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Image-based Street-side City Modeling

Jianxiong Xiao Tian Fang Peng Zhao Maxime Lhuillier∗ Long Quan

The Hong Kong University of Science and Technology ∗LASMEA - Université Blaise Pascal

Figure 1: Two close-ups of the parts 1 and 2 of a modeled city area shown in the first two rows. All the models are automatically generated
from input images, exemplified by the bottom row. The close-up of the part 3 is shown in Figure 15.

Abstract

We propose an automatic approach to generate street-side 3D
photo-realistic models from images captured along the streets at
ground level. We first develop a multi-view semantic segmentation
method that recognizes and segments each image at pixel level into
semantically meaningful areas, each labeled with a specific object
class, such as building, sky, ground, vegetation and car. A partition
scheme is then introduced to separate buildings into independent
blocks using the major line structures of the scene. Finally, for
each block, we propose an inverse patch-based orthographic com-
position and structure analysis method for façade modeling that ef-
ficiently regularizes the noisy and missing reconstructed 3D data.
Our system has the distinct advantage of producing visually com-
pelling results by imposing strong priors of building regularity. We
demonstrate the fully automatic system on a typical city example to
validate our methodology.

Keywords: Image-based modeling, street view, street-side, build-
ing modeling, façade modeling, city modeling, 3D reconstruction.

1 Introduction

Current models of cities are often obtained from aerial images as
demonstrated by Google Earth and Microsoft Virtual Earth 3D plat-
forms. However, these methods using aerial images cannot produce
photo-realistic models at ground level. As a transition solution,
Google Street-View, Microsoft Live Street-Side and the like display
the captured 2D panorama-like images with fixed view-points. Ob-
viously, it is insufficient for applications that require true 3D photo-
realistic models to enable user interactions with 3D environment.
Researchers have proposed many methods to generate 3D mod-
els from images. Unfortunately, the interactive methods [Debevec
et al. 1996; Müller et al. 2007; Xiao et al. 2008; Sinha et al. 2008]
typically require significant user interactions, which cannot be eas-
ily deployed in large-scale modeling tasks; the automatic methods
[Pollefeys et al. 2008; Cornelis et al. 2008; Werner and Zisserman
2002] focused on the early stages of the modeling pipeline, and
have not yet been able to produce regular mesh for buildings.

1.1 Related work

There is a large literature on image-based city modeling. We review
several studies according to the input images and the user interac-
tion without being exhaustive.

Single-view methods. Oh et al. [2001] presented an interactive
system to create models from a single image by manually assigning
the depth based on a painting metaphor. Müller et al. [2007] relied
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Figure 2: Overview of our automatic street-side modeling approach.

on repetitive patterns to discover façade structures, and obtained
depth from manual input. Generally, these methods need intensive
user interactions to produce visual pleasing results. Hoiem et al.
[2005] proposed surface layout estimation for modeling. Saxena et
al. [2009] learned the mapping information between image features
and depth directly. Barinova et al. [2008] made used of manhattan
structure for man-made building to divide the model fitting problem
into chain graph inference. However, these approaches can only
produce a rough shape for modeling objects without lots of details.

Interactive multi-view methods. Façade, developed by Debevec
et al. [1996], is a seminal work in this category. They used line seg-
ment features in images and polyhedral blocks as 3D primitives to
interactively register images and to reconstruct blocks with view-
dependent texture mapping. However, the required manual selec-
tion of features and correspondences in different views is tedious,
which makes it difficult to be scaled up when the number of images
grows. Van den Hengel et al. [2007] used a sketching approach in
one or more images to model a general object. But it is difficult to
use this approach for detail modeling even with intensive interac-
tion. Xiao et al. [2008] proposed to approximate orthographic im-
age by fronto-parallel reference image for each façade during auto-
matic detail reconstruction and interactive user refinement. There-
fore, their approach requires an accurate initialization and boundary
for each façade as input, probably manually specified by the user.
Sinha et al. [2008] used registered multiple views and extracted the
major directions by vanishing points. The significant user interac-
tions required by these two methods for good results make them
difficult to adopt in large-scale city modeling applications.

Automatic multi-view methods. Dick et al. [2004] developed
a 3D modeling architectural modeling method for short image se-
quences. The user is required to provide intensive architectural
rules for the Bayesian inference. Many researchers realized the
importance of line features in man-made scenes. Werner and Zis-
serman [2002] used line segments for building reconstruction from
registered images by sparse points. Schindler et al. [2006] pro-
posed the use of line features for both structure from motion and
modeling. However, line features tend to be sparse and geometri-
cally less stable than points. In our work, reconstructed 3D lines are
used to partition a reconstructed sequences into independent build-
ing blocks which will be individually modeled and to align building
blocks regularly. A more systematic approach to modeling urban
environments using video cameras has been investigated by sev-
eral teams [Pollefeys et al. 2008; Cornelis et al. 2008]. They have
been very successful in developing real-time video registration and
focused on the global reconstruction of dense stereo results from
the registered images. Our approach does not try to obtain dense
stereo reconstruction, but focuses on the identification and model-
ing of buildings from the semi-dense reconstructions. Finally, the
work by Zebedin et al. [2006] is representative of city modeling
from aerial images, which is complementary to our approach from
street-level images.

1.2 Overview

We propose in this paper an automatic approach to reconstruct 3D
models of buildings and façades from street-side images. The im-
age sequence is reconstructed using a structure from motion algo-
rithm to produce a set of semi-dense points and camera poses.

Approach From the reconstructed sequence of the input images,
there are three major stages during city modeling. First, in Sec-
tion 3, each input image is segmented per pixel by a supervised
learning method into semantically meaningful regions labeled as
building, sky, ground, vegetation and car. The classified pixels are
then optimized across multiple registered views to produce a co-
herent semantic segmentation. Then, in Section 4, the whole se-
quence is partitioned into building blocks that can be modeled in-
dependently. The coordinate frame is further aligned with the major
orthogonal directions of each block. Finally, in Section 5, we pro-
pose an inverse orthographic composition and shape-based analysis
method that efficiently regularizes the missing and noisy 3D data
with strong architectural priors.

