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Abstract: The purpose of this study is to tackle the nonlinear system identification benchmarks
proposed by (Schoukens and Noél, 2016). Two of the three benchmarks are considered, namely
the cascaded tanks setup and the Bouc-Wen hysteretic system. Our approach is an output error
method based on continuous time models. Due to the nonlinearities, the derivatives of the output
with respect to the parameters are not defined everywhere. We compare the performance of two
derivative-free optimisation solvers: the Nelder-Mead simplex and the NOMAD algorithm. Both
are available in the OPTI Toolbox. The results suggest that the method is appropriate for those
systems. However, it is not possible to discriminate between both optimisation solvers.

Keywords: Identification and modelling; Continuous time system estimation; Nonlinear system

identification; Output error method

1. INTRODUCTION

In robotics and mechanical engineering the dynamic mod-
els are based on differential equations which often result
from Newton’s law or Lagrange equations. Recently, the
identification of continuous-time models has grown in pop-
ularity in the field of Automatic Control (Garnier and
Wang, 2008) and see the recent special issue in the Inter-
national Journal of Control (Garnier and Young, 2014).
The output error method is an option to deal with such
problems. It consists in minimizing the difference between
the simulated model output and the measured output.
This approach has proven its suitability in Automatic
Control (Carrillo et al., 2009), in robotics (Gautier et al.,
2013) and in aeronautics (Klein and Morelli, 2006) for
instance.

The aim of this paper is to evaluate if the continuous-
time output error method is suitable for identifying two
of the non-linear systems proposed by (Schoukens and
Noél, 2016) as benchmarks for the community. We will
deal with the parametric identification of the Bouc-Wen
hysteretic system and the cascaded tanks setup. As it will
be seen, the models are continuous but not differentiable
everywhere. Thus, optimisation algorithms based on the
differentiability of the cost functions cannot be employed.
Two derivative-free algorithms are used and compared: the
well-known Nelder-Mead simplex and the recent NOMAD
optimizer, which are both available in the free OPTI
Toolbox for MATLAB®.

This paper is organised as follows. Section 2 deals with
the general methodology for output error identification in
continuous time framework and presents the optimisation
algorithms considered. In section 3, the model of the

cascaded tanks setup is developed and the results are
detailed. Section 4 follows the same structure for the
Bouc-Wen hysteretic system. Finally, section 5 provides
concluding remarks.

2. GENERAL METHODOLOGY
2.1 Continuous Time Output Error Method

With the Output Error Method (OEM), the unknown
system parameters are tuned so that the simulated model
output fits the measured system output. To evaluate the
difference between the two outputs many criteria may
be used, as explained in (Walter and Pronzato, 1997).
The criterion minimisation is usually solved thanks to
non-linear optimisation algorithms based on a first- or
second-order Taylor series expansion. That requires the
computation of the criterion derivatives with respect to the
parameters. In some cases those derivatives can be exactly
known, but in most cases the derivatives are approximated
by finite differences.

To simulate the continuous-time system and obtain a sim-
ulated output, the differential equations must be solved.
Many numerical solvers exist in the literature like the
well-known Runge-Kutta method, for further examples see
(Hairer et al., 1993). In this article, they will be referred
as "integration solvers” to avoid confusion with the ”op-
timisation solvers” introduced in the previous paragraph.
In practice, the integration solver needs the same input as
the real system and a set of values for the parameters to
identify. The choice of the integration solver is decisive.
For each model, the practitioner must find the integration
solver which suits to the system properties. For instance, if
the system presents two dynamics whose the characteristic
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Fig. 1. Output Error Method schematic diagram

times greatly differ, a stiff solver should be employed. If
the integration solver is not appropriate, it may lead to a
biased identification.

The initial values is a crucial point for OEM. With a
bad initialisation the optimisation solver may lead to local
minimum (if it is a local optimizer) or even diverge. The
integration solver may also diverge if the parameters are
not suitable. Depending on the application, different tech-
niques may be used to initialize correctly the method. If
the problem is linear with respect to the parameters and
if all the states are available, a Least-Squares (LS) estima-
tion can be employed. As shown in (Gautier et al., 2013),
in the field of robotics the Computer-Aided Design (CAD)
values of the inertia are enough accurate to initialize. In
aircraft identification, initial values can be available from
wind tunnel test or computational fluid dynamics.

