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Abstract: In this paper, we study the identification of industrial robot dynamic models. Since
the models are linear with respect to the parameters, the usual identification technique is
based on the Least-Squares method. That requires a careful preprocessing of the data to obtain
consistent estimates. In this paper, we carefully detail this process and propose a new procedure
based on Kalman filtering and fixed interval smoothing. This new technique is compared to
usual one with experimental data considering an industrial robot arm. The obtained results
show that the proposed technique is a credible alternative, especially if the system bandwidth
is unknown.
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1. INTRODUCTION

The usual method for robot identification is based on
the Least-Squares (LS) technique and the Inverse Dy-
namic Identification Model (IDIM). The IDIM indeed al-
lows expressing the input torque as a linear function of
the physical parameters thanks to the modified Denavit
and Hartenberg (DHM) notation. Therefore, the IDIM-LS
method is a really practical solution, which explains its
success, see (Gautier et al., 2013) and the references given
therein. However this method needs a well-tuned band pass
filtering to get the derivatives of the joint positions. Thus,
it requires a good a priori knowledge of the system to tune
adequately the filters. That may be an issue for the early
tests of a system, especially if there is no access to the key
design parameters, as with a robot bought ”off-the-shelf”.

This article has two aims. Firstly, it develops the usual
process of robot identification. Secondly, the new tech-
nique proposed in (Brunot et al., 2016) is tested on an
industrial robot arm. This technique has indeed already
proven to be a suitable solution for a prototype robot with
one degree of freedom. Its principle is to avoid relying
on a priori knowledge of the system. For this work, the
author designates by ”a priori knowledge” the values of
the parameters, which are known or guessed prior to the
identification. In any case, the model structure is assumed
to be known.

As it will be seen, the main part of the work consists
in differentiating the position signal to construct the
regressors (see Section 2 for a proper definition) for the
LS method. In many fields, the problem of differentiating
numerical signals was raised. In the domain of continuous-
time system identification, it has been successfully dealt by
different techniques like the generalized Poisson moment
functional (GPMF) in (Rao and Unbehauen, 2006), the

State Variable Filters (SVF) in (Mahata and Garnier,
2006) or the Refined Instrumental Variable (RIV) in
(Garnier et al., 2007). For further reading on the topic, see
e.g. (Garnier et al., 2003). Nevertheless, those attractive
methods require either the system to be linear in the
states, in order to have a self-tuned filtering (RIV), or the
user to provide the bandwidth for the filter (GPMF and
SVF). As it will be seen, for a robot, the regressors are
non-linear in the states. Hence, those techniques do not
fulfil the requirements of our study. Therefore, it would be
worth to look at other fields to find a technique which does
not require a priori knowledge of the system and which can
handle non-linearities in the states.

The plan of this article is as follows. Firstly, the usual
method for robot identification is presented. Secondly, the
new solution based on a Kalman filter and a fixed interval
smoother is introduced. Afterwards, the techniques are
compared with experimental data from a Stäubli TX40
industrial robot arm. Two cases are considered: first, a
good a priori knowledge on the system which allows a
good bandpass filtering; second, an inadequate bandpass
filtering due to a lack of knowledge concerning the robot.
Finally, concluding remarks are expressed.

2. LEAST-SQUARES FOR ROBOT IDENTIFICATION

2.1 Inverse Dynamic Identification Model

If a robot with n moving links is considered, the vector
τ (t) contains the inputs of those links, which are the
applied forces or torques. The signals q(t), q̇(t) and q̈(t)
are respectively the (n × 1) vectors of generalized joint
positions, velocities and accelerations. With respect to the
Newton’s second law it comes out:

M (q(t)) q̈(t) = τ (t)−N (q(t), q̇(t)) (1)



where, M (q(t)) is the (n×n) inertia matrix of the robot,
and N (q(t), q̇(t)) is the (n× 1) vector modelling the dis-
turbances or perturbations. Those perturbations contain
the friction forces, gravity effects and other non-linearities
depending on the studied robot. Experience has shown
that those disturbances are, in the vast majority of cases,
linear in the parameters, but not in the states. Therefore,
it appears to be very convenient for the identification to
consider the Inverse Dynamic Model (IDM). The IDM is
described by 2, where: the input torque is the dependent
(or observation) variable; φ is the (n× b) matrix of regres-
sors (or independent variables); θ is the (b × 1) vector of
base parameters to estimate.

