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Abstract

This paper describes a method for estimating the motion of a calibrated camera and
the three dimensional geometry of the filmed environment. The only data used is
video input. Interest points are tracked and matched between frames at video rate.
Robust estimates of the camera motion are computed in real-time, key frames are
selected to enable 3D reconstruction of the features. We introduce a local bundle ad-
justment allowing 3D points and camera poses to be refined simultaneously through
the sequence. This significantly reduces computational complexity when compared
with global bundle adjustment. This method is applied initially to a perspective
camera model, then extended to a generic camera model to describe most existing
kinds of cameras. Experiments performed using real world data provide evaluations
of the speed and robustness of the method. Results are compared to the ground
truth measured with a differential GPS. The generalized method is also evaluated
experimentally, using three types of calibrated cameras: stereo rig, perspective and
catadioptric.
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1 Introduction

1.1 Previous Work

Automatic estimation of 3D scene structure and camera motion from an image
sequence (known as “Structure from Motion” or SfM) has been the subject of
much investigation. Different camera models - pinhole, fish-eye, stereo, cata-
dioptric, multicamera systems, etc - have been used in such studies. This is still
a very active field of research, and several successful SfM systems currently
exist [20,1,18,11,23].

Calculation Time vs. Accuracy A large number of dedicated algorithms
(i.e. for given camera models) have been successfully developed and are now
commonly used for perspective or stereo rig models [18,20].
There are several noteworthy types of dedicated SfM algorithms. These include
firstly approaches without global optimization of the full geometry which are
fast but of questionable accuracy (due to errors that accumulate over time).
Among the work proposed for Vision-Based SLAM (Simultaneous Localization
and Mapping), Nistér et al.[18] have presented an approach known as “visual
odometry”. This method estimates the motion of a stereo head or a simple
camera in real-time, using visual data only: its aim is to provide guidance for
robots. Davison [3] proposes a real-time camera pose calculation method but
assumes a small number of landmarks only (less than 100 landmarks). This
approach is best suited to indoor environments and is not therefore appropri-
ate for lengthy camera displacements due to the complexity of its algorithms
and progressively increasing uncertainties.
There are also different off-line methods that use bundle adjustment to opti-
mize global geometry and thus obtain highly accurate models (see [27] for a
thorough survey of bundle adjustment algorithms). Such an optimization is
very costly in terms of computing time and can not be implemented in a real-
time application. Bundle adjustment entails iterative adjustment for camera
poses and point positions in order to obtain the optimal least squares solution.
Most of these articles call on the Levenberg-Marquardt (LM) algorithm, which
combines the Gauss-Newton algorithm with the method of gradient descent
to solve the non linear criterion involved in bundle adjustment. The main
problem in such bundle adjustment is that it is very slow, especially for long
sequences because it requires inversion of linear systems whose size is propor-
tional to the number of estimated parameters (even if the sparse structure of
the systems involved is taken into account).
It is also important to have an initial estimate relatively close to the real
solution. Applying a bundle adjustment in a hierarchical way is therefore an
interesting idea [9,24,23] but does not solve the computing time problem. An
alternative method is therefore necessary to decrease the number of parame-
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ters to be optimized. Shum et al.[24] exploit information redundancy in images
by using two virtual key frames to represent a sequence. Steedly and Essa [25]
propose an incremental reconstruction with bundle adjustment. They then re-
adjust only the parameters which have changed. While their method is faster
than a global optimization, it is not efficient enough for long sequences that
are highly data-dependent. Kalman filters or extended Kalman filters [3] are
another possibility, but such filters are known to provide less accurate results
than bundle adjustment.

Generic vs. Specific Structure from Motion Yet another widely explored
avenue is that of omni-directional central (catadioptric, fish-eye) or non-central
(e.g. multicamera) systems that offer a larger field of view [2,14,19]. It is highly
challenging to develop generic SfM tools suitable for any camera model. This
approach has recently been investigated using generic camera models [10,22].
In such models, pixels define image rays in the camera’s coordinate system.
Rays corresponding to pixels are given by the calibration function. They inter-
sect at a single point usually called “projection center” in the case of a central
camera [10] but this is not necessary in other cases. In recent work on generic
SfM, camera motion is estimated by the generalization of the conventional
essential matrix [22,19,16] derived from the Pless Equation [19], and minimal
relative pose estimation algorithms [26].
In the same way as for the specific models, a method is also required for re-
finement of 3D points and camera poses. In the generic case which implies
different cameras (pinhole, stereo, fish-eye), bundle adjustment is different
from the conventional approach used for perspective cameras. The minimized
error may be a 3D or a 2D error. As the projection function is not explicit for
some camera models, a 3D error can be used [22,14]. A 3D error is not however
optimal since it favors the contribution of far points from the cameras and can
produce biased results [13]. An other solution is to minimize a 2D reprojection
error (in pixels) by clustering all camera rays such that each cluster of rays is
approximated by a perspective camera [22].

Summary and comparison with previous work This paper first proposes
an accurate and fast incremental reconstruction and localization algorithm.
Our idea [15] is to take advantage of both offline methods with bundle ad-
justment and faster incremental methods. In our algorithm, a local bundle
adjustment is carried out each time a new camera pose is added to the sys-
tem. A similar approach [4] was also published a few months after ours [15],
but it is not generic and it does not include a key-frame selection to stabilize
3D calculation as ours. A related approach is proposed by Zhang and Shan
[28], but their work calls for local optimization of an image triplet only, and
eliminates structure parameters from the proposed reduced local bundle ad-
justment. By taking into account 2D reprojections of 3D estimated points in
more than three images without eliminating 3D point parameters, it is possible
to greatly improve reconstruction accuracy.
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Secondly, this paper shows how our fast reconstruction method is extended
to generic cameras. Within this generalization framework, our method [16] re-
places image projections of a specific camera model with use of back-projected
rays and minimization of angular error between rays. Its first advantage is, of
course, a high degree of interchangeability between camera models. The sec-
ond advantage is that it is also effective where the image projection function is
not explicit (as in the case of non-central catadioptric cameras) and precludes
clustering.