Inspired from (Jategaonkar, 2006), Figure 1 illustrates the
OEM principle where y is the (Ns; x 1) vector of the
measured output, y, is the (Ng x 1) vector of the simulated
output, @ the (Ng x 1) vector of estimated parameters, and
%ya% is the output sensitivity, which is a (N x Ny) jacobian
matrix. N, is the number of sampling points considered
and the Ny is the number of unknown parameters. As it
can be seen, the only stochastic signal is the measurement
noise. The input signal is indeed assumed to be noise
free. In addition, the integration solver is deterministic.
It is consequently impossible to take into account process
noise in the simulation. This is why the third proposed
benchmark is not considered in this article.

2.2 Optimisation Solvers

OPTI Toolbox This benchmarks challenge was the oppor-
tunity to test different optimisation solvers. Our choice was
to employ the OPTimization Interface (OPTI) Toolbox
developed by (Currie and Wilson, 2012). This toolbox is a
free interface between MATLAB® and many open source
and academic solvers. From this toolbox, two derivative
free algorithms have been selected to solve unconstrained
nonlinear least-squares with a quadratic criterion. One
noteworthy point is that, after convergence, the toolbox

Fig. 2. Cascaded tanks setup

computes the jacobian matrix with finite differences for
the statistical analysis.

Nelder-Mead Simplez The first considered algorithm is
the well-known Nelder-Mead (NM) simplex from (Nelder
and Mead, 1965). This heuristic method is based on a
polytope of Niperq + 1 vertices. At each iteration, the
vertice, where the cost function is the largest, is modified
according to specific rules. It exists many variants of this
algorithm depending on the updating rules. We decided
to use the algorithm available in the open-source library
NLopt developed by (Johnson, 2016) and provided in
OPTI.

NOMAD Optimizer The second optimizer is the algo-
rithm called Nonlinear Optimization by Mesh Adaptive
Direct (NOMAD) search, from (Abramson et al., 2016).
NOMAD is a direct search method, i.e. derivative free.
At each iteration, a mesh is designed around the current
optimum and the function is evaluated at any mesh points.
The mesh is based on a given pattern. Thus, the choice
of directions is fixed and finite. If the search step does
not manage to find a new optimum, it is followed by the
poll step. This second step consists of a local exploration
around the optimum. For this step, the set of points to
be evaluated is defined by orthogonal directions which
are dense in the unit sphere. At each poll step, a new
set is constructed. The search step is a common element
to all Generalized Pattern Search (GPS) algorithms. The
specificity of NOMAD lies on the poll step which gives
more flexibility in the directions.

3. CASCADED TANKS
3.1 Model Description

According to (Schoukens and Noél, 2016), the model of
the plant (Fig. 2) comes from Bernoulli’s principle and is



given by:

T (f) = —kiVx1 (1’) + k4u(t) + wq (f)

3'32(t) = k‘g\/.’l?l(t) — k‘g\/.’l?g(t) + LUQ(t)
y(t) = za(t) + e(t),

where w is the input signal, y is the measured output
signal, z1 and x5 are the system states, wy and ws are the
process noises, e is the measurement noise, and ki, ko, k3
and k4 are the system parameters. As it has been said,
the OEM technique relies on a deterministic numerical
integration of the dynamic model. Hence, the process
noises cannot be taken into account. With respect to
(Wigren, 2006) the model can be written:

7 _ a \/% ku
ha(t) = == Vhi(t) + Zru(t)

1

ho(t) = “1;1@\/111(7:) - “2;1/2—9 Vha(t)

2
y(t) = ha(t) + e(t),
where h; is the water level; A; and a; are respectively
the cross-sectional areas of the tank and of the outflow
orifice; 7 is the index of the tank, with i = 1 for the
upper tank and i = 2 for the lower tank. ¢ is the standard
gravity taken equal to 9.81m.s~2. This notation has the
advantage of giving physical meaning to the parameters.
By looking closely at Fig. 2, the two tanks are really
similar. Thus, it is assumed A = A; = A3, a = a1 = as and
R = T = h'**. Those relations noticeably reduce
the number of parameters. Furthermore, the data provided
with the benchmark are recorded in volts (V). That is
not a problem for the input because the actuator gain k,

has then :"—; for physical dimension. For the output, we
introduce a sensor gain k, for the output such as vy, = kghs.
The voltage v; is then the image of the water level in tank
1. Our new model can be written:

o (t) = —“—ngks Vo () + %u(t)
falt) = DI (D) - N /e

y(t) = va(t) + e(t).