Interdependency Each step can provide very helpful informa-
tion for later steps. The semantic segmentation in Section 3 can
help the removal of line segments that are out of recognized build-
ing regions in Section 4. And it can identify the occluding regions
of the façade by filtering out non-building 3D points for inverse
orthographic depth and texture composition in Section 5.1. After
the semantic segmentation results are mapped from the input im-
age space to the orthographic space in Section 5.2, they are the
most important cues for boundary regularization, especially the up-
per boundary optimization in Section 5.4. When the model is pro-
duced, the texture re-fetching from input images in Section 6.2 can
also use the segmented regions to filter out occluding objects. On
the other hand, the block partition in Section 4 provides us a way to
divide the data into block level for further process, and also gives
accuracy boundaries for the façades.

Assumption For the city and input images, our approach only as-
sume that building facades have two major directions, vertical and
horizontal, which are true for most buildings except some special
landmarks. We utilize generic features from bank filters to train a
recognizer from examples and optimized in multi-view to recog-
nize sky regions without blue sky assumption. The final boundary
between the sky and the buildings is robustly regularized by opti-
mization. Buildings may be attached together or separated for a
long distance, as the semantic segmentation can indicate the pres-
ence and absence of buildings. It is unnecessary to assume that
buildings are perpendicular to the ground plane in our approach,
as buildings are automatically aligned to the reconstructed vertical
line direction.

Contribution Our approach contributes to the state-of-the-art in
the following ways. The first is a supervised multi-view semantic
segmentation that recognizes and segments each input street-side



Figure 3: Preprocessing. Reconstructed 3D points and vertical
lines (red).

image into areas according to different object classes of interest.
The second is a systematic partition scheme to separate buildings
into independent blocks using the major man-made line structures
of the scene. The third is a façade structure analysis and modeling
method to produce visually pleasing building models automatically.
The last is a robust automatic system assembled from all these reli-
able components.

2 Preprocessing

The street-side images are captured by a camera mounted on a mov-
ing vehicle along the street and facing the building façades. The ve-
hicle is equipped with GPS/INS (Inertial Navigation System) that
is calibrated with the camera system.

Points The structure from motion for a sequence of images is
now standard [Hartley and Zisserman 2004]. We use a semi-dense
structure from motion [Lhuillier and Quan 2005] in our current
implementation to automatically compute semi-dense point clouds
and camera positions. The advantage of the quasi-dense approach
is that it provides a sufficient density of points that are globally and
optimally triangulated in a bundle-like approach. The availability of
pose data from GPS/INS per view further improves the robustness
of structure from motion and facilitates the large-scale modeling
task. In the remainder of the paper, we assume that a reconstructed
sequence is a set of semi-dense reconstructed 3D points and a set
of input images with registered camera poses.

Lines Canny edge detection [Canny 1986] is performed on each
image, and connected edge points are linked together to form line
segments. We then identify two groups of the line segments: ver-
tical line segments and horizontal ones. The grouping [Sinha et al.
2008] is carried out by checking whether they go through the com-
mon vanishing point using a RANSAC method. Since we have a
semi-dense point matching information between each pair of im-
ages from the previous computation of SFM, the matching of the
detected line segments can be obtained. The pair-wise matching of
line segments is then extended to the whole sequence. As the cam-
era is moving laterally on the ground, it is difficult to reconstruct the
horizontal lines in 3D space due to lack of the horizontal parallax.
Therefore, we only reconstruct vertical lines which can be tracked
over more than three views. Finally, we keep the 3D vertical lines
whose directions are consistent with each other inside RANSAC
framework, and remove other outlier vertical lines.

3 Building segmentation

For a reconstructed sequence of images, we are interested in recog-
nizing and segmenting the building regions from all images. First,
in Section 3.1, we train discriminative classifiers to learn the map-
ping from features to object class. Then, in Section 3.2, multiple
view information is used to improve the segmentation accuracy and

consistency.

3.1 Supervised class recognition

We first train a pixel-level classifier from a labeled image database
to recognize and distinguish five object classes, including building,
sky, ground, vegetation and car.

Feature To characterize the image feature, we use textons which
have been proved to be effective in categorizing materials and gen-
eral object classes [Winn et al. 2005]. A 17-dimensional filter-bank,
including 3 Gaussians, 4 Laplacian of Gaussians (LoG) and 4 first
order derivatives of Gaussians, is used to compute the response on
both training and testing images at pixel level. The textons are
then obtained from the centroids by K-means clustering on the re-
sponses of the filter-bank. Since the nearby images in the testing
sequence are very similar, to save computation time and memory
space, we do not run the texton clustering over the whole sequence.
We currently pick up only one out of six images for obtaining the
clustered textons. After the textons are identified, the texture-layout
descriptor [Shotton et al. 2009] is adopted to extract the features for
classifier training, because it has been proved to be successful in
recognizing and segmenting images of general classes. The each
dimension of the descriptor corresponds a pair [r, t] of an image
region r and a texton t. The region r relative to a given pixel loca-
tion is a rectangle chosen at random within a rectangular window
of ±100 pixels. The response v[r,t] (i) at the pixel location i is the
proportion of pixels under regions r + i that have the texton t, i.e.
v[r,t] (i) =

P
j∈(r+i) [Tj = t] /size(r).

Classifier We employ the Joint Boost algorithm [Torralba et al.
2007; Shotton et al. 2009], which iteratively selects discriminative
texture-layout filters as weak learners, and combines them into a
strong classifier of the form H (l, i) =

P
m hm

i (l). Each weak
learner hi (l) is a decision stump based on the response v[r,t] (i) of
the form

hi (l) =

(
a

ˆ
v[r,t] (i) > θ

˜
+ b l ∈ C

kl l /∈ C .

For those classes that share the feature l ∈ C, the weak learner
gives hi (l) ∈ {a+ b, b} depending on the comparison of feature
response to a threshold θ. For classes not sharing the feature l /∈ C,
the constant kl makes sure that unequal numbers of training exam-
ples of each class do not adversely affect the learning procedure.
We use sub-sampling and random feature selection techniques for
the iterative boosting [Shotton et al. 2009]. The estimated confi-
dence value can be reinterpreted as a probability distribution using
softmax transformation:

Pg (l, i) =
exp (H (l, i))P
k exp (H (l, k))

.

