models, and piecewise planar 3D modeling are provided.
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Fig. 1. Two catadioptric systems obtained with a convex mirror in front of a per-
spective camera (with projection center O). Left: a central system (all extended
rays go through a single point F, called the center). Right: a non-central system.

1 Introduction

The automatic estimation of scene structure and camera motion from image
sequence acquired by a perspective camera (whether calibrated or not) taken
by hand has been a very active topic [11,6] during recent decades, and many
successful systems now exist [3,22,21,15]. This paper (an extended version
of [16]) focuses on this estimation using a catadioptric system/camera. Such
a system has a wide field of view thanks to a convex mirror mounted in front
of a perspective camera as shown in Figure 1. A catadioptric system may
be “central” if all back-projected rays go through a single point in 3D called
the “center”. An overview of the paper and comparisons with previous works
are given in Sections 1.1 and 1.2, respectively. Section 1.3 provides a brief
summary on the known desirable conditions for errors minimized by bundle
adjustments and discusses errors introduced in previous works.

1.1 Overview

First, central and non-central catadioptric camera models are described in
Section 2. The non-central model explicitly involves the ray reflection onto
the mirror surface, while the central model directly defines a mapping from
3D to 2D. These models require neither a conic as mirror profile nor the
perspective camera center at one of the conic focal points.

Second, Section 3 presents bundle adjustments for a catadioptric camera in a
general context: field of view greater than 180◦, scene with distant 3D points,
approximate calibration knowledge and image noise. Although bundle adjust-
ment is a well known iterative method, we spend some time in Sections 3.1
and 3.2 going over desirable smoothness conditions on the minimized errors
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to facilitate the convergence. These conditions are not fully satisfied by the
standard 2D reprojection error of a catadioptric camera. With this in mind, we
propose bundle adjustment methods minimizing 2D image errors (measured in
pixels) in Section 3.3 and angular errors (measured in radians) in Section 3.4.

Third, Section 4 describes the automatic estimation method. The geometry of
the image sequence is estimated for the central model. Then, a second estima-
tion using the non-central model is obtained. In both cases, an approximate
and given calibration is refined with the 3D.

Fourth, Section 5 presents an extensive experimental study in a context that
we expect to be representative (although not trivial) and useful for applica-
tions: a hand-held and equiangular catadioptric camera moving on the ground.
An equiangular camera is non-central and provides uniform resolution in the
image radial direction. We propose experiments about robustness, accuracy
and uncertainty estimation, performance comparisons between central and
non-central models, and piecewise planar 3D modeling from the reconstructed
points.

The two main contributions of this paper are the bundle adjustments with
image and angle errors in Section 3, and the experimental study in Section 5.

1.2 Comparisons with Previous Works

The most related work is that of Micusik and Pajdla [20]. It is a two step
method like ours: (1) estimate the sequence geometry using a central model
for the camera and (2) upgrade the sequence geometry using a non-central
model enforcing the mirror knowledge. The central model is similar to ours
and is more general than the Geyer-Daniilidis model [7] which requires a conic
as mirror profile and the perspective camera center at one of the conic focal
points. A general central model is more adequate to approximate a (general)
non-central catadioptric camera. The differences are the following. The non-
central model proposed in [20] is formalized from 2D to 3D since the authors
minimize a 3D error for bundle adjustment. Our 3D to 2D formalization is
more adequate for bundle adjustment minimizing a 2D image error (measured
in pixels). Comparisons between 3D and 2D errors are made in Section 1.3.
Furthermore, the work [20] emphasizes auto-calibration in a general context
for two views only. This is not our focus: we assume that an approximate
calibration is given and we emphasize (1) the definition of errors with high
smoothness to be minimized by multi-view bundle adjustment and (2) exten-
sive experiments on long sequences. From a technical viewpoint, we use the
7-point algorithm [11] to estimate fundamental matrix instead of the 9 and
15-point methods [20] involving polynomial eigenvalue problems. Both papers
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provide experiments with a non-central catadioptric camera: a (roughly) or-
thographic camera with a parabolic mirror [20], and a (roughly) equiangular
catadioptric camera in our case. The mirror profile of our equiangular camera
is not a conic.

A different problem [2] is the real-time pose estimation of a parabolic cata-
dioptric camera for planar motions in a room-size environment, using a few
known 3D beacons. The ideal model is central: a parabolic mirror in front of
an orthographic camera. The real model is non-central: a parabolic mirror in
front of a perspective camera. In this context, the pose accuracy is improved by
the non-central model. In our context, experiments show that the advantages
of the non-central model are not so convincing.

The geometry of a catadioptric sequence without accurate calibration has
been estimated in other works, but they involve two views and use central
camera models. Calibration and successive essential matrices are estimated for
a parabolic catadioptric camera from tracked points in the image sequence [13].
Calibration initialization is given by the approximate field of view angle. Other
work on the same sensor [8] introduces the parabolic fundamental matrix,
which defines a bilinear constraint between two matched points represented in
an adequate space, and shows that calibration and essential matrix recovery
are possible from this matrix.

1.3 Which Errors for Bundle Adjustment ?

Bundle adjustment (BA) is the standard process to obtain an accurate es-
timate of the geometry (all cameras and 3D points) by minimizing a sum of
squares of non-linear errors. A survey about bundle adjustment [26] (also refer
to [11,19]) describes the desiderata for these errors in detail.

First, errors should be smooth enough in order to facilitate the convergence of
BA. C2 continuity is recommended to reach quadratic final convergence using
the Levenberg-Marquardt method involved in BA [19,26]. This continuity in-
cludes the case of a 3D point at the infinity plane thanks to the homogeneous
coordinates [26]. It is easy to satisfy this condition for a conventional (per-
spective) camera, but it is not for a catadioptric camera. Indeed, the definition
of errors with high smoothness is not straightforward in our context since the
catadioptric projection function is always discontinuous at the infinite plane.

Second, errors should be well chosen in order to improve the geometry es-
timation in a statistical sense [26]. Minimized errors are usually noisy mea-
surements of physical quantities and are modeled by realizations of random
vectors. We obtain a Maximum Likelihood Estimation (MLE) of the geometry
with the common statistical model [11]: errors obey zero-mean isotropic Gaus-
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sian probability distributions which are independent and identical (outliers
are removed before the BA step). The minimization of 2D reprojection errors
has been used for many decades, whereas 3D error minimizations [12,17,20]
provide biased results as mentioned in [12,17]. The reason is the following:
the common Gaussian model is not tenable for 3D errors (distances between
back-projected rays and 3D reconstructed points) because the true probability
distribution of 3D error depends too much on the distance between cameras
and the point. However, the bias is limited in experiments [12,20] since 3D
points in indoor scenes have distances of the same magnitude order. More
details on the 3D error in papers [12,17,20] are given below.

The 3D error is used for the point estimation by intersection of rays [12]
(page 181). Let r(λk) = tk + λkvk be the parametrization of the kth ray with
tk and vk the starting point and normalized direction of the ray. The 3D
point p closest to all of the rays minimizes

∑

k ||ek||2 with the error ek =
p− (tk + λkvk). No iterative method is needed since a closed form expression
of p exists. The authors mention that they obtain a more “optimal” result
by minimizing

∑

k
1
λ2

k

||ek||2. They introduce the weights 1
λ2

k

and argue that

the uncertainty in point location grows linearly with λk. In other words, the
common Gaussian model above is more tenable for ek

λk
than ek. Furthermore,

we note that || ek

λk
|| = ||p−tk

λk
− vk|| at the solution is similar to a distance

between two close points onto the unit sphere: it is an angle between two
directions. Section 3.4 describes an angle error which is C2 continuous, even
at the infinite plane. The errors of [12] are discontinuous at the infinite plane.

The 3D error is used for the estimation of the camera pose [17]: find the pose
given many 3D points in the world coordinate system and the corresponding
ray directions in the camera coordinate system. The method is globally con-
vergent, but the authors mention and experiment that the pose solution more
heavily weights the points that are farther away from the camera.

Last, the 3D error is used for bundle adjustment with a non-central catadiop-
tric camera [20]. In this context, the 3D error is preferred to the 2D reprojec-
tion error which is more time consuming. The reason is that the catadioptric
projection function has no closed form for a general mirror. The bundle adjust-
ment is designed for two views only. The cost function

∑

j e2
j is minimized with

error ej = (t0
j − t1

j).
v0

j
×v1

j

||v0

j
×v1

j
||
. In this expression, the jth reconstructed point is

in the center of the shortest transversal of two back-projected rays defined by
(t0

j ,v
0
j ) and (t1

j ,v
1
j ) (ti

j and vi
j are the starting point and normalized direction

of the back-projected ray by the ith camera). We see that the point parame-
ters are eliminated. Drawbacks are the 2-view use, and the bias mentioned by
previous authors for point [12] and camera pose [17] estimations.
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Fig. 2. Left: two concentric circles of radii ri
up, r

i
down in the image. Right: an-

gles αup, αdown, α from the z-axis define the field of view for a point X by
αup ≤ α(X) ≤ αdown. The circle “up” (respectively, “down”) of rays on the right is
projected by the central model on the large (respectively, small) circle on the left.