In summary, previously proposed approaches related to ours include the fol-
lowing:
� generic but non-real-time methods [22,10,12] ([10] deals only with central
cameras).
� real-time but non-generic methods [3,18], not using bundle adjustment.
� generic methods using the Pless Equation [19,22] (generalization of the epipo-
lar constraint), but without details on how to solve the equation in common
situations.
� dedicated or “specific” (non-generic) methods using local bundle adjust-
ment [15,4].

1.2 Our Contribution

The first new feature of our approach is use of local bundle adjustment, for
both specific model (perspective) and generic model cameras. The second is
inclusion of a detailed method for solving the Pless equation (in most cases,
this is not a “simple” linear problem as suggested in [19,22]). Our original
study of artificial solutions of the linearized version of Pless equation is a by-
product. Finally, the system as a whole is new (in that it is the first to be
both real-time and generic).

For purposes of clarity, this paper first describes the complete method (includ-
ing local bundle adjustment) for a standard (perspective) camera in Section
2. This Section also compares the time complexity of our local bundle ad-
justment in the incremental scheme to that of the standard (global) bundle
adjustment in the hierarchical scheme. Sections 3 and 4 deal with the general-
ization of the method, by describing the generic camera model and explaining
modifications to geometry refinement. This is followed by a more detailed look
at the generic initialization step and various solutions to the Pless equation.
Finally, experiments performed for perspective and generic camera models are
presented in Sections 5 and 6 respectively.
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2 Incremental Method for the Perspective Camera Model

Let us consider a video sequence acquired with a camera mounted on a ve-
hicle moving through an unknown environment. The purpose of our work is
to enable determination of camera position and orientation in a global refer-
ence frame at several points in time t, along with the 3D position of a set of
points (viewed along the scene). To do so, we use a monocular camera whose
intrinsic parameters (including radial distortion) are known and assumed to
be unchanged throughout the sequence. The algorithm initially determines a
first image triplet for use in setting up the global frame and system geometry
(Section 2.2). A robust pose calculation is then carried out for each frame
of the video flow (Section 2.3) using feature detection and matching (Section
2.1). Some of the frames are selected as key frames for 3D point triangula-
tion (Section 2.4). The system operates “incrementally”, and when a new key
frame and 3D points are added, it performs local bundle adjustment (Section
2.5). The result (see Figure 4) is a set of camera poses corresponding to key
frames and 3D coordinates of the points seen in the images.

2.1 Interest Point Detection and Matching

Our entire method is based on the detection and matching of feature points
(see Figure 1). In each frame, Harris corners [8] are detected. A pair of frames
is matched as follows:

• For each interest point in image 1, we select possible corresponding points
in a region of interest defined in image 2.
• Then a Zero Normalized Cross Correlation score is computed for these in-

terest points neighborhoods.
• The pairs with the highest scores are selected to provide a list of corre-

sponding point pairs between the two images. A unicity constraint (winner
takes all) is applied such that a point can only be matched with one other
point.

For adaptation to a real-time application, the “detection and matching” step
has been implemented using SIMD extensions of modern processors. This is
both a fast and highly efficient solution.

2.2 Sequence Initialization With 3 Views

We know that the motion between two consecutive frames must be sufficiently
large to compute the epipolar geometry and 3D points. For this reason, frames
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Fig. 1. Example of an image from video data. Small squares represent detected
interest points, and white lines the distance covered by the matched points.

are selected relatively far from each other but with a suitable number of com-
mon points. To do so, the first image denoted I1 is always selected as a key
frame. The second image I2 is selected as far as possible from I1 in the video
but with at least M interest points matched in I1. Then for I3, the frame se-
lected is the one farthest from I2, so that there are at least M matched interest
points between I3 and I2 and at least M ′ matched points between I3 and I1

(for our experiments, the values M = 400 and M ′ = 300 were selected). This
process affords a sufficient number of corresponding points between frames to
calculate the movement of the camera. The camera coordinate system associ-
ated with I1 is taken as the global coordinate system, and the relative poses
between the first three key frames are calculated using the 5-point algorithm
[17] and a RANSAC [6] approach. Use of three views enhances the robustness
of the method and eliminates ambiguities induced by coplanar points [17].
More details on the initialization process are given in [23]. Observed points
are subsequently triangulated into 3D points using the first and the third
observation. Finally estimated poses and 3D point coordinates are optimized
through standard bundle adjustment

2.3 Robust Real-Time Pose Estimates

Let’s assume that poses obtained with cameras C1 to Ci−1 and corresponding
to selected key frames I1 to I i−1 were previously calculated in the reconstruc-
tion reference frame. A set of points were computed whose projections were
present in the corresponding images. The next step is to calculate camera pose
C corresponding to the last acquired frame I. To do so, we match I (last ac-
quired frame) and I i−1 (last selected key frame) to determine a set of points p
whose projections on the cameras (Ci−2 Ci−1 C) are known and whose 3D co-

6



ordinates have already been computed. Taking 3D points reconstructed from
Ci−2 and Ci−1, we use Grunert’s pose estimation algorithm as described in
[7] to compute the location of camera C. A RANSAC process then gives an
initial estimate of camera C pose which is subsequently refined using a fast
LM optimization stage with only 6 parameters (3 for optical center position
and 3 for orientation). At this stage, the covariance matrix of the camera pose
C is calculated via the Hessian inverse and we can draw a 90% confidence
ellipsoid (see Figure 2). If Cov is the covariance matrix of camera pose C, the
ellipsoid of confidence is given by ∆xT Cov−1∆x ≤ 6.25 since ∆xT Cov−1∆x
obeys the X2 distribution with 3 DOFs.

Fig. 2. Top view of a processing reconstruction. This shows the trajectory, recon-
structed 3D points and a confidence ellipsoid for the most recently calculated cam-
era.

2.4 Key Frame Selection and 3D Point Reconstruction

As already seen above, not all frames of the input are taken into account
for 3D reconstruction: only a sub-sample of the video is used (Figure 3). For
each frame, the normal approach is to compute the corresponding localization
from the last two key frames. In our case, a criterion is incorporated to indi-
cate whether or not a new frame must be added as a key frame. First, if the
number of points matched with the last key frame I i−1 is not sufficient (typ-
ically, below a fixed level M , (M = 400 with in our experiments), a new key
frame is required. This is also necessary if the calculated position uncertainty
exceeds a certain level (for example, more than the mean distance between
two consecutive, key positions). Obviously, the frame that did not meet the
criterion cannot become a new key frame I i and the immediately preceding
frame is therefore taken. New points (i.e. those only observed in I i−2, I i−1 and
I i) are reconstructed using a standard triangulation method.
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Fig. 3. Video sub-sampling: localization of all frames. 3D point reconstruction with
key frames (squares).