For performance and speed, the classifier will not be trained from
the full labeled data that might be huge. We choose a subset of la-
beled images that are closest to the given testing sequence to train
the classifier, in order to guarantee the learning of reliable and trans-
ferable knowledge. We use the gist descriptor [Oliva and Torralba
2006] to characterize the distance between an input image and a la-
beled image, because the descriptor has been shown to work well
for retrieving images of similar scenes in semantics, structure, and
geo-locations. We create a gist descriptor for each image with 4 by
4 spatial resolution where each bin contains the average response
to steerable filters in 4 scales with 8,8,4 and 4 orientations respec-
tively in that image region. After the distances between the labeled
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Figure 4: Recognition and segmentation. (a) One input image. (b)
The over-segmented patches. (c) The recognition per pixel. (d) The
segmentation.

images and input images of the testing sequence are computed, we
then choose the 20 closest labeled images from the database as the
training data for the sequence by nearest neighbor classification.

Location prior A camera is usually kept approximately straight
in capturing. It is therefore possible to learn the approximate loca-
tion priors of each object class. In a street-side image, for example,
the sky always appears in the upper part of the image, the ground
in the lower part, and the buildings in-between. Thus, we can use
the labeled data to compute the accumulated frequencies of differ-
ent object classes Pl (l, i). Moreover, the camera moves laterally
along the street in the capturing of street-side images. A pixel at
the same height in the image space should have the same chance of
belonging to the same class. With this observation, we only need
to accumulate the frequencies in the vertical direction of the image
space.

3.2 Multi-view semantic segmentation

The per-pixel recognition produces a semantic segmentation of
each input image. But the segmentation is noisy and needs to be op-
timized in a coherent manner for the entire reconstructed sequence.
Since the testing sequence has been reconstructed by SFM, we uti-
lize the point matching information among multiple views to im-
pose segmentation consistency.

Graph topology Each image Ii is first over-segmented using the
method by [Felzenszwalb and Huttenlocher 2004]. Then we build
a graph Gi = 〈Vi, Ei〉 on the over-segmentation patches for each
image. Each vertex v ∈ Vi in the graph is an image patch or a
super-pixel in the over-segmentation, while the edges Ei denote the
neighboring relationships between super-pixels. Then, the graphs
{Gi} from multiple images in the same sequence are merged into
a large graph G by adding edges between two super-pixels in cor-
respondence but from different images. The super-pixels pi and pj

in images Ii and Ij are in correspondence, if and only if there is
at least one feature track t = 〈(xu, yu, i) , (xv, yv, j) , . . . 〉 with
projection (xu, yu) lying inside the super-pixel pi in image Ii, and
(xv, yv) inside pj in Ij . To limit the graph size, there is at most
only one edge eij between any super-pixel pi and pj in the final
graph G = 〈V, E〉, which is shown in Figure 5.

Adaptive features For object segmentation with fine boundaries,
we prefer to use color cues to characterize the local appearance.
In our model, the color distribution of all pixels in the image is
approximated by a mixture model ofmGaussians in the color space
with mean uk and covariance Σk. At the beginning, all pixel colors
in all images of the same sequence are taken as input data points,
and K-means is used to initialize a mixture of 512 Gaussians in
RGB space. Let γkl denote the probability that the k-th Gaussian

Figure 5: Graph topology for multi-view semantic segmentation.

belongs to class l. The probability of vertex pi having label l is

Pa (l, i) =
mX

k=1

γklN (ci|uk,Σk) .

To compute γ, the probability Pg (l, i) is used solely in a greedy
way to obtain an initial segmentation {li} as shown in Figure 4(c).
This initial segmentation {li} is then used to train a Maximal Like-
lihood estimate for γ from

γkl ∝
X
pi∈V

[li = k] p (ci|uk,Σk)

under the constraint
P

k γkl = 1. Now, combining the costs from
both the local adaptive feature and the global feature, we define the
data cost as

ψi (li) = − logPa (l, i)− λl logPl (l, i)− λg logPg (l, i) .

Smoothing terms For an edge eij ∈ Ek in the same image Ik,
the smoothness cost is

ψij (li, lj) = [li �= lj ] · g (i, j)

with g (i, j) = 1/(ζ ‖ci − cj‖2 +1), where ‖ci − cj‖2 is the L2-
Norm of the RGB color difference of two super-pixels pi and pj .
Note that [li �= lj ] allows capturing the gradient information only
along the segmentation boundary. In other words, ψij is penalizing
the assignment to the different labels of the adjacent nodes.

For an edge eij ∈ E across two images, the smoothness cost is

ψij (li, lj) = [li �= lj ] · λ |T| g (i, j) ,

where T = {t = 〈(xu, yu, i) , (xv, yv, j) , . . . 〉} is the set of all
feature tracks with projection (xu, yu) inside the super-pixel pi in
image Ii, and (xv, yv) inside pj in Ij . This definition favors two
super-pixels having more matching tracks to have the same label,
as the cost of having different labels is higher when |T| is larger.

Optimization With the constructed graph G = 〈V, E〉, the label-
ing problem is to assign a unique label li to each node pi ∈ V . The
solution L = {li} can be obtained by minimizing the Gibbs energy
[Geman and Geman 1984]:

E (L) =
X
pi∈V

ψi (li) + ρ
X

eij∈E
ψij (li, lj) .

Since the cost terms we defined satisfy the metric requirement,
Graph Cut alpha expansion [Boykov et al. 2001] is used to obtain
a local optimized label configuration L within a constant factor of
the global minimum.



Figure 6: Building block partition. Different blocks are shown by
different colors.