2 Catadioptric Camera Models

Figure 5 shows a catadioptric camera we model: the image projection of the
scene is between a large circle and a small circle. Sections 2.1 and 2.2 present
the projection functions of the central and non-central camera models for a
finite 3D point, respectively. Section 2.3 introduces the definition of antipodal
projections. The case of a point in the infinite plane is detailed in Section 2.4.

2.1 Central Model

The central catadioptric model is defined by its orientation R (a rotation), the
center t ∈ <3 (< is the real numbers), both expressed in the world coordinate
system, and a projection function C from <3 to <2 defined below. If X is
the homogeneous world coordinates of a finite 3D point such that the last
coordinate is positive, the projection of X in the image is defined by

pc(X) = C(d), d = R
>[I3| − t]X. (1)

Vector d is the direction of the ray from t to X in the camera coordinate
system. The sign constraint for X is necessary to choose a ray (half line)
among the opposite rays defined by directions d and −d. Indeed, these two
rays are projected on two different points in the omnidirectional image if the
field of view is greater than 180◦.

The central model also has a symmetry around the z-axis of the camera co-
ordinate system: the omnidirectional image is between two concentric circles
of radii ri

up and ri
down, and C is such that there is a positive and decreasing
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function r such that

C(x, y, z) = r(α(x, y, z))
1√

x2 + y2

(

x
y

)

. (2)

Let α = α(x, y, z) = α(d) be the angle between the z-axis and the ray direction
d. The two angles αup and αdown which define the field of view are such that
αup ≤ α ≤ αdown and ri

down ≤ r(α) ≤ ri
up (see Figure 2). We assume that r

and pc are C2 continuous functions.

2.2 Non-Central Model

The non-central catadioptric model is defined by the orientation R (a rotation)
and the location t ∈ <3 of the mirror coordinate system, both expressed
in the world coordinate system, the intrinsic parameters Kp, orientation Rp

and location tp of the perspective camera expressed in the mirror coordinate
system, and the (known) mirror surface.

The mirror surface has a symmetry around the z-axis of the mirror coordinate
system. t is at the mirror apex. Let M+(A,B) be the function which gives the
reflection point on the mirror for the ray which goes across points A and B

(the mirror profile is such that there is at most one reflection point). Point A

is in the incident part and B is in the reflected part of the ray, or vice versa.
We have A,B, M+(A,B) ∈ <3, all expressed in the mirror coordinate system.
This function does not have a closed form, and its calculation from the mirror
surface is presented in Appendix D.

Let X be the homogeneous world coordinates of a finite 3D point and

π2((x y z )>) = ( x
z

y
z
)> , π3((x y z t )>) = ( x

t
y
t

z
t
)> . (3)

Since R
>(π3(X)− t) and KpR

>
p [I3|− tp] are respectively the X coordinates and

the perspective camera matrix in the mirror coordinate system, the projection
of X in the image is defined by

p+
nc(X) = π2(KpR

>
p (M+(tp, R

>(π3(X) − t)) − tp)). (4)

Figure 3 shows a cross section of the mirror and pinhole camera, the points
tp,X, p+

nc(X), M+(tp,X) with R = I3 and t = 0. Figure 3 also defines a kind
of antipodal mirror point M−(tp,X) for M+(tp,X) and its projection p−nc(X)
which will be useful later. Obviously, we have
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Fig. 3. The ray which goes across finite point X and pinhole camera center tp is
reflected on the mirror at point M+(tp,X), and projected by the pinhole camera to
p+

nc(X). We also define the point M−(tp,X) on the mirror, projected by the pinhole
camera to p−nc(X). The only difference between M−(tp,X) and M+(tp,X) is the
following: the reflected ray from M+(tp,X) (respectively, M−(tp,X)) towards X

is pointing outside (respectively, inside) the mirror. In general, X,M +(tp,X) and
M−(tp,X) are not collinear points.

p−nc(X) = π2(KpR
>
p (M−(tp, R

>(π3(X) − t)) − tp)). (5)

We note that the parametrization (Rp, tp, R) is not minimal because of the
mirror symmetry around the z-axis: the expressions of p+

nc(X) and p−nc(X) are
unchanged by replacing (Rp, tp, R) by (RzRp, Rztp, RR

>
z ) and applying the mirror

symmetry relations

RzM
+(A,B) = M+(RzA, RzB), RzM

−(A,B) = M−(RzA, RzB)

for any rotation Rz around the z-axis. Last, we assume in this paper that
the mirror profile is such that M+ and M− are C2 continuous functions. The
resulting p+

nc(X) and p−nc(X) are C2 continuous.

2.3 Antipodal Projections

The antipodal projections of X are defined by {pc(X), pc(−X)} in the central
case, and by {p+

nc(X), p−nc(X)} in the non-central case.

Assume that both antipodal projections exist. In the central case, the antipo-
dal projections are C(d) and C(−d) with d ∈ <3. They are separated by the
small circle. In the non-central case, Figure 3 shows that the small circle also
separate the two antipodal projections. In practice, the distance between the
two antipodal points is greater than the diameter of the small circle (hundreds
of pixels in the experiments).
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2.4 Catadioptric Cameras and the Infinite Plane

Let X∞ = ( x y z 0 )> be a point in the infinite plane. We consider the
finite point X(t) = ( x

t
y
t

z
t

1 )> such that t ∈ < converges to 0. The limit
of X(t) is the infinite point X∞ in the projective space, and two different
limits of pc(X(t)) or p+

nc(X(t)) are possible in the catadioptric image: one for
each sign of t. These limits (if they exist) define the projection(s) of X∞ by
the catadioptric camera.

The main subject of this part is to show that the limit of each antipodal
projection (defined in Section 2.3) of X(t) is a projection of X∞.

Obviously, the limits of the first antipodal projections

lim
{

t → 0
t > 0

pc(X(t)), lim
{

t → 0
t > 0

p+
nc(X(t))

are projections of X∞ for the central and non-central models, respectively.

In the central case, we introduce d(t) = R
>[I3|−t]X(t)

||R>[I3|−t]X(t)||
which verifies

pc(X(t) = C(d(t)), pc(−X(t) = C(−d(t)), lim
{

t → 0
t < 0

d(t) = − lim
{

t → 0
t > 0

d(t).

Thanks to the continuity of C onto the unit sphere,

lim
{

t → 0
t > 0

pc(−X(t)) = C(− lim
{

t → 0
t > 0

d(t)) = C( lim
{

t → 0
t < 0

d(t)) = lim
{

t → 0
t < 0

pc(X(t)).

Thus, the limit of the second antipodal projection (on the left) is the second
projection of X∞ (on the right).

In the non-central case, a proof sketch is given. Figure 4 is obtained from
Figure 3 for a finite point X = X(t) which converges to the right toward
X∞ with t > 0. The points M+(tp,X), p+

nc(X), M−(tp,X), p−nc(X) converge
to M+(tp,X

+
∞), p+

nc(X
+
∞), M−(tp,X

+
∞), p−nc(X

+
∞), respectively. We see in Fig-

ure 4 that the back projected ray of pixel p−
nc(X

+
∞) is reflected by the mirror

at M−(tp,X
+
∞) with the direction given by X∞ toward the left. Thus, the

limit p−nc(X
+
∞) of the second antipodal projection p−

nc(X(t)) is one of the two
projections of X∞. Furthermore, it is not p+

nc(X
+
∞), the first projection of X∞.
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Fig. 4. This figure is obtained if the finite point X of Figure 3 converges toward
the right to the infinite point X

+
∞. The two lines which go across M+(tp,X

+
∞) and

M−(tp,X
+
∞) have the same direction X

+
∞.

3 Bundle Adjustments for a Catadioptric Camera

Bundle adjustment [11] or BA is the standard process to obtain an accurate
estimate of the sequence geometry. It iteratively adjusts the parameters of all
cameras and all 3D points in order to minimize a cost function. This function
is a sum of squares of non-linear errors

E =
∑

i,j

||ei
j||2 (6)

with ei
j the error corresponding to the ith camera and the jth point. ||x||

is the Euclidean norm of a vector x. The standard 2D reprojection error is
ei

j = pi(Xj) − ui
j (measured in pixels), where pi is the projection function

by the ith camera, Xj is the jth 3D point in the world coordinate system,
and ui

j the point detected in the ith image which corresponds to the jth point.
Sections 3.1 and 3.2 describe smoothness conditions on ei

j. Then, we introduce
the image error in Section 3.3 and the angular error in Section 3.4.