τidm(t) = φ (q(t), q̇(t), q̈(t))θ (2)

Because of perturbations coming from measurement noise
and modelling errors, the actual torque τ differs from τidm
by an error v. The Inverse Dynamic Identification Model
(IDIM) is given by

τ (t) = τidm(t) + v(t) = φ (q(t), q̇(t), q̈(t))θ + v(t). (3)

2.2 Least-Squares Equation

The model described by 3 can straightforwardly be ex-
tended to the vector-matrix form:

um =



τ (t1)
...

τ (tNs
)


 = X(q, q̇, q̈)θ + eLS . (4)

where, um is a (Nt × 1) vector constructed with the
measured signals, X is a (Nt × b) matrix composed of
the regressors and eLS is a (Nt × 1) vector of error
terms, with Nt = nNs and Ns the number of sampled
points considered. It is assumed that X is full rank,
i.e. rank(X) = b, and that Nt ≫ b, to have an over-
determined system of equations. From 4, the Least-Squares
(LS) estimates and their associated covariance matrix are
given by (see e.g. (Gautier et al., 2013)):

θ̂LS =
(
XTX

)−1
XTum (5)

ΣLS = σ2
(
XTX

)−1
(6)

σ̂2 =
1

Nt − b
||um −Xθ̂LS ||

2 (7)

From a theoretical point of view, the LS estimates 5 are
unbiased if the error has a zero mean and if the regressors
are uncorrelated with the error, see relations 8.

E[eLS ] = 0, E[XTeLS ] = 0 (8)

The covariance matrix given by Eq. 6 assumes that
X is deterministic and that eLS is homoscedastic i.e.
var(eLS(t)) = σ2, for each t. It is assumed that those
two assumptions hold. However, systems considered in this
article operate in closed-loop, since they are unstable in
open-loop. In that case, the assumption given by 8 does
not hold (Van den Hof, 1998). This partly explains why a
tailor-made pre-filtering of the data is done in practice

2.3 States Estimation by Tailor-Made Filtering

This part emphasizes the classical technique used in robots
identification to construct the regressors matrix X. Since
the regressors vectors are function of the states, the work

mainly consists in estimating the velocity and the accelera-
tion from the measured position. As described in (Gautier,
1997) or more recently in (Gautier et al., 2013), the data
pre-processing is divided in four sequential steps. Those
steps are influenced by the sampling frequency, noted ωs.
This frequency is usually chosen 100 times larger than the
natural frequency of the highest mode, ωdyn = ωs/100 ,
which must be modelled, in order to satisfy the Nyquist
rule.
Step 1. The first step consists in reconstructing the missing
data, or, more practically, to compute the derivatives of
the measured position. It is usually done thanks to nu-
merical differentiation (centred scheme). Prior to this, to
avoid amplification of the noise at high frequency, a low-
pass filtering is undertaken. This filter is applied forward
and backward to avoid phase lag introduction. It is a
Butterworth filter, whose order is nd + 2. Where nd is
the desired derivative order, which is usually equal to two.
The issue is to choose the cutting frequency of the filter,

ωq, to have ̂̇q(t) = q̇(t) and ̂̈q(t) = q̈(t) over the frequency
range of the system. The rule of thumb is to take it as
2ωdyn ≤ ωq ≤ 10ωdyn . It obviously requires knowledge
about the system.
Step 2. The observation matrix is constructed with the

estimated signals from the previous step: X
(
q̂, ̂̇q, ̂̈q

)
.

Step 3. A filter is then applied to all signals. The objec-
tive is to remove high frequencies perturbations in the
dependent variable measurements (generally, the input
torque). To be consistent, this filter is also applied to the
independent variables. Its cut-off frequency, ωf , is chosen
at about ωf ≥ 2ωdyn.
Step 4. After the previous step, the signals do not contain
any information above ωf . Therefore, they are re-sampled
at a lower frequency (down-sampling). This frequency is
usually taken equal to ωf .
In practice, three elements are worth noting. First, the
filters frequencies may be defined taking into account the
excitation signal spectrum instead of ωdyn. The second
element is that, with MatLab c©, the two last steps are
performed simultaneously with the decimate function. The
last element is that the described methodology is a rule of
thumb. It only provides approximate relations or intervals.
The choice relies on the practitioner skills. This is why
another way is investigated for users without solid back-
ground in robotic identification in order to perform the
step 1. The decimate filter is still considered for steps 3 and
4 to have a fair comparison with the classical technique by
taking into account the same number of data points.