4 Block partition

The reconstructed sequence needs to be partitioned into indepen-
dent building blocks for each block to be individually modeled.
However, the definition of building block is not unique, in that a
block may contain a fraction or any number of physical buildings as
long as they share a common dominant plane. As an urban scene is
characterized by plenty of man-made structures of vertical and hor-
izontal lines, we use the vertical lines to partition the sequence into
blocks because they are stable and distinct separators for our pur-
pose. Moreover, a local alignment process is used to place building
blocks regularly. Such local alignment makes the analysis and im-
plementation of the model reconstruction algorithm more straight-
forward.

4.1 Global vertical alignment

We first remove the line segments that are projected out of the seg-
mented building regions from the previous section. From all the
remaining vertical line segments, we compute the global vertical
direction of gravity by taking the median direction of all recon-
structed 3D vertical lines, found during the preprocessing stage in
Section 2. Then, we align the y-axis of coordinate system for the
reconstructed sequence with the estimated vertical direction.

4.2 Block separator

To separate the entire scene into natural building blocks, we find
that the vertical lines are an important cue as a block separator, but
there are too many vertical lines that tend to yield an over-partition.
Therefore, we need to choose a subset of vertical lines as the block
separators using the following heuristics.

Intersection A vertical line segment is a block separator if its ex-
tended line does not meet any horizontal line segments within the
same façade. This heuristic is only true if the façade is flat. We
compute a score for each vertical line segment L by accumulating
the number of intersections with all horizontal line segments in each
image N (L) = 1

m

Pm
k=1 Γk where Γk is the number of intersec-

tions in the k-th image and m is the number of correspondences of
the line L in the sequence.

Height A vertical line is a potential block separator if its left block
and right block have different heights. We calculate the height for
its left and right blocks as follows: (1) In every image where the
vertical line is visible, we fit two line segments to the upper and
lower boundary of the corresponding building region respectively.
(2) A height is estimated as the Euclidean distance of the mid-points
of these two best-fit line segments. (3) The height of a block is taken
as the median of all its estimated heights in corresponding images.

Texture Two buildings often have different textures, so a good
block separator is the one that gives very different texture distri-
butions for its left and right blocks. For each block, we build an
average color histogram h0 from multiple views. To make use of

Algorithm 1 Inverse Orthographic Patching

1: for each image Ik visible to the façade do
2: for each super pixel pi ∈ Ik do
3: if normal direction of pi parallel with z-axis then
4: for each pixel (x, y) in the bounding box do
5: X← (x, y, zi)

T � zi is the depth of pi

6: compute projection (u, v) of X to Camera i
7: if super pixel index of (u, v) in Ik = k then
8: accumulate depth zi, color, segmentation

the spatial information, each block is further downsampled t − 1
times to compute several normalized color histograms h1, ..., ht−1.
Thus, each block corresponds to a vector of multi-resolution his-
tograms. The dissimilarity of two histogram vector hleft and
hright of neighboring blocks is defined as Dt

`
hleft, hright

´
=

1
t

Pt−1
k=0 d(h

left
k , hright

k ) where d(·, ·) is the Kullback-Leibler di-
vergence.

With these heuristics, we first sort all vertical lines by increasing
number of intersections N , and retain the first half of the vertical
lines. Then, we select all vertical lines that result in more than
35% in height difference for its left and right blocks. After that, we
sort again all remaining vertical lines, now by decreasing texture
difference Dt, and we select only the first half of the vertical lines.
This selection procedure is repeated until each block is in a pre-
defined range (from 6 to 30 meters in the current implementation).

4.3 Local horizontal alignment

After the global vertical alignment in the y-axis, the desired façade
plane of the block is vertical, but it may not be parallel to the xy-
plane of the coordinate frame. We automatically compute the van-
ishing point of the horizontal lines in the most fronto-parallel im-
age of the block sequence to obtain a rotation around the y-axis
for alignment of the x-axis with the horizontal direction. Note that
this is done locally for each block if there are sufficient horizontal
lines in the chosen image. After these operations, each independent
façade is facing the negative z axis with x axis as horizontal direc-
tion from left to right, and y axis as vertical direction from top to
down in their local coordinate system respectively.

5 Façade modeling

Since the semantic segmentation has identified the region of inter-
est, and the block partition has separated the data into façade level,
the remaining task is to model each façade. The reconstructed 3D
points are often noisy or missing due to varying textureness as
well as matching and reconstruction errors. Therefore, we intro-
duce a building regularization method in the orthographic view of
the façade for structure analysis and modeling. We first filter out
the irrelevant 3D points by semantic segmentation and block sep-
arator. Orthographic depth map and texture image are composed
from multiple views in Section 5.1, and provide the working im-
age space for later stages. In Section 5.2, the structure elements on
each façade are identified and modeled. When the identification of
structure elements is not perfect, a backup solution is introduced in
Section 5.3 to rediscover these elements, if they repetitively appear.
Now, after the details inside each façade have been modeled, the
boundaries of the façade are regularized in Section 5.4 to produce
the final model.
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Figure 7: Inverse orthographic composition. (a) Depth map in input image space. (b) Partial orthographic depth map from one view. (c)
Partial orthographic texture from one view. (d) Composed orthographic depth map (unreliably estimated pixels are in yellow). (e) Composed
orthographic texture. (f) Composed orthographic building region.

5.1 Inverse orthographic composition

Each input image of the building block is over-segmented into
patches using [Felzenszwalb and Huttenlocher 2004]. The patch
size is a trade-off between accuracy and robustness. We choose 700
pixels as the minimum patch size for our images at a resolution of
640 × 905 pixels to favor relatively large patches since the recon-
structed 3D points from images are noise.

Patch reconstruction The normal vector and center position
of each pi are estimated from the set of 3D points Pi =
{(xk, yk, zk)}, which have projections inside pi. As the local co-
ordinate frame of the block is aligned with the three major orthogo-
nal directions of the building, the computation is straightforward.
Let σi

x, σi
y and σi

z be the standard deviations of all 3D points
in Pi in three directions. We first compute the normalized stan-
dard deviations σ̂i

x = s̄x
si

x
σi

x, σ̂i
y =

s̄y

si
y
σi

y, where si
x and si

y

are the horizontal and vertical sizes of the bounding box of the
patch in the input images, and their median respectively across all
patches s̄x = medianis

i
x, s̄y = medianis

i
y. The normalization

avoids bias to a small patch. The patch pi is regarded as parallel
to the façade base plane if σz is smaller than σi

x and σi
y . And, all

these parallel patches with small σz contribute to the composition
of an orthographic view of the façade. The orientation of such a
patch pi is aligned with the z-axis, and its position set at the depth
zi = median(xj ,yj ,zj)∈pi

zj . One example is shown in Figure 7(a).