Fig. 4. Top view of a complete reconstruction in an urban environment. The distance
covered is a length of about 200 meters including a half-turn. More than 8.000 3D
points are reconstructed for 240 key frames.

2.5 Local Bundle Adjustment

Following selection of the last key frame I i and its addition to the others, the
reconstruction is optimized. The optimization process is a bundle adjustment
or Levenberg-Marquardt minimization of the cost function f i(Ci,P i) where Ci
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and P i are respectively the parameters of the cameras (extrinsic parameters)
and the 3D points chosen for this stage i. The idea is to reduce the number
of calculated parameters by optimizing only the extrinsic parameters of the n
last cameras and accounting for the 2D reprojections in the N (with N ≥ n)
last frames (see Figure 5). Thus, Ci = {Ci−n+1 . . . Ci} and P i contains all the
3D points projected on cameras Ci. The cost function f i is the sum of points
P i reprojection errors in the last frames Ci−N+1 to Ci:

f i(Ci,P i) =
∑

Ck∈{Ci−N+1 ... Ci}

∑

Pj∈Pi

||εk
j ||

2

where ||εk
j ||

2 = d2(pk
j , K

kPj) is the square of the Euclidean distance between
K

kPj, estimated projection of 3D point Pj through the camera Ck and the
measured corresponding observation pk

j . K
k is the projection matrix 3 × 4 of

camera k comprising Ck extrinsic parameters and known intrinsic parameters.

Thus, n (number of optimized cameras at each stage) and N (number of
images taken into account in the reprojection function) are the two main pa-
rameters involved in the optimization process. Their given value can influence
both quality of results and speed of execution. Our experiments enabled the
determination of values for n and N (typically, we use n = 3 and N = 10)
that provide an accurate reconstruction. Optimization takes place in two LM
stages with an update of inliers/outliers between the two stages. A series of
LM iterations is stopped if the error is not suitably decreased or a maximum
number of iterations is reached (5 in our case). In practice, the number of
necessary iterations for each local bundle adjustment is quite low; this is due
to the fact that, excepting the last added camera, all the cameras poses have
already been optimized at stage i− 1, i− 2, ...

It should be noted that when the reconstruction process starts, we refine not
only the last parameters of the sequence, but the very whole 3D structure.
Thus, for i ≤ Nf , we opted for N = n = i. Nf is the maximum number of
cameras required for stage i optimization to be global (in our experiments, we
choose Nf = 20). In this way, reliable initial data is obtained, an important
factor given the recursive nature of the algorithm, without any problems, since
the number of parameters is still relatively restricted at this stage.

2.6 Time Complexities for Local and Global Bundle Adjustments

Detailed calculation complexity calculations are given in the Appendix A of
this paper. Let p be the number (considered as constant) of points projected
through each camera. Based on a video sequence of Nseq key frames, the
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Ci

Ci−1

Ci−2

Ci−3 n

N

Ci

Pi

Fig. 5. Local bundle adjustment when camera Ci is added. Only the points and
cameras surrounded by dotted lines are optimized. We nevertheless account for 3D
point reprojections in the N last images.

complexity of one local bundle adjustment iteration applied to the n last
cameras after allowance for 2D reprojections on N images is

Θ(p.N + p.n2 + n3)

whereas the complexity of one global bundle adjustment iteration applied to
the whole sequence is

Θ
(

p.N2
seq + N3

seq

)

.

It is clearly advantageous to reduce the number of parameters (n and N)
involved in the optimization process. As an example, the complexity gains
with respect to global bundle adjustment obtained for a sequence of 20 key
frames and 150 2D reprojections per image are shown in Table 3.

Type p n N gain

global 150 20 20 1

reduction 1 150 5 20 10

reduction 2 150 3 10 25

Table 1
Complexity gain obtained through local bundle adjustment in comparison with
global bundle adjustment for one iteration.

This study deals with only one LM iteration. In practice, parameters n and
N are fixed with low values (n = 3 and N ≤ 10) for our incremental method.
Furthermore, the number of iterations is limited by 10 for each local bundle
adjustment (although we note that the mean number of necessary iterations
is less than that). As a consequence, the time complexity of local bundle
adjustment is O(1) for each key frame and is O(Nseq) in our incremental
scheme for a complete sequence.
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This should be compared to the complexity of global bundle adjustment in
the hierarchical scheme [9]. At first glance, one iteration of the last bundle
adjustment step over the whole sequence is greater than N3

seq. So it is easy
to say that the time complexity is the best for the incremental scheme. A
more valuable comparison could be done if we assume that the track length
is bounded by a constant l. In that case, the complexity N3

seq due to solve
the reduced camera system of global bundle is reduced to Nseql

2 [27]. So the
complexity of one iteration of global bundle is at least proportional to the
sequence length. Since the global bundle adjustment is applied in a hierarchi-
cal scheme, we apply it on 1 sequence of length Nseq, 2 sequences of length
Nseq/2, 4 sequences of length Nseq/4 ... (in the reverse order). Thus the overall
complexity is greater than Nseqlog(Nseq). One time again, the time complexity
is the best for the incremental scheme.

2.7 Method Summary

In summary, the proposed method consists of the following steps:

(1) Select an image triplet that provides the first three key frames (Section
2.2). Set up the global frame, estimate the relative pose, and triangulate
3D points.

(2) For each new frame, calculate matches with last key frame (Section 2.1)
and estimate the camera pose and uncertainty (Section 2.3). Determine
whether a new key frame is needed. If not, repeat 2.

(3) If a new key frame is necessary, select the preceding frame as new key
frame, triangulate new points (Section 2.4) and make a local bundle ad-
justment (Section 2.5). Repeat the above starting from step 2.