3.1 Smoothness Conditions

The most commonly used minimization tool for geometry refinements is the
Levenberg-Marquardt method (LM), which combines the Gauss-Newton algo-
rithm and the descent of gradient [19]. Thus, a summary of LM is useful to
justify conditions on ei

j. LM requires a starting point and produces a series of
vectors which converges to a local minimizer of the cost function. This local
minimizer is the right one if the starting point is close enough. Let pn be the
current value of the geometry parameters. The quadratic Taylor expansion of
the cost function defined by Equation 6 is

E(pn + ∆) ≈ E(pn) + ∆>E
′

n +
1

2
∆>

E
′′

n∆

11



with E
′

n and E
′′

n the gradient and Hessian of E at pn. One LM iteration is
pn+1 = pn + ∆n where ∆n satisfies (E

′′

n + λnI)∆n = −E
′

n, and λn is a well
chosen parameter evolving during the convergence such that E(pn + ∆n) <
E(pn). I is the identity matrix (or a diagonal matrix obtained by the diagonal
coefficients of E

′′

n [23]). If λn is “small”, the LM behavior is Newton like: we
get quadratic convergence in the immediate neighborhood of the solution if
E is C2 continuous and E

′′

n is definite positive. Elsewhere, a gradient descent
like behavior is preferred with a “large” λn to guarantee a decreasing cost
function.

In practice, the Gauss-Newton approximation is always used for the Hessian
E

′′

n of least squares:

1

2

∂2(||ei
j||2)

∂p0∂p1
= ei

j

> ∂2ei
j

∂p0∂p1
+

∂ei
j

∂p0

>
∂ei

j

∂p1
≈ ∂ei

j

∂p0

>
∂ei

j

∂p1
(7)

where p0, p1 are any parameters of the geometry. This approximation is ac-

ceptable if ||ei
j|| is small and || ∂2ei

j

∂p0∂p1

|| is bounded.

This summary about LM gives many conditions for an ideal error. First, the
C1 continuity of ei

j is sufficient for the evaluation of ei
j Jacobian (Equation 7).

Second, the C2 continuity of ei
j is even better to reach the quadratic final

convergence, with the additional condition: ei
j = 0 if the ith camera and the

jth point are in exact agreement. Third, the Jacobians of ei
j should not all be

0 if ei
j = 0. Otherwise, the E

′′

n approximation by Equation 7 converges to zero
at the final convergence of LM and the quadratic convergence is lost.

3.2 3D Point Parametrization and Crossing the Infinite Plane

In this part, we spend some time explaining why we should also pay attention
to the parametrization of the 3D point Xj involved in ei

j in the neighborhood
of the infinite plane. The case of ei

j defined by the standard 2D reprojection
error is studied (a similar discussion on this topic is also given in [26]).

Assume that the Xj parametrization is (x, y, z). Points onto the infinite plane
are ignored by this parametrization, although they may have a projection
by the camera. Furthermore, major changes of x, y and z are needed to
modify ||ei

j|| if the 3D point Xj is distant from the ith camera. Now, the
affine parametrization (x, y, z) is replaced by the homogeneous projective
parametrization (x, y, z, t). This parametrization allows Xj to go across (and
onto) the infinite plane with small variations of t and x, y, z. After a crossing
of the infinite plane (if the sign of t changes during an LM iteration), a point
in front of the camera goes behind the camera and vice versa. A crossing of the
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infinite plane is just a kind of “faster way” to connect two distant 3D points
of a camera. We note that ei

j for a perspective camera is C2 continuous with
the 3D point parametrization (x, y, z, t), even if Xj is in the infinite plane.

As mentioned in [26], such a crossing of the infinite plane by a point is some-
times necessary for the bundle adjustment convergence due to noise or ap-
proximate calibration. An approximate calibration or noise may reconstruct
many distant points (by ray intersection) behind the camera although they
should be in front of it, and the only way to escape from this configuration
using an LM iteration may be by crossing the infinite plane. Furthermore,
such transitory configurations help with LM convergence.

Now, we focus on the case of any catadioptric camera with ei
j defined by the

standard 2D reprojection error and the parametrization (x, y, z, t). This was
not done in [26]. A 3D point in the infinite plane is also visible, and it may
have two projections by the camera if the field of view is greater than 180◦.
In this case, Section 2.4 shows that the catadioptric projection functions pc

and p+
nc are not continuous at the infinite plane since two different limits are

obtained. Thus, ei
j is not a continuous function at the infinite plane (if t = 0).

This error is not ideal since we do not have the C2 continuity for the crossing
of the infinite plane. Even worse, the C0 discontinuity of ei

j is very great
since the two projection limits (if t converge to 0) are two antipodal points
separated by the small circle of the catadioptric image. If Xj goes from the
right side (where ||ei

j|| is less than 2 pixels in practice) to the wrong side of the
infinite plane, the resulting increase of ||ei

j|| may reach hundreds of pixels due
to the great distance between antipodal projections (Section 2.3). Although
useful for bundle adjustment convergence in our context, such plane crossings
are difficult for an LM iteration which should decrease the cost function E
(Section 3.1).

We see that infinite plane problems cannot be ignored for error ei
j in our

context: catadioptric cameras with fields of view greater than 180◦, scenes
with distant 3D points, approximate calibration knowledge and image noise.
In particular, point parametrization (x, y, z) is not sufficient and the use of the
standard 2D reprojection error is not straightforward for bundle adjustment.
A condition for an ideal error is C2 continuity with 3D point parametrization
(x, y, z, t), even at the infinite plane.

3.3 Image Error

This part presents an image error based on the standard 2D reprojection error
of a catadioptric camera. We aim to improve the smoothness of this error for
the crossing of the infinite plane (Section 3.2).
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Let Xj be the four homogeneous coordinates of the (finite) j th point in the
world coordinates. If the model is central, we define

ei+
j = pi

c(Xj) − ui
j, ei−

j = pi
c(−Xj) − ui

j (8)

where pi
c(.) and pi

c(−.) are the antipodal projection functions of the ith camera
(defined by Equations 1 and 2). If the model is non-central, we define

ei+
j = pi+

nc(Xj) − ui
j, ei−

j = pi−
nc(Xj) − ui

j (9)

where pi+
nc and pi−

nc are the antipodal projection functions of the ith camera
(defined by Equations 4 and 5).

At first glance, the error function ei
j might be defined by the standard 2D

reprojection error: ei
j = ei+

j . However, this function is discontinuous at the
infinite plane (Section 3.2). We propose

ei
j =

{

ei+
j , if ||ei+

j || < ||ei−
j || or if ei−

j is not defined

ei−
j , if ||ei−

j || < ||ei+
j || or if ei+

j is not defined
(10)

and see that ||ei
j|| = min(||ei+

j ||, ||ei−
j ||) if both ei+

j and ei−
j are defined.

First, we show that ||ei+
j || = ||ei−

j || is very improbable in practice during the

minimization of Equation 6. This would imply values of ||ei
j|| = ||ei+

j || = ||ei−
j ||

greater than the radius of the small circle due to the large distance between
two antipodal projections (Section 2.3). However, all initial ||ei

j|| are small
(less than 2 pixels) and the bundle adjustment attempts to decrease all ||ei

j||
simultaneously by minimizing their sum of squares.

Second, we show that ei
j is C2 continuous at finite point Xj. If ||ei+

j || <

||ei−
j || at Xj, this inequality still holds in a neighborhood of Xj thanks to the

continuity of the antipodal functions. Thus, ei
j = ei+

j in this neighborhood
thanks to Equation 10. We see that ei

j is C2 continuous at the finite point Xj

just like pi+
nc and pi

c. The proof is similar if ||ei−
j || < ||ei+

j || at Xj.

Third, we show that ei
j is C0 continuous at infinite point X∞. Let Xj be

a finite point which converges to X∞. Section 2.4 shows that the antipodal
projections of Xj converge to the projections u+

∞ and u−
∞ of X∞ in the ith

image. If both antipodal projections exist, ei+
j and ei−

j converge to u+
∞ − ui

j

and u−
∞ − ui

j. Thus, ei
j converges to the vector among u+

∞ − ui
j and u−

∞ − ui
j

which has the smallest modulus (Equation 10): ei
j is continuous at X∞. If

only one antipodal projection exists and converges to u∞, the corresponding
error ei+

j (or ei−
j ) converges to u∞ −ui

j and the other error ei−
j (or ei+

j ) is not
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defined. Thus, ei
j is defined by ei+

j (or ei−
j ) and converges to u∞ − ui

j: ei
j is

continuous at X∞. If no antipodal projection exists, ei
j is not defined at X∞.