Orthographic composition To simplify the representation for
irregular shapes of the patches, we deploy a discrete 2D ortho-
graphic space on the xy-plane to create an orthographic view O
of the façade. The size and position of O on the xy-plane are de-
termined by the bounding box of the 3D points of the block, and
the resolution of O is a parameter that is actually set not to exceed
1024× 1024. Each patch is mapped from its original image space
onto this orthographic space as illustrated in Figure 7 from (a) to
(b). We use an inverse orthographic mapping algorithm shown in
Algorithm 1 to avoid gaps. Theoretically, the warped textures of all
patches create a true orthoimage O as each used patch has a known
depth and is parallel with the base plane.

For each pixel vi of the orthoimageO, we accumulate a set of depth
values {zj}, a set corresponding of color values {cj} and a set
of segmentation labels {lj}. The depth of this pixel is set to the
median of {zj} whose index is κ = arg medianjzj . Since the
depth determines the texture color and segmentation label, we take
cκ and lκ as the estimated color and label for the pixel. In practice,
we accept a small set of estimated points around zκ and take their
mean as the color value in the texture composition. As the content
of images are highly overlapped, if a pixel is observed only once
from one image, it is very likely that it comes from an incorrect

reconstruction. It will thus be rejected in the depth fusion process.
Moreover, all pixels {vi} with multiple observations

˘{zj}i
¯

are
sorted in non-decreasing order according to their standard deviation
ςi = sd ({zj}) of depth sets. After that, we define ς (η) to be the
η |{vi}|-th element in the sorted {ςi}. We declare the pixel vi to be
unreliable if ςi > ς (η). The value of η comes from the estimated
confidence of the depth measurements. We currently scale the value
by the ratio of the number of 3D points and the total pixel number
of O.

Note that when we reconstruct the patches, we do not use the se-
mantic segmentation results in the input image space for two rea-
sons. The first is that the patches used in reconstruction are much
larger in size than those used for semantic segmentation, this may
lead to an inconsistent labeling. Though it is possible to estimate
a unique label for a patch, it may downgrade the semantic segmen-
tation accuracy. The second is that the possible errors in the se-
mantic segmentation may over-reject patches, which compromises
the quality of the depth estimation. Therefore, we reconstruct the
depth first and transfer the segmentation results from the input im-
age space to the orthographic view with pixel-level accuracy, shown
in Figure 7(f). After that, we remove the non-building pixels in the
orthoimage according to the segmentation label. Our composition
algorithm for the orthographic depth map is functionally close to
the depth map fusion techniques such as [Curless and Levoy 1996].
But our technique is robust as we use the architectural prior of
orthogonality that preserves structural discontinuity without over-
smoothing.

5.2 Structure analysis and regularization

From the composed orthographic depth map and texture image for
each façade, we want to identify the structural elements at different
depths of the façade to enrich the façade geometry. To cope with
the irregular, noisy and missing depth estimations on the façade,
a strong regularization from the architecture priors is therefore re-
quired. Most of buildings are governed by vertical and horizontal
lines and form naturally rectangular shapes. We restrict the prior
shape of each distinct structure element to be a rectangle, such as
the typical extruding signboard in Figure 7.

Joint segmentation We use a bottom-up, graph-based segmen-
tation framework [Felzenszwalb and Huttenlocher 2004] to jointly
segment the orthographic texture and depth maps into regions,
where each region is considered as a distinct element within the
façade. The proposed shape-based segmentation method jointly uti-
lizes texture and depth information, and enables the fully automatic
façade structure analysis. Xiao et al. [2008] also proposed a func-
tional equivalent top-down recursive sub-division method. How-
ever, it has been shown in [Xiao et al. 2008] to be inefficient to
produce satisfactory result without any user interaction.



(a) (b) (c) (d) (e) (f)

Figure 8: Structure analysis and regularization for modeling. (a) The façade segmentation. (b) The data cost of boundary regularization.
The cost is color-coded from high at red to low at blue via green as the middle. (c) The regularized depth map. (d) The texture-mapped
façade. (e) The texture-mapped block. (f) The block geometry.

A graph G = 〈V, E〉 is defined on the orthoimage image O with
all pixels as vertices V and edges E connecting neighboring pixels.
To encourage horizontal and vertical cut, we use 4-neighborhood
system to construct E . The weight function for an edge connecting
two pixels with reliable depth estimations is based both on the color
distance and normalized depth difference

w ((vi, vj)) = ‖ci − cj‖2 ·
„
zi − zj

ς (η)

«2

,

where ‖ci − cj‖2 is the L2-Norm of the RGB color difference of
two pixels vi and vj . We slightly pre-filter the texture image using
a Gaussian of small variance before computing the edge weights.
The weight for an edge connecting two pixels without reliable depth
estimations is set to 0 to force them to have the same label. We do
not construct an edge between a pixel with a reliable depth and a
pixel without a reliable depth, as the weight cannot be defined.

We first sort E by non-decreasing edge weight w. Starting with an
initial segmentation in which each vertex vi is in its own compo-
nent, the algorithm repeats for each edge eq = (vi, vj) in order
for the following process: If vi and vj are in disjoint components
Ci �= Cj , and w (eq) is small compared with the internal differ-
ence of both those components, w (eq) ≤MInt (Ci, Cj), then the
two components are merged. The minimum internal difference is
defined as

MInt (C1, C2) = min (Int (C1) + τ (C1) , Int (C2) + τ (C2)) ,

where the internal difference of a componentC is the largest weight
in the minimum spanning tree of the component

Int (C) = max
e∈MST (C,E)

w (e) .