3 Generic Camera Model and Geometry Refinement

The method presented in Section 2 is designed for a perspective camera model.
Our approach, however, is geared to also using other kinds of cameras for
3D reconstruction. Dedicated methods are possible for each (e.g. catadioptric
camera, stereo rig) but a method suitable for any type of camera involved
would be very valuable. Our approach thus entails extending the incremental
method to a generic camera model [16]. In the following section (Section 3),
the pixel error applied to refine geometry is replaced by a generic error. Robust
initialization with three views is then described in detail in Section 4.
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3.1 Camera Model

For any pixel p of a generic image, the (known) calibration function f of the
camera defines an optical ray r = f(p). This projection ray is an oriented line
r = (s,d) for which s is the starting point or origin and d is the direction of
the ray in the camera frame (||d|| = 1). For a central camera, s is a single
point (camera center) whatever the pixel p. In the general case, s could be
any point given by the calibration function.

3.2 Error Choice

Let Pj = [xj , yj, zj , tj]
⊤ be the homogeneous coordinates of the j-th point in

the world frame. Let R
i and ti be the orientation (rotation matrix) and the

origin of the i-th camera frame in the world frame.

If (si
j ,d

i
j) is the optical ray corresponding to the observation of Pj through

the i-th camera, the direction of the line defined by si
j and Pj is Di

j =

R
i⊤[I3 | −ti]Pj − tjs

i
j in the i-th camera frame. In the ideal case, directions

di
j and Di

j are parallel (which is equivalent to an image reprojection error of
zero pixels).

The conventional approach [27,15] consists of minimizing a sum of squares
||ǫi

j||
2 where ǫi

j is a specific error depending on the camera model: the repro-
jection error in pixels. In our case, a generic error must be minimized. We
thus define ǫi

j as the angle between the directions di
j and Di

j defined above
(see Figure 6).

Many experiments show that the convergence of bundle adjustment is very

poor with ǫi
j = arccos(di

j .
Di

j

||Di
j
||
) and satisfactory with ǫi

j defined as follows [12].

We have thus chosen ǫi
j = π(RijD

i
j) with R

i
j a rotation matrix such that Rijd

i
j =

[0 0 1]⊤ and π a function R
3 → R

2 such that π([x y z]⊤) = [x
z

y

z
]⊤. Note that

ǫi
j is a 2D vector whose Euclidean norm ||ǫi

j || is equal to the tangent of the
angle between di

j and Di
j . The tangent is a good approximation of the angle

if it is small.

3.3 Intersection, Resection and Bundle Adjustment

Once ǫi
j redefined, it is a straightforward matter to redefine the common tools

for (incremental) reconstruction. Calculation of a 3D point coordinates Pj

knowing its observations in cameras C1 . . . Cn (intersection) is given by min-
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Camera i(Ri, ti)

Point j(xj , yj , zj , tj)

D
i
j

d
i
j

ǫi
j

s
i
j

Fig. 6. Angular bundle adjustment: the angle between observation ray (si
j ,d

i
j) and

3D ray D
i
j which goes from s

i
j to 3D point is minimized.

imizing gj :

gj(Pj) =
∑

i=1...n

||ǫi
j||

2.

Calculation of camera pose Ci knowing 3D points P1 . . . Pm (resection) is
given by minimizing gi:

gi(Ci) =
∑

j=1...m

||ǫi
j||

2.

In the same way as for the “specific” method, a local bundle adjustment is ap-
plied each time a new key frame I i is added to the reconstruction. Parameters
of estimated 3D points and cameras at the end of the sequence are refined by
the minimization of the cost function gi:

gi(Ci,P i) =
∑

Ck∈{Ci−N+1 ... Ci}

∑

Pj∈Pi

||ǫk
j ||

2.

where Ci and P i are respectively the generic camera parameters (extrinsic
parameters of key frames) and the 3D points chosen for stage i (Figure 7). We
account for points reprojections in the N (with N ≥ n) last frames (typically
n = 3 and N = 10).

4 Generic Initialization

The following paragraphs describe in detail the generic initialization of incre-
mental 3D reconstruction. Section 4.1 briefly presents the Plücker coordinates
used to describe 3D rays in space. The generic epipolar constraint (or Pless
Equation) is also described in Section 4.2, and Section 4.3 shows how to solve
it in different cases. Finally robust initialization with three views and robust
pose estimation are explained in Sections 4.4 and 4.5 respectively.
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Ci

Ci−1

Ci−2

Ci−3

Pi

Ci

N

n

Fig. 7. Local angular bundle adjustment when camera Ci is added. Only points Pi

and cameras Ci parameters surrounded by dotted lines are optimized. The minimized
criterion nevertheless accounts for 3D points projections in the N last images.

4.1 Plücker Coordinates

Based on a set of pixel correspondences between two images, the relative pose
(R, t) of two cameras can be estimated in a generic framework. For each 2D
points correspondence (x0, y0) and (x1, y1) between images 0 and 1, we have a
correspondence of optical rays (s0,d0) and (s1,d1). A ray (s,d) is defined by
its Plücker coordinates, which are convenient for this calculation. The Plücker
coordinates of a 3D line (or ray) are two 3 × 1 vectors (q,q′) respectively
named direction vector and moment vector. q gives the direction of the line
and q′ is such that q · q′ = 0. Any point P on the line described by (q,q′)
satisfies q′ = q ∧ P. Plücker coordinates are defined up to a scale and a
parametrization of the line is given by (q′ ∧ q) + αq, ∀α ∈ R if ||q|| = 1.

For an optical ray (s,d) as previously defined, where s is the origin of the
ray and d its direction in the camera frame, Plücker coordinates in the same

frame are:











q = d

q′ = d ∧ s

4.2 Generalized Epipolar Constraint (or Pless Equation)

Let camera 0 be the origin of the global coordinates system. Its pose is written

as R0 = I3 and t0 =
[

0 0 0

]⊤

. We want to determine (R, t) which is the pose

of camera 1 in the same frame. For each pixel correspondence between image
0 and image 1, optical ray (q0,q

′
0) and (q1,q

′
1) must intersect in space at a

single 3D point M (see Figure 8).
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Camera 0 = global frame

M

(q0,q
′

0
)

Camera 1 (R, t)

(q1,q
′

1
)

Fig. 8. Relative pose of 2 cameras

In the global frame, the two rays are:











q00 = q0

q′
00 = q′

0

and











q10 = Rq1

q′
10 = −[t]×Rq1 + Rq′

1

where [t]× =















0 −tz ty

tz 0 −tx

−ty tx 0















and t =
[

tx ty tz

]⊤

.