Last, we show that ei
j is the standard 2D reprojection error ei+

j if Xj is finite
and is on the right side of the ith mirror during minimization (i.e. if Xj has not
crossed the infinite plane). In this case, ||ei+

j || is small and the large distance

between antipodal projections provides a large ||ei−
j ||. Thus, ei

j = ei+
j .

3.4 Angular Error

We also introduce an angular error for a catadioptric camera: error ei
j is such

that ||ei
j|| is the angle between two rays. The first one is a back-projected ray

obtained by the camera calibration applied to ui
j. The second one is a ray

corresponding to the reprojection by the ith camera of the jth point. Let di
j

and Di
j be the directions of the first and second ray, respectively.

If the model is central, the two rays start from the camera center ti of the ith

camera. Let Ri be its rotation matrix, and Xj the homogeneous coordinate of
the jth point (ti, Ri,Xj are in the world coordinate system). The definitions of
di

j and Di
j are straightforward in the camera coordinate system:

di
j =

C−1(ui
j)

||C−1(ui
j)||

, Di
j =

R
i>[I3| − ti]Xj

||Ri>[I3| − ti]Xj||
. (11)

If the model is non-central, si
j,n

i
j and ai

j are introduced. Point si
j is the in-

tersection of the mirror surface and the back-projected ray by the perspective
camera of ui

j. We also define ni
j as the mirror normal at si

j and ai
j as the

direction of the back-projected ray (pointing outside the mirror). In this non-
central context, we redefine R

i as the orientation and ti as the origin of the
ith mirror coordinate system in the world coordinate system. The first ray is
a half line starting from si

j with the direction di
j defined by the reflection law.

Both si
j and di

j are expressed in the ith mirror coordinates, and are fixed by
ui

j and all parameters of the perspective camera. The second ray is the half
line starting from si

j towards Xj. The expressions of di
j and Di

j are easy given
si
j,n

i
j, a

i
j and X t

j the fourth homogeneous coordinate of the j th point:

di
j =

2(ni
j
>
ai

j)n
i
j − ai

j

||2(ni
j
>
ai

j)n
i
j − ai

j||
, Di

j =
R

i>[I3| − ti]Xj − X t
js

i
j

||Ri>[I3| − ti]Xj − X t
js

i
j||

. (12)

Now, the main subject in this part is the choice of function ei
j with the C2
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continuity (Section 3.1) even if Xj is at the infinite plane (Section 3.2). At
first glance, we might choose the 1D error ei

j = arccos(di
j.D

i
j). Unfortunately,

Appendix E shows that this function is not C1 continuous if ei
j = 0. This C1

discontinuity at the exact solution complicates the convergence in practice. A
second try might be ei

j = f(di
j.D

i
j) with f a decreasing C2 continuous function

such that f(1) = 0, if we accept that ei
j is not an angle. The resulting ei

j is
C2 continuous and ei

j ≥ 0. We deduce that ei
j has a local extrema if ei

j = 0:
the Jacobian of ei

j is zero here. The convergence rate of LM is reduced in this
context (Section 3.1).

Our final ei
j proposition does not have these problems and is defined by

ei
j = π2(R

i
jD

i
j) with R

i
j a rotation such that Ri

jd
i
j =







0
0
1





 . (13)

Projection π2 was defined in Equations 3. Since ||π2(x, y, z)|| =
√

x2+y2

z2 is the

tangent of the angle between ( 0 0 1 )> and ( x y z )>, we see that

||ei
j||2 = tan2(αi

j) with αi
j = angle(di

j,D
i
j).

This result is independent of the choice of R
i
j. The resulting cost function

E (defined in Equation 6) is a sum of squared tangents of angles between
rays. Error ei

j is well defined (i.e. angle(di
j,D

i
j) 6= π

2
[π]) and E is a good

approximation of the sum of the squared angles in our context since these
angles are small in practice. Furthermore,

ei
j = π2(R

i
jR

i>[I3| − ti − R
isi

j]Xj) (14)

since the projection π2 cancels the scale of Di
j defined in Equations 11 and 12

(si
j = 0 in the central case). We recognize a projection by a perspective camera

such that the orientation and center are parametrized. So, ei
j inherits all high

smoothness properties of the perspective camera: ei
j is C2 continuous even if

Xj is in the infinite plane. This smoothness is obvious if the calibration is not
refined by the BA. If it is refined by BA, we should assume that the mirror
profile is such that di

j (and si
j in the non-central case) are C2 continuous.
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4 Overview of the Automatic Method

Now, the automatic Structure from Motion method is described for both
catadioptric camera models using bundle adjustments (BA) proposed in Sec-
tions 3.3 and 3.4. First, the geometry of the image sequence is estimated for
the central model. Then, a second estimation using the non-central model is
obtained. In both cases, an approximate and given calibration is refined with
the 3D. Many technical details (useful for possible re-implementers) about
matching and initialization steps are also given in the Appendix.

4.1 Assumptions for Calibration Initializations

The following assumption is required: a surface-of-revolution mirror, whose
lower and upper circular cross sections are visible, is placed in front of a
natural perspective camera (zero skew, aspect ratio set to 1). Furthermore,
the perspective camera must point towards the mirror and the perspective
center is in the immediate neighborhood of the mirror symmetry axis.

In this context, the projections of the two mirror circular cross sections are
approximated by two circles in images. The central model only requires the
knowledge of these two circles and the radially symmetric approximation.
The non-central model only requires the knowledge of the mirror profile. The
assumptions above are needed for the calibration initialization steps in Sec-
tions 4.2 and 4.5. These steps are not the main subjects of this paper, and
more general methods are available if we assume that the projections of the
two mirror circular cross sections are general ellipses (e.g. [20] in the central
case and [27] in the non-central case).

4.2 Central Calibration Initialization

First, the large and small circles in each catadioptric image are detected and
estimated using RANSAC and Levenberg-Marquardt methods applied on the
vertices of regularly polygonized contours. Then, the central calibration C
(Equation 2) is initialized as follows. We define r(α) by the linear function such
that r(αup) = ri

up and r(αdown) = ri
down. The image circle radii ri

down, ri
up are

obtained in the circle estimation step, and the field of view angles αdown, αup

are given by the mirror manufacturer. These angles are not exactly known
since they depend on the relative position between the mirror and the pinhole
camera.
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4.3 Central Reconstruction Initialization

Harris points are detected and matched for each pair of consecutive images
in the sequence using correlation without any epipolar constraint. The corre-
sponding ray directions are also obtained from the central calibration initial-
ization. Then, the essential matrices for these pairs are estimated by RANSAC
(using the 7 point algorithm [11]) and refined by Levenberg-Marquardt. 3D
points are also reconstructed for each pair. Many of these points are tracked
in three images, and they are used to initialize the relative 3D scale between
two consecutive image pairs. Now, points in 3 views are reconstructed and we
obtain the reconstruction of each triple of consecutive images. More details
about these matching and estimation steps are given in Appendix A and B.

Last, the full sequence geometry is obtained by many BAs applied in a hierar-
chical framework to merge all partial geometries [11]. Once the geometries of
the two camera sub-sequences 1 · · · n

2
, n

2
+ 1 and n

2
, n

2
+ 1, · · ·n are estimated,

the latter is mapped in the coordinate system of the former thanks to the two
common cameras n

2
, n

2
+ 1, and the resulting sequence 1 · · ·n is refined by a

BA. The angular error (Equations 11 and 13) is preferred for these BAs since
we found its convergence more robust in practice. A final BA with image error
(Equations 8 and 10) is applied to the full sequence to obtain a MLE with the
common Gaussian model in images (Section 1.3).

4.4 Central Reconstruction and Calibration Refinements

Once the full central geometry is obtained for the approximate (linear) func-
tion r(α) defined above, r(α) is redefined as a cubic polynomial whose the
4 coefficients should be estimated. We assume that the central calibration is
constant and apply an additional BA using image error (Equations 8 and 10)
to estimate the 4 + 6c + 3p parameters of the sequence (c is the number of
cameras, p is the number of 3D points).

4.5 Non-Central Calibration Initialization

The parameters Kp, Rp and tp of the perspective camera (Section 2.2) are ini-
tialized from the detected large and small circles. These circles are the images
of the known mirror circular cross sections with radii rup and rdown in z-plane
z = zup and z = zdown, respectively. From Section 4.1, we have Rp ≈ I3,

tp = (−xp −yp −zp )> where max(|xp|, |yp|) � zp, and Kp is the 3 × 3
diagonal matrix with focal length fp.
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First, an approximate value of zp is obtained by measuring the distance be-
tween the mirror and the perspective camera. Second, fp is estimated assuming
xp = yp = 0 by the Thales relation ri

up/fp = rup/(zp+zup). Third, Rp and xp, yp

are estimated by projecting the circular cross section centers. More details are
given in Appendix C.