The non-negative threshold function τ (C) is defined on each com-
ponent C. The difference in this threshold function between two
components must be greater than their internal difference for an ev-
idence of a boundary between them. Since we favor a rectangular
shape for each region, the threshold function τ (C) is defined by the
divergence ϑ (C) between the component C and a rectangle, which
is the portion of the bounding box BC with respect to the compo-
nent C, ϑ (C) = |BC | / |C|. For small components, Int (C) is not
a good estimate of the local characteristics of the data. Therefore,
we let the threshold function be adaptive based on the component
size,

τ (C) =

„
�

|C|
«ϑ(C)

,

where � is a constant and is set to 3.2 in our prototype. τ is large
for components that do not fit a rectangle, and two components with
large τ are more likely to be merged. A larger � favors larger com-
ponents, as we require stronger evidence of a boundary for smaller
components.

Once the segmentation is accomplished, the depth values for all pix-
els in Ci of each reliable component Ci are set to the median. The
depth of the largest region is regarded as the depth of the base plane
for the façade. Moreover, an unreliable component Ci smaller than
a particular size, i.e. smaller than 4% of the current façade area, is
merged to its only reliable neighboring component if such a neigh-
boring component exists.

Shape regularization Except for the base plane of the façade, we
fit a rectangle to each element on the façade. For an element C =
{vi = (xi, yi)}, we first obtain the median position (xmed, ymed) by
xmed = medianixi and ymed = medianiyi. We then remove outlier
points that are |xi − xmed| > 2.8σx or |yi − ymed| > 2.8σy , where
σx =

P
i |xi − xmed| / |C| and σy =

P
i |yi − ymed| / |C|. Fur-

thermore, we reject the points that are in the 1% region of the left,
right, top and bottom according to their ranking of x and y coordi-
nates in the remaining point set. In this way, we obtain a reliable
subset Csub of C. We define the bounding box BCsub of Csub as the
fitting rectangle of C. The fitting confidence is then defined as

fC =
BCsub ∩ C
BCsub ∪ C

.

In the end, we only retain the rectangle as distinct façade element if
its confidence fC > 0.72 and the rectangle size is not too small.

The rectangular elements are automatically snapped into the nearest
vertical and horizontal mode positions of the accumulated Sobel
responses on the composed texture image, if their distances are less
than 2% of the width and height of the current façade. The detected
rectangles can be nested within each other. When producing the
final 3D model, we first pop up the larger element from the base
plane and then the smaller element within the larger element. If
two rectangles overlap but do not contain each other, we first pop
up the one that is closest to the base plane.

5.3 Repetitive pattern rediscovery

Structure elements are automatically reconstructed in the previous
section. However, when the depth composition quality is not good
enough due to poor image matching, reflective materials or low im-
age quality, only a few of them could be successfully recovered. For
repetitive elements of the façade, we can now systematically launch
a re-discovery process using the discovered elements as templates
in the orthographic texture image domain. The idea of taking ad-
vantage of repetitive nature of the elements has been explored in
[Müller et al. 2007; Xiao et al. 2008].

We use the Sum of Squared Differences (SSD) on RGB channels for
template matching. Unlike [Xiao et al. 2008] operating in 2D search
space, we use a two-step method to search twice in 1D, shown in
Figure 9. We first search in horizontal direction for a template Bi



and obtain a set of matches Bi by extracting the local minima under
a threshold. Then, we use both Bi and Bi together as the template
to search for the local minima along the vertical direction. This
leads to more efficient and robust matching, and automatic align-
ment of the elements. A re-discovered element by template match-
ing inherits the depth of the template.

When there are more than one structure elements discovered previ-
ously by joint segmentation representing the same kind of structure
elements, we also need to cluster the re-discovered elements us-
ing a bottom-up hierarchical merging mechanism. Two templates
Bi and Bj obtained by joint segmentation with sets of matching
candidatesMi andMj are merged into the same class, if one tem-
plate is sufficiently similar to any element of the candidates of the
other template. Here, the similarity between two elements is de-
fined as the ratio of the intersection area by the union area of the
two elements. The merging process consists of averaging element
sizes betweenMi ∪ {Bi} andMj ∪ {Bj}, as well as computing
the average positions for overlapped elements inMi ∪ {Bi} and
Mj ∪ {Bj}.

5.4 Boundary regularization

The boundaries of the façade of a block are further regularized to
favor sharp change and penalize serration. We use the same method
as for shape regularization of structure elements to compute the
bounding box [xmin, xmax] × [ymin, ymax] of the façade. Finally,
we further optimize the upper boundary of the façade, as we cannot
guarantee that a building block is indeed a single building with the
same height during block partition.

Illustrated in Figure 10, we lay out a 1D Markov random field on
the horizontal direction of the orthoimage. Each xi ∈ [xmin, xmax]
defines a vertex, and an edge is added for two neighboring vertices.
The label li of xi corresponds to the position of the boundary, and
li ∈ [ymin, ymax] for all xi. Therefore, one label configuration of
the MRF corresponds to one façade boundary. Now, we utilize all
texture, depth and segmentation information to define the cost.

The data cost is defined according to the horizontal Sobel responses

φi (lj) = 1− HorizontalSobel (i, j)
2 maxxy HorizontalSobel (x, y)

.

Furthermore, if lj is close to the top boundary ri of reliable depth
map, |lj − ri| < β, where β is empirically set to 0.05(ymax −
ymin + 1), we update the cost by multiplying it with (|lj − ri| +
ε)/(β + ε). Similarly, if lj is close to the top boundary si of seg-
mentation |lj − si| < β, we update the cost by multiplying it with
(|lj − si|+ε)/(β+ε). For the façades whose boundaries are not in
the viewing field of any input image, we snap the façade boundary
to the top boundary of the bounding box, and empirically update
φi (ymin) by multiplying it with 0.8. Figure 8(b) shows one exam-
ple of defined data cost.

The height of the façade upper boundary usually changes in
the regions with strong vertical edge responses. We thus

(a) The façade segmentation (b) Matching results using the vio-
let template in (a)

Figure 9: Repetitive pattern rediscovery.

0
1
2
3
4
5

l = 3 l = 3 l = 3 l = 3 l = 1 l = 1 l = 1 l = 2 l = 2

Figure 10: An example of MRF to optimize façade upper boundary.