However, this model does not include the overflow from
the upper to the lower tank, either the one from the lower
tank to the reservoir. To model the overflow, we propose
the following model:

#1(t) = —“—ngks\/vl(t) i %(u(t) — by) — koperov(t)

Ba(t) = L'ngs\/vl(t) - ng’%\/vz(t) + Koperov(t)

y(t) = va(t) +e(t),
with,

’Ug(t) < Uénaoc
. if 1) < pmes
Ul(t) _ {xl( )7 1 $1( ) Uy

v]***, otherwise

0 , i xq (8) < o"®
x1(t) — v, otherwise

With this model, the integration of wvs(t) is saturated
at vy** and 0" = V3" = "% In other words,

the overflow from the lower tank to the reservoir is not
modelled. A bias b, is added to the input because a
better figure of merit (see Appendix A) was observed. In
addition, by looking at the measured data, it is assumed
v = 10V, considering that the output has neither
bias nor scale factor. The set of parameters is 6}, , =
[a A ky ks kopper vi, v2, bu)T with vy, and ve,

the voltages of the initial levels in the tanks.

After few trials, it was found that the model contains
too many parameters even tough they all have a physical
meaning. According to the cross correlation factors (see
Appendix B), some of them are indeed linearly linked.
The parameters are regrouped according to the following
relations: p; = a‘x{‘k_s and ps = ]“‘T“/E Finally, the model
considered for the identification is

i1 (t) = —p1v/29V/01(t) + prpa(u(t) — by) —

() (t) =pivu (t) —P1V 2 (t) + koverOU(t)
y(t) = va(t) + e(t).

The OEM is appropriate because this model is non-
linear with respect to the parameters and the states.
Furthermore, with the square root function for instance,
the derivatives are not defined everywhere. That ex-
plains the choice of derivative-free optimisation solvers.
Finally, the set of parameters to identify is 62

T tanks
[pl b2 Vi, V2 bu kover] .

koverov(t)

3.2 Identification Results

The cascaded tanks are modelled with Simulink®. The
dynamic equations are solved thanks to ode45 integration
solver. Table 1 summarizes the estimated parameters, their
relative standard deviations, the figure of merit (see Ap-
pendix A) and the computing time for each optimisation
solver. The estimation data set contains 1024 points with
a sampling time T, = 4s, which is relatively short.

Concerning the initial values of the optimisation solver,
vy, is taken equal to the first recorded output. vi, = 5V is
equivalent to a tank being half full and close to vy,. The
initial bias is neglected. It is assumed that the radius of
the tank has an order of magnitude of 1cm whereas the
one of the outflow orifice is closer to 1mm. That gives the
initial areas. By a real close look at Figure 2, the maximal
water level is A" = 20c¢m. Therefore, the initial sensor
gain is kY = 10/0.2 = 50V/m. The tank volume can then
be estimated close to 60cm3. A pump providing a flow
of few ¢cm?/s seems appropriate. Consequently, we take
KO = 1% Finally, the initial overflow gain arbitrarily
set to kY, = pipY due to the physical dimension. The
overflow model is indeed a transfer between a voltage to a
voltage per second, like the pump. This initialisation may
seem coarse, but a LS initialisation does not suit because
the states are not linear with respect to the parameters
and h; (or v1) is not available.

Both optimisation solvers almost found equivalent esti-
mated parameters with comparable computing times and
figures of merit. The two noteworthy differences are the
overflow gain and the relative standard deviations. The
large difference for the estimated k,ye, suggests that our
overflow model is perfectible. Few trials were undertaken



Table 1. Two tanks identification results

Parameter Init. Val. Nelder-Mead NOMAD
p (\%) 0.07 0.0094 (0.52%)  0.0094 (0.0012%)
P2 (%) 2.25 4.87 (0.55%) 4.85 (0.0015%)
v1, (V) 5.00 4.89 (3.1%) 4.96 (0.0021%)
va, (V) 5.21 5.16 (2.0%) 5.16 (0.0010%)
bu (V) 0.0 0.675 (1.8%)  0.663 (0.0012%)
kover (1/5) 0.16 0.909 (1.7%) 14.1 (0.0010%)
CRMS 37.9% 37.6%
Comp. Time 2min 51s 3min 10s

to improve it without success. The low relative standard
deviations found by NOMAD are explained by the fact
that this algorithm converged to local optimum where the
output sensitivity to the parameters is high. From an alge-
bra point of view, the conditioning number of the jacobian
matrix is lower for the NOMAD algorithm than for the
Nelder-Mead one. The factor is 103. The bad conditioning
explains the cross-correlations between some parameters:
pg%/[ =0.99, pY¥  =0.96 and p¥Y = 0.98. Finally,
20w

P2Rover ulNo

the parameters estimated with the NOMAD algorithm are
more accurate and reliable.