4.6 Non-Central Reconstruction Initialization

The reconstruction with the non-central model is initialized from the recon-
struction with the central model. A first possibility is the approximation of
each non-central camera by a central camera such that the center is the mir-
ror apex: the ith mirror coordinate system is defined by the pose (ti, Ri) of
the ith central camera, and the jth 3D point Xj is retained as such. The 3D
scale factor of the scene, in fact, is not a free parameter as in the central
case since the non-central image projections are dependent on it. We choose
the initial 3D scale factor by multiplying ti and Xj by λ ∈ < such that
d = 1

c−1

∑c−1
i=1 ||λti − λti−1|| is physically plausible. The value of d is obtained

by an estimate of the step length between two consecutive images.

Then, a BA is applied to refine the 6c + 3p parameters of the non-central
reconstruction. We found that the angular error (Equations 12 and 13) is bet-
ter than the image error (Equations 9 and 10) to start parameter refinement:
the convergence is more robust and one LM iteration is about 3 times faster.
Last, we finish parameter refinement by applying a BA with the image error
to obtain a MLE of the geometry with the common Gaussian model in images
(Section 1.3).

4.7 Non-Central Reconstruction and Calibration Refinements

Once the full non-central geometry is obtained from the method above, addi-
tional parameters among Kp, Rp and tp are selected to be refined. We assume
that tp and fp are constant during the camera motion in the scene, but the
orientation Rp is perturbed around I3 (slight rotations of the perspective cam-
era are possible around a screw). Thanks to the mirror symmetry around the
z-axis (Section 2.2), Rp has only two parameters θx and θy: Rp = Rx(θx)Ry(θy)
with rotations Rx and Ry around x and y-axis of the mirror coordinate system.
The number of additional parameters is k = 1 + 3 + 2c. Finally, an additional
BA with image error (Equations 9 and 10) is applied to refine the k + 6c + 3p
parameters of the sequence.
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Fig. 5. Left: the 360 One VR (Kaidan) mirror with the Coolpix 8700 (Nikon) camera,
mounted on a monopod. Middle: the view field is 360◦ in the horizontal plane and
about 50◦ above and below if the camera is pointing toward the sky. Right: the
profile of the mirror caustic for zp = 48 cm and xp = yp = 0.

5 Experiments

After the description of the experimental context in Section 5.1, specific results
are given for the central model in Section 5.2 and for the non-central model in
Section 5.3. Both models are compared with many criteria including accuracy
and uncertainty in Section 5.4. Section 5.5 compares reconstructions obtained
by minimizing angular and image errors. A piecewise planar 3D model and
some technical details are also given in Sections 5.6 and 5.7.

5.1 Experimental Context

The user moves along a trajectory on the ground with the omnidirectional
system mounted on a monopod, alternating a step forward and a shot. We
use a cheap system designed for panoramic picture generation and image-
based rendering from a single view point, given a single shot of the scene (see
Figure 5). The mirror is not a quadric and has a known profile (Equation 17)
such that we have an approximately uniform resolution in the image radial
direction (r(α) of Equation 2 is linear). Such a catadioptric camera/system is
called an “equiangular” camera, it is not a central camera, and the size of the
caustic profile [9] is about half the size of the mirror profile (right of Figure 5).
The symmetry axes of camera and mirror are not exactly the same, since the
axes alignment is manually adjusted and visually checked.

5.2 Central Model

Panoramic images obtained from one image of the tested sequences are shown
in Figure 6. Top views of resulting reconstructions by methods described in
Sections 4.2, and 4.3 are shown in Figure 7 and 11. These results are obtained
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Fig. 6. Panoramic images obtained from one omnidirectional image of sequences
Fountain, House, and Road. They are given to help understand the scenes, but they
are not used by the methods.

Fig. 7. Top views of Fountain (38 views, 5857 points) and House (112 views, 15504
points) central reconstructions. The Road (54 views, 10178 points) reconstruction
is shown in Figure 11. Several of these points are difficult to reconstruct accurately
if they are distant or roughly aligned with the cameras from which they are recon-
structed. These results are similar for central (with linear and cubic r(α) functions)
and non-central models.
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Fig. 8. Epipolar curves for images of two estimated pair-wise central geometries of
the Fountain sequence, and true camera motion indicated by the black arrows. The
geometry estimation is obviously incorrect on the right since the epipoles do not
agree with the true camera motion (they do on the left). Such blunders are corrected
by the three view calculations.

with a linear calibration function r(α) defined by the field of view angles
αup = 40◦, αdown = 140◦ given by the mirror manufacturer.

5.2.1 Fountain

The Fountain sequence is composed of 38 images of a background city and a
close-up fountain at the center of a traffic circle. We have found that about
50% of recovered essential matrices are obviously incorrect for this sequence,
since the epipoles are roughly orthogonal to the camera motion as shown
in Figure 8. However, the 3-view calculations remove all blunders of 2-view
calculations thanks to the 3-view selection of 3D points (Appendix B) and
angular bundle adjustment with inlier update (Section 5.7). The recovered
camera motion is smooth and circular around the fountain. This result is
consistent with our knowledge of the true camera motion.

Both unclosed and closed versions of this sequence are reconstructed. The
unclosed version is obtained by duplication at the sequence end of the first
image, and is useful since it provides information about the pose accuracy by
measuring the gap between both sequence ends (this gap is significant of the
drift of the unclosed reconstruction process). The distance ||t0 − t38|| between
both sequence ends is 0.01 times the trajectory diameter, and the angle of the
relative orientation R

38(R0)
−1

is 0.63◦. The closed version is considered in the
rest of the paper (including Figures and Tables).

5.2.2 Road and House

The Road sequence is composed of 54 images taken along a little road on
flat ground. The background includes buildings, parking and fir trees. All
recovered essential matrices seem to be correct according to the positions of
the epipoles. The House sequence is composed of 112 images taken in a cosy
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Fig. 9. From left to right: many initial α(r), and the resulting refined α(r) for the
Fountain, Road and House sequences, respectively. Function α(r) is the reciprocal
function of the radial function r(α) involved in the central calibration (Equation 2).
The ranges are always [ri

down, ri
up]× [0, π]. The r-distribution of inlier matches {m}

is also given by histogram for each sequence, at the bottom.

house, starting in the living room, crossing the lobby, having a loop in the
kitchen, re-crossing the lobby and entering a bedroom.

5.2.3 Robustness to the given Field of View Angles

This section shows the robustness of the central reconstruction methods to
linear calibration function r(α) defined by rough values of αup and αdown (Sec-
tion 4.2). This is useful in practice, since the field of view angles are sometimes
unknown or inaccurate (they depend on the relative position between the mir-
ror and the pinhole camera). We also experiment the r(α) refinement.

The experiments are summarized in Figure 9. For each r(α) initialization de-
fined by (αup, αdown) ∈ {(40, 140), (20, 160), (60, 120), (20, 120), (60, 120)}, the
central methods are applied. The reconstruction initialization (Section 4.3)
fails twice for the Fountain with these large inaccuracies of ±20◦. No failure
occurs for the easier case ±10◦. The last step is the simultaneous reconstruc-
tion and calibration refinements (Section 4.4). Function r(α) is redefined as a
cubic polynomial and is estimated using bundle adjustment: the four polyno-
mial coefficients are new unknowns, and the set of inliers is updated four times
during the minimization. The recovered r(α) are shown on the right of Fig-
ure 9 for each initial (αup, αdown) and each of the 3 sequences. The exact r(α)
does not exist since the catadioptric camera is non-central: it depends on the
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depth of points. It is also dependent on the settings of the perspective camera
which are slightly different for the 3 sequences. However, we assume that the
expected results are near the linear r(α) defined by the manufacturer angles.
With this in mind, we see that the calibration improvement is significant. Fur-
thermore, the r(α) refinements are stable since the calibration curves are very
similar for each sequence, except in the neighborhood of the small circle (radius
ri
down) for the Fountain images. This default is probably due to the high lack of

image matches that we observed near the small circle in the whole sequence.
The means of recovered (αup, αdown) are (46◦, 149◦), (44◦, 139◦), (45◦, 144◦) for
Fountain, Road and House. These angles are slightly greater than the given
manufacturer angles (40◦, 140◦).