(a) (b) (c)

Figure 11: Texture optimization. (a) The original orthographic
texture image. (b) The optimized texture image. (c) A direct texture
composition. The optimized texture image in (b) is more clear than
the original orthographic texture image in (a), and has no texture
from occluding objects, such as the one contained in (c).

accumulate vertical Sobel responses at each xi into Vi =P
y∈[ymin,ymax] VerSobel (i, y) , and define the smoothness term to

be

φi,i+1 (li, li+1) = μ |li − li+1|
„

1− Vi + Vi+1

2 maxj Vj

«
,

where μ is a controllable parameter.

The boundary is optimized by minimizing a Gibbs energy [Geman
and Geman 1984]

E (L) =
X

xi∈[xmin,xmax]

φi (li)+
X

xi∈[xmin,xmax−1]

φi,i+1 (li, li+1) ,

where φi is the data cost and φi,i+1 is the smoothing cost. The
exact inference can be obtained with a global optimum by methods
such as belief propagation [Pearl 1982].

6 Post-processing

After the model for each façade is computed, the mesh is produced,
and the texture is optimized.

6.1 Model production

Each façade is the front side of the building block. We can extend
a façade in the z-direction into a box with a constant depth (the
default constant is set to 18 meters in the current implementation)
to represent the geometry of the building block, as illustrated in
Figure 12(f).

All the blocks of a sequence are then assembled into the street side
model. The texture mapping is done by visibility checking using
z-buffer ordering. The side face of each block can be automati-
cally textured as illustrated in Figure 12 if it is not blocked by the
neighboring buildings.



6.2 Texture optimization

The orthographic texture for each front façade by Algorithm 1 is
a true orthographic texture map. But as a texture image, it suffers
from the artifacts of color discontinuities, blur and gaps, as each
pixel has been independently computed as the color of the median
depth from all visible views. However, it does provide very robust
and reliable information for the true texture, and contain almost no
outlier from occluding objects. Therefore, we re-compute an op-
timized texture image for each front façade, regarding the original
orthographic texture image as a good reference.

Suppose that each façade has N visible views. Each visible view
is used to compute a partial texture image for all visible points of
the façade. Then we obtained N partial texture images for the
façade. Next, we define a difference measurement as the squared
sum of differences between each pixel of the partial texture im-
ages and the original orthographic texture image at the same coor-
dinate. This is the data term for a Markov Random Field on the
orthographic texture image grid. The smoothing term is defined
to be the reciprocal of the color difference between each neigh-
boring pair of pixels on the original orthographic texture image.
The desired orthographic texture image is computed using Graph-
Cut alpha-expansion [Boykov et al. 2001]. If seam artifacts are
serious, Poisson blending [Pérez et al. 2003] can be used as post-
process. Figure 11 shows the comparative results of this process.
Figure 11(c) also shows a direct texture warping from most fronto-
parallel image as in [Xiao et al. 2008], which fails to remove the
occluding objects, i.e. the telegraph pole in this case.

7 Experiment and Discussion

We have implemented our system and tested on the street-side im-
ages of downtown Pittsburgh from Google. These images have been
used in Google Street View to create seamless panoramic views.
Therefore, the same kind of images is currently available for a
huge number of cities around the whole world, which have been
captured without online human control and with noises and glares.
The image resolution is 640× 905. The entire sequence of 10,498
images in Pittsburgh is broken down into a few shorter sequences
roughly every 100 consecutive images. Then, each sequence is re-
constructed using the structure from motion algorithm to produce a
set of semi-dense points and camera poses. The cameras are then
geo-registered back to the GPS coordinate frame. The result corre-
sponding to this sequence is geo-registered back to the global earth
coordinate using available GPS data. Since the sequence is not very
long, there is no obvious drift effect, and we don’t explicitly handle
loop closing.

7.1 Implementation details

The implementation is in unoptimized C++ code, and the param-
eters are manually tuned on a set of 5 façades. The whole sys-
tem consists of three major components: SFM, segmentation, and
modeling, and it is completely modular. We use the code from
[Oliva and Torralba 2006] for gist feature extraction, the code from
[Shotton et al. 2009] for Joint Boost classification, the code from
[Boykov et al. 2001] for Graph Cut alpha expansion in MRF op-
timization, the code from [Felzenszwalb and Huttenlocher 2004]
for joint graph-based segmentation in structure analysis and over-
segmentation. Note that after block partition, the façade analysis
and modeling component works in a rectified orthographic space,
which involves only simple 2D array operations in implementation.

The resulted model is represented by pushed-and-popped rectan-
gles. As shown in Figure 8(f) and Figure 12(e), the parallepipeds-
like division is the quadrilateral tessellation of the base plane mesh

by “rectangle map”, which is inspired by the trapezoid map algo-
rithm [de Berg et al. 2008]. A rectangle is then properly extruded
according to the depth map. The results may seem to have some
“parallepipeds”, while some of them may have the same depth as
neighboring, depending precisely upon their reconstructed depth
values.

For a portion of Pittsburgh, we reconstructed 202 building blocks
from 10,498 images. On a small cluster composed by 15 normal
desktop PCs, the results are produced automatically in 23 hours, in-
cluding approximately 2 hours for SFM, 19 hours for segmentation,
and 2 hours for partition and modeling. Figure 12 shows different
examples of blocks and the intermediate results. Figure 15 shows a
few close-up views of the final model. All presented results in the
paper and in the accompanying video are “as is” without any man-
ual touch-up. For rendering, each building block is represented in
two levels of detail. The first level has only the façade base plane.
The second level contains the augmented elements of the façade.

In the semantic segmentation, we hand-labeled 173 images by uni-
formly sampling images from our data set to create the initial
database of labeled street-side images. Some example labeled data
is shown in the accompanying video. Each sequence is recognized
and segmented independently. For testing, we do not use any la-
beled images if they come from the same sequence in order to fairly
demonstrate the real performance on unseen sequences.