This example shows that, even if the OEM is able to deal
with models non-linear with respect to the parameters, the
practitioner must be careful with the results. Furthermore,
it illustrates the usefulness of keeping the physical meaning
of the model, at least at the beginning. That makes the
initialisation easier and helps to interpret the results.

4. BOUC-WEN HYSTERESIS
4.1 Model Description

The Bouc-Wen system is a one degree-of-freedom oscillator
used in mechanical engineering to represent hysteretic
effects. For a complete definition of the hysteresis, please
refer to (Schoukens and Noél, 2016) and the references
given therein. From the Newton’s second law, the Bouc-
Wen dynamics is modelled by:

mpij(t) +r(t) + z(t) = u(t), (1)
where m, is the mass, y the output position, w the input
force, r the linear restoring force and z the nonlinear force
which models the hysteretic memory of the system. The
restoring force is modelled by Eq. (2) with the stiffness
parameter, ky, and the viscous damping coefficient, cy.
The hysteretic force, z, is modelled by the dynamic relation
(3), where a, 8, 7, 6 and v are the parameters defining
the shape of the hysteresis. It is worth noting that v must
greater than or equal to 1 in order the system to be stable.
From a practical point of view, if the optimisation solver
tests the model with non feasible parameters, the simu-
lation solver will diverge. In this case, the optimisation
criterion is set to infinity.

r(t) = kry(t) + cry(t) (2)

5(t) = ag()
8 (VO =OF " 0) + 530 1) (3)
According to (Schoukens and Noél, 2016) the Bouc-Wen

dynamics is well integrated in time by the Newmark
method. This method, developed to a great extent in

Table 2. Bouc-Wen benchmarks parameters

my, (kg) cp, (N.s/m) kp (N/m) o« (N.s/m)
2 10 5 10% 5 10%
B (N*~!/m) 7 () 5 () v (-)
1103 0.8 —1.1 1

(Gérardin and Rixen, 2015), is a single-step time integra-
tion relevant for second-order differential equations in the
field of structural dynamics. It must be noticed that the
input force u must be upsampled by a factor 20 to have
an accurate integration of the dynamics. Thus, following
the integration, the simulated output position ys must be
decimated to the nominal frequency.

For this benchmark, the parameters are exactly known;
see Table 2. According to (Schoukens and Noél, 2016),
the parameters are in S.I. units. For the parameters my,
cr,, kr, and «, there is no doubt about the units. For
the remaining parameters, the authors made the choice
to gather the physical dimension on (3, in order to keep
the other parameter dimensionless. The data are generated
with a simulator. This simulator adds, to the output, a
band-limited Gaussian (between 0 and 375 Hz) with a
root-mean-squared amplitude of 8 1072 mm. The noise
free input signal is multisine containing one steady state
period of 8912 samples with an RMS value of 50 N
and a sampling frequency fs = 750 Hz. The multisine
frequencies are located in the range 50-150 H z.

4.2 First Results

To perform the OEM, a simulator allowing to change the
physical parameters has been developed. This implemen-
tation of the Newmark integration method is based on the
information provided in (Schoukens and Noél, 2016). The
initial parameters are arbitrary chosen to be enough far
from the true values while keeping a reasonable computing
time; except § which is initialized at its true value for a
reason which will be explained below.

The estimated parameters are summarized in Table 3 as
well as the relative standard deviations and the relative
errors. The results for the NOMAD identification are not
presented since there is an issue with this model. All the
estimated values are indeed close to the real ones except
those for 3, v and §. Thanks to the knowledge of the true
values, it is easy to detect the problematic parameters.
If the true values were not available, the larger relative
standard deviation could alert the user. In addition, the
conditioning number of the jacobian is equal to 1.55 10,
which is quite large for 8 parameters. Figure 3 illustrates
the signals of the jacobian for those three parameters. The
sensitivity with respect to 3 is not observable because of
its low order of magnitude. However, it is visible that the
sensitivities with respect to ¢ and 7 are similar. From
this observation, the linear relation between § and ~ is
clear. Finally, the correlation coefficients (see Appendix
B) are Py = 0.998, pzs = 0.998 and pss = 1.00. Such
coefficients (greater than 0.95) indicate probable linear
relations between those three parameters.