5.3 Non-Central Model

Non-central methods are also applied to enforce the mirror knowledge in the
geometry estimation (the mirror profile is defined by Equation 17). Calibration
and reconstruction are initialized thanks to estimates of zp and the 3D scale
factor of the scene as mentioned in Section 4.5 and Section 4.6, respectively.
The largest zp available with the monopod is chosen to increase the depth of
field and obtain the entire mirror in sharp focus with the perspective camera.
We measure zp = 48 cm between the mirror and the camera. The approxi-
mate trajectory lengths of Fountain, Road, and House sequences are 16, 42
and 22 meters, respectively. The non-central reconstructions are qualitatively
similar to the central ones in Figures 7 and 11. The experiments show that
the refinements of calibration and 3D scale are difficult in our context. The
reasons are given in Section 5.3.1 for the calibration and in Section 5.3.2 for
the 3D scale factor.

5.3.1 Calibration Refinements

As mentioned in Section 4.7, there are 1+3+2c parameters of the perspective
camera to be refined: one focal length fp, one center tp = (−xp −yp −zp )>

and many rotations Rp = Rx(θx)Ry(θy). Obviously, these parameters are added
to the 6c + 3p parameters of the 3D in the bundle adjustment.

We note that the mirror size (radius 3.7 cm and axis length 3.5 cm) is
small in comparison with the distance between the pinhole center and mir-
ror (zp = 48 cm). In this context, small perturbations of θx, θy and fp are
almost compensated by certain perturbations of tp to remain the non-central
unchanged projection of a 3D point. More precisely, we have a rotation-
translation ambiguity [1]: it is difficult to refine Rp and the x-y components
of tp simultaneously. Also, we have ambiguity between zoom and translation
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small scale scene (rt = 25 cm) large scale scene (rt = 2.5 m)

sinit 0.5 .707 1 1.41 2 0.5 .707 1 1.41 2

srefined .950 .956 .990 .993 .995 .653 .812 .908 1.19 1.69

RMS .983 .974 .971 .970 .969 .967 .967 .967 .969 .970

Table 1
The ground truth reconstructions are perturbed by initial homothety sinit and image
Gaussian noise of σ = 1 pixel. For each sinit, a homothety srefined is estimated
by non-central bundle adjustment. Homothety srefined is the ratio between the
recovered scale factor and its true value (the ideal result is srefined = 1). The small
scale scene has the best values of srefined.

along the focal axis [4]: it is difficult to simultaneously refine fp and the com-
ponent of tp along the third column of Rp. Obviously, these ambiguities are
inherent to the estimation problem (a different method will not remove them).

In the experiments, convergence is slow and the final fp, tp, Rp values are sim-
ilar to their initial values. The ambiguities are confirmed by high correlation
coefficients for our sequences (obtained from the covariance matrix of the
estimated parameters [26]): we always have |σfp,zp

| ≥ 0.999, and |σθx,yp
| ≥

0.8, |σθy,xp
| ≥ 0.8 in the majority of cases.

5.3.2 3D Scale factor Estimation

Refinement of the 3D scale factor of the scene by bundle adjustment is theoret-
ically possible using a non-central catadioptric system, since the non-central
image projection changes with the scale factor. However, experiments on our
image sequences show that the scales recovered by the non-central reconstruc-
tion initialization and refinement (Sections 4.6 and 4.7) are similar to their
initial values. The reason is the following: a scale change of the scene (including
the mirror trajectory) does not lead to significant changes to the projections
of any 3D point distant enough from the mirrors.

The following synthetic experiment shows that it is more difficult to estimate
the 3D scale factor for large scale scenes than small scale scenes. Two ground
truth reconstructions are defined by half turn of a Fountain-like scene with
trajectory radius rt, mirror orientations R

i perturbed around I3, 20 camera
poses and 1000 points well distributed in 3D and 2D spaces. The only 3D
difference between both reconstructions is the 3D scale of the scene points
and the mirror trajectory defined by rt = 2.5 m and rt = 25 cm. The per-
spective parameters Kp, Rp, tp are the same and the (exact) image projections
are different. First, image projections are corrupted by a Gaussian noise of
σ = 1 pixel, and all mirror locations ti and points Xj are multiplied by an
initial factor sinit. Second, the bundle adjustments of Section 4.6 are applied

25



Calib. initial central initial non-central refined central refined non-central

Criteria #3D,#2D,RMS #3D,#2D,RMS #3D,#2D,RMS #3D,#2D,RMS

Fountain 5857,31028,0.84 6221,33262,0.78 5953,32214,0.77 6223,33876,0.76

Road 10178,50225,0.87 11312,56862,0.82 10814,55297,0.77 11313,57148,0.79

House 15504,75100,0.83 16432,80169,0.78 15800,77883,0.76 16447,80311,0.76

d.o.f. 6c + 3p − 7 6c + 3p − 6 4 + 6c + 3p − 7 4 + 8c + 3p − 6

Table 2
The RMS in pixels, the numbers of 3D reconstructed and 2D detected points (inliers)
for four reconstructions: central reconstructions with initial and refined calibrations,
non-central reconstructions with initial and refined calibrations. The degree of free-
dom (d.o.f.) depends on the numbers c and p of cameras and 3D points.

to these perturbed reconstructions enforcing the exact perspective parameters
(zp = 48 cm) and taking into account the outliers. Table 1 shows for many
values of sinit the resulting RMS (pixels) and ratio srefined between the re-
covered scale factor and its exact value. We note that the RMS has no clear
minimum for the large scale scene with rt = 2.5 m, and that the scale factor
estimations are best for the small scale scene with rt = 25 cm.

In practice, we have abandoned attemps to estimate the 3D scale factor accu-
rately: the measure of distance between two scene points or camera centers is
too difficult with this catadioptric system and usual scenes.

5.4 Performance Comparisons Between Central and Non-Central Models

Quantitative comparisons between real 3D reconstructions using the central
and non-central models are given.

5.4.1 Consistency

Table 2 shows consistencies between many reconstructions and the multi-view
matching for the sequences Fountain, Road and House. There are four recon-
structions: central reconstructions with initial (Section 4.3) and refined (Sec-
tion 4.4) calibrations, non-central reconstructions with initial (Section 4.6)
and refined (Section 4.7) calibrations. The consistency criteria are the RMS,
the numbers of 3D and 2D points which are consistent (3D reconstructed and
2D detected points Xj and ui

j are consistent if the standard 2D reprojection
error ||ei

j|| is less than 2 pixels). The non-central reconstructions have the best
consistencies: improvements about 5% (sometimes 12% for the Road) are ob-
tained for the numbers of 3D and 2D points, with slightly slower RMS. We
also see that the consistency improvements by calibration refinement are non
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Fig. 10. A panoramic image from the “controlled” sequence.

negligible for the central model. They are negligible for the non-central model.

5.4.2 Difference

Two reconstructions ”a” and ”b” are compared as follows. The camera location
difference and 3D point difference are respectively

E
(a,b)
t =

√

√

√

√

1

I

∑

i

||S(ti
b) − ti

a||2, E(a,b)
x =

√

√

√

√

1

J

∑

j

||S(Xb
j) − Xa

j ||2

||ti(j)
a − Xa

j ||2
(15)

with S the similarity transformation minimizing E
(a,b)
t , I the number of cam-

eras, J the number of 3D points, and i(j) the index of the closest ti
a to the

jth point Xa
j . ti

a is the apex of the ith mirror in the non-central case and the
ith camera center in the central case.

The 3D differences between central (ti
c,X

c
j) and non-central (ti

nc,X
nc
j ) recon-

structions are the followings. We obtain E
(nc,c)
t = 0.79 cm, E(nc,c)

x = 0.027

for the Fountain (respectively, E
(nc,c)
t = 2.6 cm, E(nc,c)

x = 0.017 and E
(nc,c)
t =

2.75 cm, E(nc,c)
x = 0.054 for the Road and House).

5.4.3 Pose accuracy

A real sequence (Figure 10) is taken in an indoor controlled environment: the
motion of the catadioptric system is measured on a rail, in a 7m × 5m × 3m
room. The trajectory is a 1 meter long straight line by translation, with 6
equidistant and aligned poses. The location errors are E

(g,c)
t and E

(g,nc)
t with

ti
g the location ground truth and E

(.,.)
t defined in Equations 15. We obtain

E
(g,c)
t = 1.1 mm and E

(g,nc)
t = 1.2 mm for the central and non-central models,

respectively. Both models provides similar and good accuracies for the location
estimation in this context. The angle Er = maxi,j{arccos( 1

2
(trace(Ri(Rj)

−1
) −

1))} is our orientation error since the ground truth of R
i is unknown and

maintained constant. The results are Ec
r = 0.5◦ and Enc

r = 0.35◦.
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Length Gauge constraints uc u
0/4
p u

1/4
p u

2/4
p u

3/4
p u

4/4
p

Fountain 16 m fixed R0, t0, t14
x 1.02 22 50.7 102 230 27e+4

Road 42 m fixed R0, t0, t53
x 4.60 4.37 7.00 23.1 130 44e+4

House 22 m fixed R0, t0, t111
x 7.62 5.17 7.27 12.2 26.7 11e+3

Table 3
Right: the camera center and 3D point uncertainties (cm) for central reconstruc-
tions. Left: the lengths (m) of the trajectories and the gauge constraints. The un-
certainties are the length of the major semi-axis of the uncertainty ellipsoids for the

probability 90%. u
0/4
p , u

1/4
p , u

2/4
p , u

3/4
p , u

4/4
p are respectively the rank 0/4 (smallest),

rank 1/4, rank 2/4 (median), rank 3/4 and rank 4/4 (largest) semi-axis lengths for
the 3D points. uc is the largest semi-axis length for the cameras.