Our method is remarkably robust for modeling as the minor errors
or failure cases do not create visually disturbing artifacts. The dis-
tinct elements such as windows and doors within the façade may
not always be reconstructed due to lack of reliable 3D points. They
are often smoothed to the façade base plane with satisfactory tex-
tures as the depth variation is small. Most of the artifacts are from
the texture. Many of the trees and people are not removed from the
textures on the first floor of the buildings seen in Figure 15. These
could be corrected if an interactive segmentation and inpainting is
used. There are some artifacts on the façade boundaries if the back-
ground buildings are not separated from the foreground buildings,
shown in the middle of Figure 15. Some other modeling examples
are also shown in Figure 12. Note that there are places where the
top of the buildings are chopped off, because they are clipped in the
input images.

7.2 Comparative studies

Comparison with semi-automatic methods There are several
semi-automatic image-based modeling methods [Debevec et al.
1996; Xiao et al. 2008]. The work in [Xiao et al. 2008] is the most
recent representative approach targeting a single façade modeling
with interactive initialization and editing. Although our method is
fully automatic for the entire street-side city modeling pipeline, we
could compare the functional equivalent component of the auto-
matic structure analysis of a given façade in Section 5.2 of this pa-
per and the automatic part of [Xiao et al. 2008] in Sections 6 and 7.
The results are compared in Figure 14. Note that for comparison,
we manually specify the initial planes with accurate boundaries, as
shown in Figure 14(g). Since they made the very strong assumption
that the depth variation is small for each façade, we have to specify
two initial planes due to the large depth difference in this example.
The input images are captured by hand-held DSLR camera at high
resolution. For this data set, with simple normalization of image
space to [-1,+1], we can use exactly the same set of parameters as
for Pittsburgh data set. The results clearly indicate that our façade
analysis is more robust and results in superior results before any
manual retouching. For repetitive patterns such as windows, they
relies on user specification or trained model to identify the template
(the first region) for each façade and match around to find more oc-
currences of the template. In our approach, since our shape-based
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Figure 12: Modeling examples of various blocks. (a) The orthographic texture. (b) The orthographic color-coded depth map (yellow pixel is
unreliable). (c) The façade segmentation. (d) The regularized depth map. (e) The geometry. (f) The textured model.

(a) Orthographic texture (b) 3D model

Figure 13: A challenging non-rectangular case. The slope-shape
roof is approximated as a step-shape structure.

joint segmentation can automatically identify several templates, it
is unnecessary to specify the template manually or to train a win-
dow recognition model. Therefore, it reduces the manual efforts or
system complexity, and can perform more robustly since the correct
recognition of windows is non-trivial.

Comparison with sensor-rich methods Using 3D scanners for
city modeling is definitely an alternative for street-side city model-
ing [Stamos and Allen 2002; Frueh and Zakhor 2003]. The work
in [Frueh and Zakhor 2003] is one of the most recent representative
works that generate 3D street-side models from 3D scans captured
along the streets at the ground level. Additionally, they also cap-
ture aerial views for the building tops that we do not model. The
scanned data clearly has a higher density and accuracy in geometry
than the reconstructed data from SFM. An approach integrating the
images and scans could be envisaged to leverage the advantage of
image analysis developed in our method and the high quality of 3D
point clouds from the scanns. Our image analysis accepts any avail-
able 3D points if the 3D data is registered with the images. The key
to the success of the integrated approach is therefore the registra-
tion of the scanned data and the images. The potential challenge is
the inconsistency of the registered data.

7.3 Limitations

There are a few limitations reflecting on the current implementation
of the approach.

Rectilinear structure assumption As for any problem, a more
flexible model with many degrees of freedom is difficult to be
solved in practice. Therefore, imposing reasonable priors of build-
ing regularity is the trade-off that we have to make for robustness
and automation. Rectilinear structure assumption, or equivalent
Manhattan-world assumption [Coughlan and Yuille 1999], is uni-
versal for usual man-made buildings. For more complex buildings
such as landmarks, the rectangular assumption of buildings can still
be a first-level approximation of arbitrary surfaces. Moreover, at the
given scale of street-side city reconstruction we are targeting in this
paper, the assumption is sufficient, as what the final results demon-
strated. For instances, some non-rectangular windows in the center
of Figure 1 are well-approximated by rectangles without obvious
artifact at the scale of street view. Figure 13 is another example that
the roof shape directly conflicts with our assumption. With our 1D
Markov random field regularization, the roof is approximated as a
step-shape structure.

Camera viewing field The upper parts of large buildings are not
modeled due to the limited viewing field of a ground-based camera.
We could envisage to integrate aerial images as suggested in [Früh
and Zakhor 2003], or deploy a multiple camera system with one of
them pointing upward.

Potential interactive editing Our approach is fully automatic for
all presented results. However, the method in [Xiao et al. 2008]
does provide a very convenient user interface for manual opera-
tions. Nevertheless, since our rectangular representation is just a
special case of DAG graph used in their method, our method can be
seamlessly used together with the user interface provided by them
for later manual process if necessary.

8 Conclusion

We have proposed a completely automatic image-based modeling
approach that takes a sequence of overlapping images captured
along the street and produces the complete photo-realistic 3D mod-
els. The main contributions are: a multiple view semantic segmen-
tation method to identify the object classes of interest, a systematic
partition of buildings into independent blocks using the man-made
vertical and horizontal lines, and a robust façade modeling with
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Figure 14: Comparison with [Xiao et al. 2008] . Our results are presented from (a) to (f) with the same legend as in Figure 12. The
automatic results provided by [Xiao et al. 2008] are presented from (g) to (j). (g) is the manually specified initial façades. (h) is the automatic
subdivision result. (i) is the automatic geometry of the façades before interactive retouching. (j) is the textured façades.

pushed and pulled rectangular shapes. More importantly, the com-
ponents are assembled into a robust and fully automatic system.
The approach has been successfully demonstrated on large amount
of data.

There are a few limitations to the current implementation of the
system, but they can be improved within the same framework. For
example, we could incorporate the 3D information in the seman-
tic segmentation. Furthermore, using the grammar rules extracted
from the reconstructed models to synthesize missing parts procedu-
rally is also an interesting further direction.
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