The collinearity between (3, v and § is now established in
practice. We will look for the responsible element of the
model. Equation (3) can be written at any sampling time



Table 3. Bouc-Wen identification - First results

Parameter Init. Val. Nelder-Mead Rel. Err.
myg, (kg) 1 1.98 (0.02%) 0.99%
( N;L/m) 2 10.3 (0.63%) 3.16%
kr, (N/m) 1104 4.95 10% (0.10%) 1.03%
a (N/m) 110% 4.95 10% (0.10%) 0.97%
(N,_Bl/m) 1103 3.76 102 (8.96%) 62.40%
v () 1.0 2.12 (8.98%) 165.17%
5 () -0.9 —2.93 (8.98%) 165.70%
v (-) 1.2 1.00 (0.14%) 2.21 107%%
erams multisine 468107 3%
erMS Sinesweep 2.53 10 4%
Computing Time 32min 20s

l
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Fig. 3. Time history (zoom) of the sensitivities with respect
to: B (light blue), v (orange) and ¢ (dashed green)

t=afi(y) = B(vf(9,2) +0f3(9, 2)) . (4)
By assuming that the sensitivities with respect to the
parameters exist, from that equation, it can be written

0z B 3f1 . - af2 8.](3
a8~ Yop f2=0fs 5( B +58ﬁ>
0% of1 Ofa .0f3
a’}/_a__ﬁfz_ﬁ)(W—'—é@’y)’

0z 8]‘1 B % dfs
2P gy, /3( 85+585>

If the functions f1, fo and f3 are not sensitive enough with
respect to the parameters (i.e. derivatives negligible), it
comes out

0z 0z 0z

a5 "oy Poas (5)
Equation (5) makes clear the linear relation between the
sensitivities. The assumption that the derivatives of fi, fo
and f3 are negligible is equivalent to say that Z is linear
with respect to «, S+ and 8. That kind of assumption is
called Pseudo Linear Regression (PLR) in system iden-
tification, see Eq. (7.112) in (Ljung, 1999). To identify
the model, coefficients v/ = B~ and ¢ = (6 could be
introduced. However, to make easier the interpretation of
the parameters, § will be kept constant to its true value
without being estimated. This is why we did not try to
initialised 8 to another value at the beginning.

4.8 Final Results

A second identification process is performed with & fixed
to its true value to avoid any modelling error. The results
are summarized in Table 4. Both optimisation solvers pro-
vided close estimates with similar relative standard devia-
tions. The figures of merit are comparable and small. The
identified models can be considered as satisfactory. The
main difference lays in the computing time. Surprisingly,
the Nelder-Mead simplex significantly took less time than
the NOMAD algorithm. Therefore, for this example, the
Nelder-Mead optimizer appears to be more appropriate.

This second example confirmed that the OEM is able
to deal with models non-linear with respect to the pa-
rameters. However, it also confirmed that the practitioner
must be careful between the model and the potential links
between the parameters. Finally, it proved that the opti-
misation can be performed with derivative-free solvers, but
the jacobian matrix is unavoidable to analyse the results.

5. CONCLUSION

In this article, two non-linear systems were identified
thanks to the output error method. This method relies on
the simulation of continuous-time systems and derivative-
free optimisation solvers. From a general point of view,
the method gives satisfactory results. In addition, we have
learnt that:

e even though the method is able to deal with non-
linear models, the user must be careful with the
parametrization;

e it is useful to keep a physical meaning in order to
analyse the model;

e even though the identification problem can be solved
thanks to derivative-free optimizer, the sensitivities
are the key element of the results analysis.
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Appendix A. FIGURE OF MERIT

(Schoukens and Noél, 2016) provide a set of estimation
data to identify the model and a set of test (or valida-
tion) data to assess the identified model. To compare the
different methods, the following figure of merit is given:

N
1
CRMS =\ | 7 kz_; (s (tr) = yoar(tr))? (A1)
with NV the number of sampling points, y,al the validation
output and ys the simulated output from the identified

model.

Appendix B. STATISTICAL ACCURACY

It is assumed that there are no modelling errors and
that the estimator is efficient. Considering a system with
a single output, the covariance matrix of the estimated
parameters is then given by

where o2 is the covariance of the output noise and o is

the output sensitivity matrix at the convergence point. In
fact, P is the Cramer-Rao lower bound, which is reached
if the estimator is efficient. For further details see e.g.
(Walter and Pronzato, 1997). The standard deviation of
the it estimated parameter is

O'?;i =\ P“

The relative standard deviation is then 100 * o / 0;

(B.2)

for

non zero estimated parameters. Finally, the correlation
coeflicients, which express the statistical dependence be-
tween the estimated parameters, are calculated as follows:

iy (5.3)
050 VPi/Pj

According to (Jategaonkar, 2006), a correlation coefficient

greater than 0.95 requires some attention from the prac-

titioner since it may be the result of a linear dependence

between the two considered parameters.