[t]× is the skew-symmetric cross-product matrix of t such that [t]×x = t ∧ x
for a 3× 1 vector x.

The two rays intersect if and only if q10 · q
′
00 + q′

10 · q00 = 0, which leads to
the generalized epipolar constraint or Pless Equation [19]:

q′
0

⊤
Rq1 − q⊤

0 [t]×Rq1 + q⊤
0 Rq

′
1 = 0 (1)

The generalized essential matrix G is defined as follows [22]:

G =







−[t]×R R

R 03×3







The matrix G is a 6 × 6 matrix verifying the constraint:







q1

q′
1







⊤

G







q0

q′
0





 =

0 if and only if rays (q0,q
′
0) and (q1,q

′
1) intersect in space. G contains 9

zero coefficients and the 9 coefficients of R twice. There are thus 18 useful
coefficients.

We identify two cases where this equation has an infinite number of solutions.
Obviously, this number is infinite if the camera is central (the 3D is recovered
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up to a scale). We note that Equation 1 is the usual epipolar constraint defined
by the essential matrix E = [t]×R if the camera center is at the origin of the
camera frame.

The second case is less obvious but it occurs in practice. In our experiments,
we assume there are only simple matches: all projection rays (si,di) of a
given 3D point go through a same camera center (in the local coordinate of
the generic camera). In other words, we have q′

0 = q0 ∧ c0 and q′
1 = q1 ∧ c1

with c0 = c1. For a multicamera system comprising central cameras (e.g. the
stereo rig), this means that 2D points correspondences are only made with
points of the same sub-image. This is often the case in practice due to the
small regions of interest used for reliable matching, or the empty intersections
between the fields of views of compositing cameras. If the camera motion is a

pure translation (R = I3), Equation 1 becomes q⊤
0 [t]×q1 = q′

0

⊤
q1 + q⊤

0 q′
1 = 0

where the unknown is t. In this context, the scale of t can not be estimated.
We assume for our purposes that the camera motion is not a pure translation
at the initialization stage.

4.3 Solving the Pless Equation

Equation 1 is rewritten as

q′
0

⊤
R̃q1 − q⊤

0 Ẽq1 + q⊤
0 R̃q

′
1 = 0 (2)

where the two 3 × 3 matrices (R̃, Ẽ) are the new unknowns. We store the
coefficients of (R̃, Ẽ) in an 18 × 1 vector x and see that each value of the
4-tuple (q0,q

′
0,q1,q

′
1) produces a linear equation a⊤x = 0. If we have 17

different values of this 4-tuple for each correspondence k, we have 17 equations
a⊤

k x = 0. This is enough to determine x up to a scale factor [22]. We have
built the matrix A17 containing the 17 correspondences such that ‖A17x‖ = 0
with A

⊤
17 = [a⊤

1 |a
⊤
2 | · · ·a

⊤
17]. The resolution depends on the dimension of the

A17 kernel which directly depends on the type of camera used. We determine
Ker(A17) and its dimension by a Singular Value Decomposition of A17. In
this paper, we have distinguished three cases: (1) central cameras with an
unique optical center (2) axial cameras with collinear centers and (3) non-
axial cameras.

It is not surprising that the kernel dimension of the linear system to solve
is greater than one. Indeed, the linear Equation 2 has more unknowns (18
unknowns) than the non-linear Equation 1 (6 unknowns). Possible dimensions
are reported in Table 2 and are justified below. Previous works [19,22] ignored
these dimensions, although a (linear) method is heavily dependent on them.
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Camera Central Axial Non-Axial

dim(Ker(A17)) 10 4 2

Table 2
dim(Ker(A17)) depends on the kind of camera.

Central Camera For central cameras (e.g. pinhole cameras), all optical
rays converge at the optical center c. Since q′

i = qi ∧ c = [−c]×qi, Equation 2
becomes q0

⊤([c]×R̃− Ẽ− R̃[c]×)q1 = 0. We note that (R̃, Ẽ) = (R̃, [c]×R̃− R̃[c]×)
is a possible solution of equation 2 for any 3 × 3 matrix R̃. Such solutions
are “exact”: Equation 2 is exactly equal to 0 whatever (q0,q1). Our “real”
solution is (R̃, Ẽ) = (0, [t]×R) if c = 0, and it is not exact due to image noise.
Thus the dimension of Ker(A17) is at least 9+1. Experiments have confirmed
that this dimension is 10 (up to noise). In this case, we simply solve the usual
epipolar constraint constraint q0

⊤[t]×Rq1 = 0 as described in [9].

Axial Camera This case includes the common stereo rig of two perspective
cameras. Let ca and cb be two different centers of the camera axis. Appendix B
shows that “exact” solutions (R̃, Ẽ) are defined by

Ẽ = [ca]×R̃− R̃[ca]× and R̃ ∈ V ect{I3×3, [ca − cb]×, (ca − cb)(ca − cb)
⊤}

based on our assumption of “simple” matches (Section 4.2). Our real solution
is not exact due to image noise, and we note that the dimension of Ker(A17)
is at least 3+1. Experiments have confirmed that this dimension is 4.

We build a basis of 3 exact solutions x1,x2,x3 and a non-exact solution y
with the singular vectors corresponding to the four smallest singular values of
A17. The singular values of x1,x2,x3 are 0 (up to computer accuracy) and that
of y is 0 (up to image noise). We calculate the real solution (R̃, Ẽ) by linear
combination of y, x1, x2 and x3 such that the resulting matrix R̃ verifies R̃⊤R̃ =
λI3×3 or Ẽ is an essential matrix. Let l be the vector such that l⊤ = [λ1 λ2 λ3]

⊤,
and thus we denote as R̃(l) and Ẽ(l) the matrix R̃ and Ẽ extracted from solution
y − [x1|x2|x3]l. Using these notations, we have R̃(l) = R0 −

∑3
i=1 λiRi and

Ẽ(l) = E0 −
∑3

i=1 λiEi with (Ri, Ei) extracted from xi.