3. KALMAN FILTER AND INTEGRATED RANDOM
WALK

3.1 The State Space Model: IRW

Many methods have been developed to deal with the
numerical differentiation issue; see e.g. (Dridi et al., 2010).
Nonetheless, the goal is here to suggest a practical and
straightforward technique. Therefore, the study will focus
on the well-known Kalman filter technique, in a discrete
time framework. This technique is summarized in (Norton,
1975) or (Young, 2000). It allows an off-line estimation
of the states without using the dynamic model, unlike
High Gain observers for instance. Equation 9 defines the



state vector of state space model, relation 10 is the state
equation and relation 11 is the observation equation.
Considering our robot velocity estimation, y would be the
measured position of link j, i.e. qj .

x(k) =

[
x(k)
∆x(k)

]
(9)

x(k) = Ax(k − 1) +Dη(k − 1) (10)

y(k) = h(k)x(k) + e(k) (11)

With,

A =

[
α β
0 γ

]
, D =

[
δ 0
0 κ

]
(12)

h is the row observation vector. η is the state noise,
assumed to be white and zero mean, with covariance ma-
trix Qη (diagonal). The measurement noise e is also zero
mean and white. Its covariance is written σ2

e . This model,
developed in (Young, 2012), is named Generalized Random
Walk (GRW). Many variants exist depending on the choice
of the hyper-parameters [α β γ δ κ Qη11

Qη22
].

For this study, the Integrated Random Walk (IRW: α =
β = γ = κ = 1, δ = 0 and h = [1 0]) will be considered.
In that case, since δ = 0, the term Qη11

has no influence.
Therefore, it will be equal to Qη22

in order to preserve
the definite-positive property of the covariance matrix.
Finally, the only remaining hyper-parameter is Qη22

. As it
will be seen later, its value may be estimated thanks to a
Maximum Likelihood (ML) optimization.

3.2 The Kalman and FIS Equations

From the model previously described, a specific Kalman
filter is implemented. First of all, it is associated with a
Fixed Interval Smoother (FIS) to take advantage of the off-
line process. Secondly, the filter and smoother equations
are modified to avoid the knowledge of the observation
noise variance, σ2

e . In a classical Kalman Filter, this
information is indeed required, like the covariance of the
state noise, Qη. Instead, all the equations are written as
functions of the Noise Variance Ratio (NVR), which is
defined by Qnvr = Qη/σ

2
e . The algorithm described in

(Young, 2012) is summarized below.
Prediction step:

x̂(k|k − 1) = Ax̂(k − 1) (13)

P (k|k − 1) = AP (k − 1)AT +DQnvrD
T (14)

Correction step:

x̂(k|k) = x̂(k|k − 1) + g(k)[y(k)− h(k)x̂(k|k − 1)]
(15)

g(k) = P (k|k − 1)h(k)[1 + h(k)P (k|k − 1)hT (k)]−1

(16)

P (k|k) = P (k|k − 1)− g(k)h(k)P (k|k − 1) (17)

P ∗(k|k) = σ̂2
eP (k|k) (18)

Smoothing step:

x̂(k|Ns) = A−1
[
x̂(k + 1|Ns) +DQηD

Tλ(k)
]

(19)

λ(k − 1) =

[
I − P ∗(k|k)

hT (k)h(k)

σ̂2
e

]T
(20)

(
ATλ(k)−

hT (k)

σ̂2
e

[y(k)− h(k)Ax̂(k − 1|k − 1)]

)

with λ(Ns) = 0

P ∗(k|Ns) = P ∗(k|k) + P ∗(k)ATP ∗(k + 1|k)−1 (21)

[P ∗(k + 1|Ns)− P ∗(k + 1|k)]P ∗(k + 1|k)−1AP ∗(k|k)

The observation noise covariance, σ2
e , is estimated at the

end of the filtering process in order to obtain the state
covariance matrix, P ∗, for the smoothing process. By
defining nx the size of the state vector (nx = 2 for the
IRW), the estimation is given by:

σ̂2
e =

1

Ns − nx

Ns∑

k=nx+1

(y(k)− h(k)x̂(k|k − 1))
2

1 + h(k)P (k|k − 1)hT (k)
,

=
1

Ns − nx

Ns∑

k=nx+1

ε2(k)

ν(k)
. (22)

In the time domain, the first order derivative of the signal

is then approximated as follows dx
dt
(tk) ≈

∆̂x(k)
tk+1−tk

, with

∆̂x(k) the second term of the estimated state vector
x̂(k|Ns). Similarly, x could be augmented with ∆2x in
order to estimate the second order derivative. From a
practical point of view, this algorithm is implemented in
the function irwsm of the CAPTAIN Toolbox, developed
by a team of Lancaster University; see (Taylor et al., 2007)
and http://captaintoolbox.co.uk.