Fig. 11. Top view of the Road central reconstruction (54 views, 10178 points) and
the uncertainty ellipsoids of Table 3. Ellipsoids are very long for 3D points which
are distant or roughly aligned with the cameras from which they are reconstructed.

5.4.4 Uncertainty

When ground truth is not available, informations about the reconstruction
quality are provided by the uncertainty (covariance matrix) estimation of the
geometry parameters [11,26]. This estimation requires the common Gaussian
model (Section 1.3) for the image error minimized by bundle adjustment.

A trivial camera-based gauge constraints is chosen to obtain minimal param-
eterizations [26]. Since the central reconstruction is defined up to a similarity
transformation (7 d.o.f.), we choose the constraints R

0 = I3, t
0 = 0 and one

fixed coordinate of ti0. The resulting uncertainties for 3D points and camera
centers are given in Table 3 (also refer to Figure 11 for the Road sequence). In
the non-central case, only R

0 = I3, t
0 = 0 should be sufficient since the global

scale of the scene is fixed by the mirror size. In practice, we found that the
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medians of the resulting non-central uncertainties are 3-26 greater than the
medians of the central uncertainties. The reason is given in Section 5.3.2: the
3D scale factor of the scene cannot be estimated accurately.

5.5 Angular vs. Image Error

The minimization of angle errors (Section 3.4) may appear to be a heuristic
choice. It is shown in this part that the results are not so different to those ob-
tained with the more standard minimization of image errors (Section 3.3). We
use the ground truth reconstructions introduced in Section 5.3.2 and corrupt
the image projections by a Gaussian noise of σ = 1 pixel. Then, we compare
the reconstructions (ti

A,XA
j ) and (ti

I,X
I
j) obtained by a BA minimizing an-

gular and image errors, respectively with the ground truth (ti
g,X

g
j). The BAs

are initialized by the noisy ground truth reconstruction, the calibration and
inliers are maintained to be the same, and the reconstruction comparisons are
done with the measures defined by Equations 15.

The results are E
(g,A)
t = 0.29 cm, E(g,A)

x = 0.027, E
(g,I)
t = 0.28 cm and E(g,I)

x =
0.027 for the non-central and large scale reconstruction of Section 5.3.2. They
are similar with the central model and/or the small scale reconstruction.

5.6 Piecewise Planar 3D Modeling

For each planar piece of the targeted 3D model, we choose a catadioptric image
of the sequence and define the contour of the piece manually. Then, we select
reconstructed points by their projections in the delimited region and estimate
the support plane from these points by minimizing a sum of (squared) point-
to-plane distances. The Mahalanobis point-to-plane distance [24] is preferred
to the Euclidean distance to favor the points with the least uncertainties. In
this context, independent point covariances are useful in order to obtain a
Maximum Likelihood Estimation of the plane. So these covariances are esti-
mated by inverting each Hessian of the independent ray intersection problems.

A piecewise planar model of the House is shown in Figure 12. It is not diffi-
cult to guess where the living-room, the kitchen, the lobby, and the bedroom
are. 36 planes are estimated from the non-central reconstruction. Plane accu-
racy depends on the number of 3D points selected (between 7 and 178), their
accuracies, uncertainties, and distributions in images.
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Fig. 12. A piecewise planar model of the House.

5.7 Some Technical Details

Computation times for 1632 × 1224-images with a P4 2.8GHz/800MHz are
about 10 seconds for each single image calculation (points and edge detections,
circles), 20 seconds for each image pair calculation (matching by quasi-dense
propagation [14], essential matrix estimation) for each sequence, and 5 minutes
for the hierarchical reconstruction step applied to the House sequence (total
time: 1 hour). About 700-1100 point matches satisfy the epipolar constraint
between two consecutive images.

An image point is considered as an outlier for all angular (respectively, image)
bundle adjustments if the corresponding error is greater than 0.04 radians
(respectively, 2 pixels). The sets of inliers and outliers are updated one time
during each bundle adjustment. Accuracy increases when new inliers are dis-
covered and involved in the score to minimize. Furthermore, inliers which
becomes outliers after the first round of bundle adjustment are ignored in the
second round to gain robustness. Usual and final RMS are about 0.005-0.006

radians (respectively, 0.7-0.8 pixels) with RMS=
√

E/(#2D). Function E is

defined by Equation 6 and #2D is the number of ei
j involved in E.

All bundle adjustments are implemented using fully analytical derivatives,
except the image error in the non-central case which requires an iterative
method for M+ and M− calculations (more details in Appendix D). One
bundle adjustment iteration for the final refinement of the House takes about
1.6 seconds using the non-central image error (7 seconds are also required for
M+ and M− initialization before all optimizations), and about 0.6 seconds for
others bundle adjustments.
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6 Conclusion

The methods described in this paper provide an automatic, robust and opti-
mal estimation of the scene structure and camera motion for image sequences
acquired by a catadioptric camera. First, we propose bundle adjustments min-
imizing angle and image errors, by taking care of the targeted smoothness
conditions for good convergence. The image error provides a Maximum Like-
lihood Estimate of the sequence geometry for the common Gaussian model
in images, and its smoothness is improved in the infinite plane. The angle
error has the ideal smoothness (C2 continuity, even at the infinite plane). The
second contribution is an extensive experimental study in a context that we
expect representative and useful for applications: a hand-held and equiangular
catadioptric camera moving on the ground. Many experiments are presented
about robustness (including the initialization robustness to the given field of
view angles), accuracy and uncertainty estimations, performance comparisons
between central and non-central models, and piecewise planar 3D modeling
from the reconstructed points. The central model provides good approxima-
tion of the (real) non-central model. On the other hand, the 3D scale factor is
difficult to estimate with the non-central model. The only demonstrated im-
provement by the non-central model is obtained for the consistency between
matching and geometry. We also discuss calibration refinements for both cen-
tral and non-central models. Last, the 3D reconstruction system is described
as a whole.

Future works include applications (image-based modeling and rendering, ve-
hicle localization ...), matching improvements, and camera calibration by en-
forcing constraints on the 3D scene (especially for the non-central case which
has rarely been discussed until now).

Appendix A. Two-View Matching

The usual matching procedure of interest points using correlation cannot be
directly applied to the omnidirectional images for two reasons: (1) the match-
ing ambiguity due to the repetitive textures in one image and (2) the geometric
distortions between matched patches of two images taken from different view
points. Previously published matching methods deal only with one of these
problems (e.g. relaxation [28] is used for repetitive textures, regions [18] or ap-
propriate correlation windows [25] for geometric distortions in omnidirectional
images).

In the context of the usual camera motions (roughly, translation motions with
the pinhole camera pointing toward the sky), we observe that a high pro-
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portion of the distortions is compensated for by image rotation around the
circle center. The Harris point detector [10] is used because it is invariant
to such rotations and it has good detection stability. We also compensate
for the rotation in the neighborhood of the detected points before comparing
the luminance neighborhood of two points using the ZNCC score (Zero Mean
Normalized Cross Correlation). To avoid incorrect matching due to repeti-
tive textures, the following procedure is applied. First, the points of interest
of an image are matched to other points of interest in the same image. The
result is a “reduced” list of points which are not similar to others according
to ZNCC in their corresponding search area. Second, the points of the re-
duced lists of two different images are matched applying the same correlation
score, search areas and thresholds. Now the matching errors due to repetitive
textures have been greatly reduced, but the current list of matches is very
incomplete. Third, this list has been completed thanks to a quasi-dense match
propagation [14]: the majority of image pixels are progressively matched using
a 2D-disparity gradient limit and the uniqueness constraint, and two interest
points roughly satisfying the resulting correspondence mapping between both
images are added to the list. The window sizes and lower bound thresholds for
ZNCC are the same as in [14]. The resulting list of matched interest points is
used in the epipolar geometry estimation step (described in Appendix B).