Once the basis x1,x2,x3 is calculated, we compute the coordinates of the solu-
tion by non-linear minimization of the function (λ, l)→ ‖λI3×3− R(l)⊤.R(l)‖2

to obtain l and thus Ẽ. SVD decomposition is applied to Ẽ, and we ob-
tain 4 solutions [9] for ([t]×, R). The solution with the minimal epipolar con-
straint ‖A17x‖ is then selected. Lastly, we refine the 3D scale k by minimizing
k →

∑

i(q
′
0i
⊤
Rq1i − q⊤

0ik.[t]×Rq1i + q⊤
0iRq

′
1i)

2 and perform t← kt.
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Non-Axial Camera For a non-axial camera (e.g. a multicamera system
with perspective cameras such that centers are not collinear), the problem
is also different. Appendix B shows that the “exact” solutions are (R̃, Ẽ) ∈
V ect{(I3×3, 03×3)} based on our assumption of “simple” matches (Section 4.2).
Our real solution is not exact due to image noise, and we see that the dimension
of Ker(A17) is at least 1+1. Experiments have confirmed that this dimension
is 2. We have not yet experimented this case.

4.4 Initialization with Three Views (RANSAC process)

The first step of the incremental algorithm is the 3D reconstruction of a sub-
sequence containing the first key frames triplet {0, 1, 2}. A number of random
samples are taken, each containing 17 points. For each sample, the relative
pose between views 0 and 2 is computed using the above described method
and matched points are triangulated. The pose of camera 1 is estimated with
3D/2D correspondences by iterative refinement minimizing the angular error
(see details in Section 3.3). The same error is minimized to triangulate points.
Finally, the solution producing the highest number of inliers in views 0, 1, and
2 is selected from among all samples. The j-th 3D point is considered as an
inlier in view i if the angular error ||ǫi

j|| is less than ǫ (ǫ = 0.01 rad in our
experiments).

4.5 Pose Estimates (RANSAC)

The generic pose calculation is useful for both steps of our approach (initial-
ization and incremental process). We assume that the i-th pose P i = (Ri, ti)
of the camera is close to that of the i-1-th pose P i−1 = (Ri−1, ti−1). P i is
estimated by iterative non-linear optimization initialized at P i−1 with a re-
duced sample of five 3D/2D correspondences, in conjunction with RANSAC.
For each sample, the pose is estimated by minimizing an angular error (Sec-
tion 3.3) and we count the number of inliers (points) for this pose. The pose
with the maximum number of inliers is then selected and another optimization
is applied with all inliers.

5 Experiments using a Perspective Camera

We have applied our incremental localization and mapping algorithm to a
semi-urban scene. The goal of these experiments was to evaluate robustness
(resistance to perturbations) in a complex environment and compare accuracy
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to the ground truth provided by a Real-Time Kinematics Differential GPS.
The camera was therefore mounted on an experimental vehicle whose veloc-
ity was about 1.1 m/s. The distance covered was about 70 m and the video
sequence was 1 min long (Image size was 512× 384 pixels at 7.5 fps). More
than 4.000 3D points were reconstructed and 94 images selected as key frames
from a series of 445 (figure 11). This sequence was particularly interesting
because of image content (Figure 9 shows people walking in front of the cam-
era, sunshine, etc...) which was not conducive to the reconstruction process.
Moreover, the environment was more appropriate to a GPS localization (which
provides ground truth) since the satellites involved were not occluded by high
buildings.

Fig. 9. Two frames used for the real data experiments.

5.1 Processing Time

Calculations were performed on a standard Linux PC (Pentium 4 at 2.8 GHz,
1Go of RAM memory at 800 MHZ). Image processing times through the se-
quence were as shown in Figure 10. Times measured included feature detec-
tion (#1500 Harris points per frame), matching, and pose calculation for all
frames. For key frames, longer processing times were necessary (see Figure 10)
due to 3D points reconstruction and local bundle adjustment. We took n = 3
(number of optimized camera poses) and used N = 10 (number of cameras
for minimization of reprojection criterion). Note that computing speeds were
interesting with an average of 0.09 s for normal frames and 0.28 s for key
frames. These data are shown in Table 3.

Frames Max Time Mean Time Total

Non-key frames 0.14 0.09 30.69

Key frames 0.43 0.28 26.29

Table 3
Results. Computing times are given in seconds.
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Fig. 10. Processing time (in seconds) for non-key frames and key frames.

Fig. 11. Top view of the reconstructed scene and trajectory (# 4.000 points and 94
key positions).
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5.2 Comparison with Ground Truth (Differential GPS)

The calculated trajectory obtained with our algorithm was compared against
data given by a GPS sensor. For purposes of comparison, we applied a rigid
transformation (rotation, translation and scale factor) to the trajectory as
described in [5] to fit with GPS reference data. Figure 12 shows trajectory
registration with the GPS reference. As GPS positions are given in a metric
frame we could compare camera locations and measure positioning error in
meters. For camera key pose i, 3D position error is:

Ei3D =
√

(xi − xGPS)2 + (yi − yGPS)2 + (zi − zGPS)2

and 2D position error in the horizontal plane is:

Ei2D =
√

(xi − xGPS)2 + (yi − yGPS)2

where xi, yi, zi are the estimated coordinates for camera pose i and xGPS,
yGPS, zGPS are the corresponding GPS coordinates. Figure 13 shows 2D/3D
error variations for the 94 frames. The maximum measured error was 2.0 m
with a 3D mean error of 41 cm and a 2D mean error of less than 35 cm.
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Fig. 12. Registration with the GPS reference, top: in horizontal plane, bottom:
along altitude axis. The continuous line represents GPS trajectory and points the
estimated key positions. Coordinates are expressed in meters.

Fig. 13. Error in meters. Continuous line = 2D error, dotted line = 3D error.

5.3 Parametrizing Local Bundle Adjustment

In our incremental method, local bundle adjustment consists of optimizing the
end of the reconstruction only, to avoid unnecessary calculations and excessive
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computing times. As mentioned before, optimization is applied to the n last
estimated camera poses, with allowance for points reprojections in a larger
number N of cameras. We therefore tested several values for n and N as
reported in Tables 4, 5 and 6.