3.3 Hyper-Parameters Optimization

As it has been said, the user does not have to provide
the observation noise covariance to irwsm contrary to a
classical Kalman filter. It remains the issue of the hyper-
parameters and more specifically of the NVR. Fortunately,
the toolbox provides also a function called irwsmopt which
estimates the hyper-parameters maximizing the likelihood
of the prediction error, ε(k), defined in 22. For further in-
formation, see e.g. (Durbin and Koopman, 2012). Finally,
this toolbox allows the user to process the data from a
system without a priori knowledge about it. Obviously, it
does not prevent him to be vigilant on the results.

4. EXPERIMENTAL RESULTS

4.1 Robot Description

To illustrate the methods previously described, we con-
sider the Stäubli TX40 robot, see Figure 1. This is a serial
manipulator composed of six rotational joints. There is
a coupling between the joints 5 and 6. Thus, two ad-
ditional parameters are added: fvm6 and fcm6, which
are respectively the viscous and dry friction coefficient
of the motor 6. The robot has 60 base dynamic param-
eters. The SYMORO+ software is used to automatically
calculate the customized symbolic expressions of models
(Khalil and Dombre, 2004), which allows to construct
the columns of X in Eq. 4. The reference trajectories
are trapezoidal (also called smoothed bang-bang accel-
erations). Since cond(X) = 200, the reference trajecto-
ries excite well the base parameters. The joint positions
and control signals are stored with a sampling frequency
fs = 5kHz.

The identification is performed with experimental data.
For the IDIM-LS method, the filters cut-off frequencies are



Fig. 1. Stäubli TX40

tuned according to (Gautier et al., 2013): 50Hz and 10Hz
respectively for the Butterworth and the decimate filters.
With respect to the rules given in section 2, it implies
that ωdyn = 5Hz. From an identification point of view,
three methods are compared. The first one is the classical
approach, with Butterworth filters, described in Section
2 and will be named by ”Classical”. The second method
is the irwsm implemented in the CAPTAIN Toolbox, de-
scribed in Section 3, and will be referred as ”IRWSM 1”.
The last one is a variant of the irwsm where the GRW
model contains three states, which allows estimating di-
rectly the second derivative without calling the algorithm
twice. This approach will be named ”IRWSM 2”. The state
matrices are then defined by relations 23.

Airwsm1 =

[
1 1
0 1

]
Airwsm2 =

[
1 1 0
0 1 1
0 0 1

]
(23)

4.2 Robot Identification with Good a priori Knowledge

Table 1 summarizes the results of the identification from
the experimental data. From 60 base parameters, only 28
are well identified with good relative standard deviations,
as explained in (Janot et al., 2014). Those parameters
define a set of essential dynamic parameters. The three
methods almost estimate the same parameters. Those
estimated values are satisfactory since they are similar
to those found in previous studies on this robot; see e.g.
(Janot et al., 2014). Their relative errors are equivalent
and can be considered as satisfactory, see Table 2.

This first identification proves that methods based on
the irwsm are able to provide as good estimates as the
classical one. However, in this case, we assumed good a
priori knowledge. In other words, the system bandwidth
was well-known and the filters were adequately tuned.
That can be an issue especially with the first identification

Table 1. Estimated parameters and relative
standard deviations for the good a priori

knowledge case

Param. Classical IRWSM 1 IRWSM 2

zz1r 1.24 (1.31 %) 1.24 (1.32 %) 1.24 (1.33 %)
fc1 6.90 (2.19 %) 6.85 (2.23 %) 6.85 (2.26 %)
fv1 8.07 (0.69 %) 8.09 (0.69 %) 8.09 (0.69 %)
xx2r