Appendix B. Two-View and Three-View Central Initialization

More details are given on the geometry initialization described in Section 4.3.
Let d0

j and d1
j be the ray directions (normalized vectors) obtained by the

central calibration applied to the jth pair of matched points in images 0 and 1.
First, a fundamental matrix F is obtained with the 7-point algorithm [11] : (1)
each pair (d0

j ,d
1
j) provides a normalized linear equation for the 9 parameters

of F, (2) F = F1 + λF2 where F1, F2 are two solutions of a 7 × 9 linear system
and (3) F is obtained by solving a cubic polynomial equation in λ to enforce
the constraint det(F) = 0. Second, an essential matrix E is obtained from F by
forcing the two largest singular values of F to be the same by SVD [11]. Third,
we count the number of pairs (d0

j ,d
1
j) such that the angle between d1

j and the

normal
Ed0

j

||Ed0

j
||

of the epipolar plane of d0
j is equal to π

2
up to a threshold t0. This

process is repeated many times by the RANSAC method, and the E with the
largest number of pairs is retained. The E refinement by Levenberg-Marquardt
is straightforward: we use the parametrization E(t, R) = [t]×R and minimize

a Longuet-Higgins criterion [5] defined by LH(t, R) =
∑

j(d
1
j .

E(t,R)d0

j

||E(t,R)d0

j
||
)2. The

last step of the two-view geometry initialization is the reconstruction of each
point Xj by minimizing the function Xj → ||e0

j ||2 + ||e1
j ||2 with ei

j defined by
Equations 11 and 13.
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Fig. 13. Left: useful notations for non-central calibration initialization assuming
xp = yp = 0. Right: tp is located in a circle in the plane [z = −zp] given zp and
the angle between directions from tp toward the centers of large and small border
circles.

Once the geometries of image pairs (0, 1) and (1, 2) are estimated with the
method above, we know the central poses (t0, R0), (t1, R1) and (λt2, R2) of the
geometry of the image triple (0, 1, 2) up to the relative 3D scale λ ∈ < with
t1 = 0. The 1 point RANSAC below is used to estimate λ. For each Xj

detected in image triple (0, 1, 2) and reconstructed from image pair (0, 1), λj

is estimated by minimizing the angular error in image 2 defined by E2
j (λ) =

||π2(R
2
jR

2>[I3| −λt2]Xj)||. This error is derived from Equation 14 with si
j = 0.

Then, we choose the λj with the greatest number of points Xj′ such that
E2

j′(λj) is less than a threshold t1.

The point Xj is retained in the geometry of the image triple (0, 1, 2) if it
is detected in images 0, 1 and 2 (2 views are not enough for robustness).
Furthermore, Xj is reconstructed by minimizing the angular cost function
Xj → ||e0

j ||2 + ||e1
j ||2 + ||e2

j ||2 and it should satisfy max(||e0
j ||, ||e1

j ||, ||e2
j ||) ≤ t2

with t2 a threshold. Last, a bundle adjustment with angular error (Equa-
tions 11 and 13) is used to refine the complete geometry of the image triple.
Only one angular threshold t0 = t1 = t2 = 0.04 (radians) is used in practice.

Appendix C. Non-Central Calibration Initialization

More details on the calibration initialization described in Section 4.5 are given
in this Appendix. We estimate Kp = diag(fp, fp, 1), tp = (−xp −yp −zp )>

and Rp in the mirror coordinate system. First, an approximate value of zp is
obtained by measuring the distance between the mirror apex and the perspec-
tive camera. Second, fp is estimated assuming xp = yp = 0 by the Thales
relation ri

up/fp = rup/(zp + zup) (left of Figure 13).

Let ci
up and ci

down be the projections by the perspective camera of the centers of
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the two mirror circular cross sections. Thanks to the hypotheses (Section 4.1),
ci

up and ci
down are approximated by the known centers of the detected large and

small circles. Since the angle between directions pointing toward the centers
of mirror border circles is that between vectors K−1

p ci
up and K

−1
p ci

down, we know
the radius rt of the circle in the plane [z = −zp] where tp is located (right
of Figure 13). Any tp in this circle is possible by the over-parametrization
(Rp, tp, R) of the non-central model (Section 2.2).

Now, Rp and xp, yp are estimated by projecting the circular cross section cen-
ters:

λu







xp

yp

zp + zup





 = Rp

(

ci
up

fp

)

, λd







xp

yp

zp + zdown





 = Rp

(

ci
down

fp

)

. (16)

These equations and the hypothesis Rp ≈ I3 imply

λu ≈ fp

zup + zp

<
fp

zdown + zp

≈ λd, ci
up − ci

down ≈ (λu − λd)
(

xp

yp

)

.

Since any ( xp yp )> is possible in the circle x2
p + y2

p = r2
t , we can choose

( xp yp )> = rt

||ci
up−ci

down
||
(ci

down − ci
up) thanks to the hypothesis Rp ≈ I3. Last,

Rp is estimated from Equations 16

Appendix D. Estimation and Derivation of M+(A,B)

The bundle adjustment with the non-central image error (Equations 9 and 10)
requires efficient estimation and differentiation of M+(A,B). This function
gives the reflection point on the mirror surface for the ray which goes across
points A and B. Once these computations are done at (tp,X) with pinhole
center tp and scene point X (in the mirror coordinate system), all derivatives
of the projection p+

nc(X) (Equation 4) are analytical according to the Chain
Rule. Calculations are very similar for M−(A,B) and p−nc(X) (Equation 5).

The mirror surface is defined by the cylindric parameterization

f(r, θ) = ( r cos(θ) r sin(θ) z(r) )>

with the mirror profile

z(r) = 0.0287r + 0.218r2 − 0.0156r3 + 0.00537r4, 0 ≤ r ≤ 3.7 cm. (17)
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Given A,B ∈ <3, (r, θ) is estimated such that f(r, θ) is the reflection point
M+(A,B) onto the mirror surface. Thus we have

n(r, θ) ∧ (
f(r, θ) − A

||f(r, θ) − A|| +
f(r, θ) − B

||f(r, θ) − B||) = 0

by the reflection law, with n(r, θ) the mirror normal at point f(r, θ). Only
2 among these 3 equations are independent: (r, θ) is estimated such that
g(r, θ,A,B) = 0 where

g(r, θ,A,B) =
(

0 1 0
1 0 z′(r)

)

Rz(−θ)(
f(r, θ) − A

||f(r, θ) − A|| +
f(r, θ) − B

||f(r, θ) − B||)

and Rz(−θ) is the rotation of angle −θ around the mirror z-axis.

We obtain (r, θ) using the Gauss-Newton method by minimizing ||g||2. The
Implicit Function Theorem is also applied to g and provides locally a C1-
function which maps (A,B) to (r, θ) and its derivation

(

dAr dBr
dAθ dBθ

)

= −(d(r,θ)g)−1d(A,B)g

using the notation dXY for the Jacobian of function which maps X to Y.
The value and derivatives of M+(A,B) = f(r, θ) are deduced by function
composition and Chain Rule.

We note that all derivative calculations for one image error (Equation 4) are
essentially analytical, since the “numerical part” is greatly reduced to a single
2D Gauss-Newton method.

Appendix E. Against the Exact Angular Error

This appendix shows that the exact angular error

ei
j = arccos(di

j.D
i
j), Di

j =
R

i>[I3| − ti]Xj − si
jX

t
j

||Ri>[I3| − ti]Xj − si
jX

t
j ||

is not C1 continuous when ei
j = 0. Without loss of generality, the space coor-

dinate system is changed such that di
j = ( 0 0 1 )>, and we write

Di
j =

1
√

x2(α) + y2(α) + z2(α)







x(α)
y(α)
z(α)
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with x(α), y(α), z(α) three real C1 continuous functions with parameter α
such that ( x(0) y(0) z(0) ) = ( 0 0 1 ). Now, we show that the limit of
∂ei

j

∂α
is not well defined if α converges to 0.

The Chain Rule provides

∂ei
j

∂α
= arccos′(di

j.D
i
j)

∂

∂α
(di

j.D
i
j) with arccos′(u) =

−1√
1 − u2

if |u| < 1.

Using shortened notations x, y, z for x(α), y(α), z(α), we have

∂ei
j

∂α
=

−1

x2 + y2 + z2
(
∂z

∂α

√

x2 + y2 − z√
x2 + y2

(x
∂x

∂α
+ y

∂y

∂α
)).

Since (x(α) y(α) z(α) ) ≈ ( ∂x
∂α

(0)α ∂y
∂α

(0)α 1 ), we obtain

∂ei
j

∂α
≈ α

|α|

√

(
∂x

∂α
)2(0) + (

∂y

∂α
)2(0).

Two
∂ei

j

∂α
limits are obtained: one for each possible α sign.
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