First, note that we must have N ≥ n+2 to define the reconstruction frame and
the scale factor at the end of the sequence. For N = n or n + 1, it happened
that the reconstruction was not completed due to process failure before the
end of the sequence (Tables 4 and 5). This confirms that N ≥ n + 2 is an
important condition. We also measured mean time processing for local bundle
adjustment as a function of n (Table 6). In practice, it does not vary much
with N since the mean track length of points in key-frames (Figure 14) is
limited.

Then, we compare results with the GPS trajectory (Table 4) and a trajectory
computed using global bundle adjustment (Table 5). As expected, the quality
increases when n increase. We also observed that higher values of n provides
minor improvements of quality in our context. In all the following experiments,
we fix n = 3 and N = 10 since this provides a good trade-off between accuracy
and time performance.

H
H

H
H

HH
n

N
n n+1 n+2 n+3 n+5 n+7

n=2 failed failed 0.55 0.49 0.85 1.99

n=3 failed 3.28 0.45 0.41 0.41 0.41

n=4 6.53 1.77 0.42 0.40 0.41 0.27

global 0.33

Table 4
Mean 3D position error (in meters) compared to GPS for the incremental method
with different n and N values, and for global bundle adjustment.

H
H

H
H

HH
n

N
n n+1 n+2 n+3 n+5 n+7

n=2 failed failed 3.17 0.43 1.56 1.80

n=3 failed 3.61 1.60 0.43 0.30 0.47

n=4 7.67 1.44 1.03 0.24 0.25 0.36

Table 5
Mean 3D position error (in meters) compared to global bundle adjustment for
different n and N values.
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n 2 3 4 5 6

Mean Time 0.24 0.31 0.33 0.37 0.44

Table 6
Mean local bundle adjustment computing times as a function of n for many N

values (in seconds).

Fig. 14. Point distribution with track length.

5.4 Comparison with Global Bundle Adjustment for a Long Sequence

An other experiment has been carried out in a town-center (Figure 15) where
differential GPS is not available for ground truth. One can visually ensure
that reconstruction is not much deformed and drift is low compared to the
covered distance. The incremental method selects 354 key-frames among 2900
frames and reconstructs 16135 3D points with n = 3 and N = 10. The esti-
mated mean 3D position error compared to global bundle adjustment is 29cm
(the trajectory length is about 500m). That shows that our algorithm (very
appropriate to long scene reconstruction in term of computing time) is also
robust and gives result similar as that of global bundle adjustment.

6 Experiments using a Generic Camera

The incremental generic 3D reconstruction method was tested on real data
with three different cameras: a perspective camera, a catadioptric camera and
a stereo rig. Examples of frames are shown in Figure 16 and sequences charac-
teristics in Table 7. Computing performances are reported in Table 8. Follow-
ing these experiments, the trajectory obtained with our generic method was
compared to GPS ground truth or global specific bundle adjustment results.
As already seen above, a rigid transformation (rotation, translation and scale
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Fig. 15. Two images of the urban video, map and top view of the reconstructed
scene and trajectory (16135 points and 354 key positions).
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factor) must be applied to the trajectory to fit with reference data [5]. A mean
3D error or 2D error in the horizontal plane can then be measured between
the generic and the reference trajectory.

Fig. 16. Feature tracks for a generic camera image, using three types of cameras:
perspective (top left), catadioptric (top right), and stereo rig (bottom) cameras.
The same matching method was used for all three.

6.1 Comparison with Ground Truth (Differential GPS)

The first results correspond to the same video sequence as in Section 5.2,
with a pinhole camera mounted on an experimental vehicle equipped with
a differential GPS receiver (inch precision). The calculated motion obtained
with our generic algorithm was compared against data given by the GPS
sensor, and Figure 17 shows the two recorded trajectories. As GPS positions
are given in a metric frame, we could compare camera locations and measure
positioning error in meters: mean 3D error was 0.48 m and 2D error in the
horizontal plane was 0.47 m. Results were slightly less accurate than those
obtained with the specific perspective method.
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Fig. 17. Top: Registration of generic vision trajectory with GPS ground truth. The
continuous line represents GPS and points represent vision estimated positions.
Bottom: 3D error along the trajectory.

6.2 Comparison with Specific and Global Bundle Adjustment

In the following examples, ground truth is not available. We therefore compare
our results against those of the best method available: a global and specific
bundle adjustment (all 3D parameters have been refined so as to obtain an op-
timal solution with a minimum reprojection error). Sequences characteristics
and results are reported in Table 7.

Sequence 1 is taken in an indoor environment using an handheld pinhole cam-
era. A very small difference is obtained: the mean 3D error is less than 6.5 cm
for a trajectory length of (about) 15 m. The relative error is 0.45%.

Sequence 2 is taken in an outdoor environment, using an handheld catadiop-
tric camera (the 0-360 mirror with the Sony HDR-HC1E camera shown on
Figure 18, DV format). The useful part of the rectified image is contained in
a circle whose diameter is 458 pixels. The difference is also small: the mean
3D error is less than 9.2 cm for a trajectory length of (about) 40 m. Relative
error is 0.23%.
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Sequence 3 is taken with a stereo rig (baseline: 40 cm) in a corridor (Figure 18).
The image is composed of two sub-images of 640 × 480 pix. The trajectory
(20 m long) is compared to results obtained using the left/right camera and
global bundle adjustment. Mean 3D error is 2.7/8.4 cm compared with the
left/right camera and relative error is 0.13/0.42%.

Sequence Camera #Frames #Key frames #3D Pts #2D Pts Traj. length

Sequence 1 pinhole 511 48 3162 11966 15 m

Sequence 2 catadioptric 1493 132 4752 18198 40 m

Sequence 3 stereo rig 303 28 3642 14189 20 m

Table 7
Characteristics of video sequences.

Camera Image size Detection+Matching Frame Key frame Mean rate

Pinhole 512 × 384 0.10 0.14 0.37 6.3 fps

Catadioptric 464 × 464 0.12 0.15 0.37 5.9 fps

Stereo rig 1280 × 480 0.18 0.25 0.91 3.3 fps

Table 8
Computing times in seconds for the three cameras.