-0.48 (2.89 %) -0.47 (2.94 %) -0.48 (2.91 %)
xz2r -0.16 (4.45 %) -0.16 (4.47 %) -0.16 (4.44 %)
zz2r 1.09 (1.08 %) 1.09 (1.08 %) 1.09 (1.08 %)
mx2r

2.22 (2.35 %) 2.22 (2.37 %) 2.23 (2.36 %)
fc2 7.90 (1.75 %) 7.85 (1.78 %) 7.86 (1.77 %)
fv2 5.62 (1.10 %) 5.65 (1.10 %) 5.64 (1.10 %)
xx3r

0.14 (9.15 %) 0.14 (9.18 %) 0.14 (9.16 %)
zz3r 0.11 (9.01 %) 0.11 (9.16 %) 0.11 (9.08 %)
my3r -0.59 (2.56 %) -0.59 (2.56 %) -0.59 (2.54 %)
ia3 0.09 (9.26 %) 0.09 (9.30 %) 0.09 (9.38 %)
fc3 6.26 (2.22 %) 6.25 (2.24 %) 6.26 (2.23 %)
fv3 1.98 (2.11 %) 1.98 (2.12 %) 1.98 (2.12 %)
mx4 -0.03 (28.2 %) -0.03 (30.0 %) -0.03 (29.9 %)
ia4 0.03 (16.4 %) 0.03 (16.6 %) 0.03 (16.7 %)
fc4 2.38 (6.18 %) 2.35 (6.27 %) 2.37 (6.22 %)
fv4 1.12 (3.66 %) 1.13 (3.64 %) 1.13 (3.65 %)
my5r -0.03 (17.8 %) -0.03 (18.1 %) -0.03 (18.2 %)
ia5 0.04 (14.3 %) 0.04 (14.7 %) 0.04 (14.8 %)
fc5 2.94 (4.67 %) 2.93 (4.72 %) 2.93 (4.70 %)
fv5 1.84 (2.89 %) 1.84 (2.91 %) 1.84 (2.90 %)
ia6 0.01 (30.9 %) 0.01 (31.5 %) 0.01 (31.5 %)
fc6 0.29 (59.9 %) 0.25 (70.9 %) 0.25 (69.0 %)
fv6 0.66 (3.94 %) 0.66 (3.95 %) 0.67 (3.96 %)
fcm6 1.83 (6.57 %) 1.87 (6.48 %) 1.87 (6.46 %)
fvm6 0.61 (3.35 %) 0.61 (3.40 %) 0.61 (3.40 %)

Table 2. Direct comparison relative errors

Classical IRWSM 1 IRWSM 2

Good knowledge 5.1 % 5.1 % 5.1 %
Poor knowledge 9.2 % 7.5 % 8.6 %

process for a system totally unknown, like a robot bought
off-the-self.

To test the robustness of our proposed methodology, we
consider the same data set but assuming ωdyn = 20Hz
due to a lack of knowledge on the system. The relation
ωq = 10ωdyn is kept identical, which leads to a 200Hz
cut-off frequency for the Butterworth filter. Concerning
the decimate filter, we are slightly less restrictive with
ωf = 5ωdyn = 100Hz.

4.3 Robot Identification with Poor a priori Knowledge

The results of the identification with poor a priori knowl-
edge are summarized in Table 3. IRWSM 1 provides better
results than the two others since its has a lower relative
error, see Table 2. That is also visible on some estimated
parameters like zz1r or zz3r . This example illustrates the
difficulty of the classical IDIM-LS method when the sys-
tem bandwidth is not well-known and when non-optimal
relations are used to tune the filters.

The relative standard deviations provided in Table 3 may
seem promising. However, they are not valid since the
residuals are not white as it should be the case in theory.
Figures 2 and 3 provide the residuals autocorrelation
estimations respectively for the good and the poor a priori
knowledge cases. The residuals clearly appear to be serially
correlated in the poor knowledge case. In practice, this
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Fig. 2. Residuals autocorrelation for the good a priori
knowledge case
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Fig. 3. Residuals autocorrelation for the poor a priori
knowledge case

identification process can be viewed as a first step to
retrieve the closed-loop dynamics. Subsequently, a second
step can be performed to identify the system with filters
appropriately tuned in order to obtain valid estimates and
standard deviations.

Figure 4 illustrate the torques estimated with the three
methods for each link. As expected with the parameters
values, the IRWSM 1 (middle column) estimated torques
are better. For instance, it is noticeable that this method is
slightly less sensitive to the high frequencies ripples about
1s for the links 3, 4 and 6.

One fact is worth noting about this poor knowledge case.
The irwsmopt algorithm tends to catch all the dynamic
of the noisy signal. In other words, it gives too much
importance to the covariance of the state noise compared
to the one of the measurement noise. A careful visual
inspection of the signals, prior to the identification, by
the user is therefore required. A NVR equal to 10−5 has
already proved to be an appropriate choice, see (Brunot
et al., 2016). This value of NVR was fixed for both IRWSM
methods presented in this section.

This more practical case shows that the IRWSM approach
is robust against poor a priori knowledge. However, it

Table 3. Estimated parameters and relative
standard deviations for the poor a priori

knowledge case

Param. Classical IRWSM 1 IRWSM 2

zz1r 1.21 (0.75 %) 1.25 (0.61 %) 1.22 (0.70 %)
fc1 6.55 (1.30 %) 6.52 (1.06 %) 6.50 (1.22 %)
fv1 8.18 (0.38 %) 8.19 (0.31 %) 8.20 (0.36 %)
xx2r

-0.48 (1.64 %) -0.48 (1.34 %) -0.48 (1.54 %)
xz2r -0.16 (2.50 %) -0.16 (2.09 %) -0.16 (2.37 %)
zz2r 1.03 (0.63 %) 1.09 (0.50 %) 1.05 (0.58 %)
mx2r

2.32 (1.29 %) 2.20 (1.11 %) 2.29 (1.23 %)
fc2 7.65 (1.01 %) 7.52 (0.84 %) 7.59 (0.95 %)
fv2 5.71 (0.61 %) 5.77 (0.49 %) 5.74 (0.57 %)
xx3r

0.14 (4.98 %) 0.14 (4.28 %) 0.14 (4.77%)
zz3r 0.05 (11.3 %) 0.12 (4.01 %) 0.07 (7.38 %)
my3r -0.61 (1.39 %) -0.58 (1.21 %) -0.60 (1.32 %)
ia3 0.13 (3.72 %) 0.09 (4.58 %) 0.11 (3.88 %)
fc3 5.80 (1.33 %) 5.90 (1.06 %) 5.80 (1.24 %)
fv3 2.08 (1.13 %) 2.07 (0.92 %) 2.08 (1.05 %)
mx4 -0.01 (47.6 %) -0.03 (12.3 %) -0.02 (27.2 %)
ia4 0.03 (8.43 %) 0.03 (7.43 %) 0.03 (7.99 %)
fc4 2.24 (3.68 %) 2.25 (2.98 %) 2.24 (3.44 %)
fv4 1.17 (1.99 %) 1.15 (1.65 %) 1.16 (1.87 %)
my5r -0.04 (7.49 %) -0.03 (8.02 %) -0.04 (7.46 %)
ia5 0.04 (6.69 %) 0.04 (6.42 %) 0.04 (6.38 %)
fc5 2.80 (2.71 %) 2.75 (2.25 %) 2.80 (2.53 %)
fv5 1.87 (1.59 %) 1.90 (1.28 %) 1.88 (1.49 %)
ia6 0.01 (14.4 %) 0.01 (14.3 %) 0.01 (13.7 %)
fc6 0.28 (33.3 %) 0.30 (25.4 %) 0.30 (29.8 %)
fv6 0.68 (2.18 %) 0.67 (1.77 %) 0.68 (2.03 %)
fcm6 1.75 (3.77 %) 1.73 (3.07 %) 1.73 (3.58 %)
fvm6 0.62 (1.85 %) 0.63 (1.49 %) 0.63 (1.72 %)

requires a careful use with a potential manual selection
of the NVR. This estimation can be used as a first step
for the design of pre-filters for the Classical method. In
practice, the IRWSM 1 solution should be preferred.

5. CONCLUSION

In this paper the usual robot identification methodology
is presented. It is based on the well-known Least-Squares
method but it requires a careful tailor-made pre-filtering
to deal with closed-loop issues and to estimate the non-
measured signals. This tailor-made pre-filtering process is
summarized. Furthermore, a new pre-filtering methodol-
ogy is developed. That one is based on a combination
of a Kalman filter and a fixed interval smoother. The
obtained results suggest that the new method is a suitable
alternative when the system bandwidth is not known prior
to the identification.
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