Fig. 18. Cameras and top views of 3D reconstructions. Top: catadioptric camera
(Sequence 2). Bottom: stereo rig (Sequence 3). Trajectory in blue and 3D points in
black.
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7 Conclusion

We have developed and tested a method for solving the real-time Structure
from Motion problem. This paper presents a complete process for doing so,
from feature detection and matching to estimating geometry and refining it
by local bundle adjustment. 3D reconstruction is an incremental process that
begins with initialization using three key frames. For subsequent frames, cam-
era localization is then determined and key frames are selected for 3D point
reconstruction. This method is extended to a generic camera model facilitating
the change from one kind of camera to another. Promising results have been
obtained on real data with three different types of cameras (even if there is
room for further optimizing implementation). Results and time complexities
are compared favorably with those of global bundle adjustment (and ground
truth when available). Future work includes experiments on more complex
multicamera systems and automatic 3D modeling methods using the generic
camera model.

Appendix A: Complexity of One Bundle Adjustment Iteration

Let P be the vector of parameters to be estimated (orientation of the cameras
+ position of their optical centers + 3D points coordinates), X the set of 3D
points projections detected in images and f(P) the projection of 3D points in
images according to the parameters we are looking for. The problem here is
to minimize the function φ(P) = ||f(P)−X||2.
At stage k of the iterative algorithm, we calculate ∆k such that Pk+1 =
Pk + ∆k. ∆k is obtained by solving the equation: J

⊤
J.∆k = J

⊤.ǫk where
J is the Jacobian matrix of f calculated in Pk and ǫk = X − f(Pk) (more
precisely, the diagonal terms of matrix J

⊤
J are multiplied by a coefficient

using the Levenberg-Marquardt method [21]).

Since we want to process long sequences with multiple parameters to be eval-
uated (six for each camera and three for each 3D point), it seems natural to
make use of bundle adjustment characteristics, i.e. the block structure of ma-
trix J

⊤
J for reconstruction of a set of points [9]. This matrix is composed of

three blocks U, V, and W such that U and V are block-diagonal:

• U, matrix made of diagonal 6 × 6 blocks representative of the dependency
of image i measurements on the associated camera parameters.

• V, matrix made of diagonal 3× 3 blocks representative of relations between
point j parameters and the measurements associated with this point.

• W, matrix expressing the inter-correlations between 3D points parameters
and cameras parameters. The structure of W is linked to the fact that many
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W
⊤

U W

Fig. 19. Structure of the J⊤J matrix

points are not projected through all cameras. W has a number of non-null
6× 3 blocks equal to the number of 2D reprojections (half of the dimension
of X or f(P)).

The system is therefore







U W

W
⊤
V













∆cameras

∆points





 =







Ycameras

Ypoints





, and it is solved

in two steps [9]:

(1) Calculation of the increment ∆cameras to be applied to cameras by reso-
lution of the following system:

(U− WV
−1
W
⊤)∆cameras = Ycameras − WV

−1Ypoints (3)

(2) Direct calculation of the increment ∆points applicable to 3D points:

∆points = V
−1(Ypoints − W

⊤∆cameras)

Let C and P be the number of cameras and points optimized in bundle ad-
justment. Let p be the number (considered as constant) of points projected
through each camera.

Once J
⊤
J is calculated (Figure 19) (time complexity is proportional to the

number Nr of 2D reprojections taken into account), the two most time-consuming
expensive stages of this resolution are:

• calculation of matrix product WV−1
W
⊤

• resolution of camera linear system (3).

For matrix product WV−1
W
⊤, the number of necessary operations can be deter-

mined by first considering the number of non-null blocks of WV−1. This is the
same number as W, i.e. (p.C), number of reprojections in C images, because
V
−1 is block-diagonal. Then, in the product (WV−1)W⊤, each non-null 6×3 block

of WV−1 is used once in the calculation of each block column of WV−1
W
⊤. Thus

the time complexity of the product WV
−1
W
⊤ is Θ(p.C2). The time complexity
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of the traditional resolution of the linear system (1) is Θ(C3) [21]. Therefore
the time complexity of one bundle adjustment iteration is

Θ(Nr + p.C2 + C3).

Appendix B: Exact Solutions of the (linearized) Pless Equation

The i-th pair of rays is defined by Plucker Coordinates (q0i,q
′
0i) and (q1i,q

′
1i)

such that q′
0i = q0i ∧ c0i = −[c0i]×q0i and q′

1i = q1i ∧ c1i = −[c1i]×q1i. The
rays of the i-th pair intersect if they satisfy the Pless Equation

0 = q′
0i

⊤
R̃q1i − q⊤

0iẼq1i + q⊤
0iR̃q

′
1i = q0i

⊤([c0i]×R̃− Ẽ− R̃[c1i]×)q1i (4)

where the two 3 × 3 matrices (R̃, Ẽ) are the unknowns. In this section, we
seek an (R̃, Ẽ) such that ∀i, Ẽ = [c0i]×R̃ − R̃[c1i]×. In other words, we seek an
R̃ ∈ ℜ3×3 such that this Ẽ is independent of any available camera center pair
(c0i, c1i). As a consequence, Equation 4 is exactly equal to 0 (up to computer
accuracy) whatever (q0i,q1i). We consider many cases.

Simple Matches Only: ∀i, c0i = c1i

As mentioned in Section 4.2, this particular case is important in practice.

Central Camera Let c be the center. This case is straightforward: we have
c0i = c1i = c and Ẽ = [c]×R̃− R̃[c]×. Any R̃ ∈ ℜ3×3 is possible.

Stereo Camera Let ca and cb be the centers. We have (c0i, c1i) ∈ {(ca, ca), (cb, cb)}
and Ẽ = [ca]×R̃− R̃[ca]× = [cb]×R̃− R̃[cb]×. The constraint on R̃ is [ca− cb]×R̃−
R̃[ca − cb]× = 0. Any R̃ in the linear space of polynomials of [ca − cb]× is
possible. Furthermore, it is easy to show that this constraint does not allow

another R̃ by changing the coordinate basis such that ca − cb =
(

0 0 1

)⊤

.

Thus,

Ẽ = [ca]×R̃− R̃[ca]× and R̃ ∈ V ect{I3×3, [ca − cb]×, (ca − cb)(ca − cb)
⊤}.

Axial Camera All camera centers of an axial camera are collinear: there are
ca and cb such that c0i = c1i = (1− λi)ca + λicb with λi ∈ ℜ. Thus,

Ẽ(λ) = [(1− λ)ca + λcb]×R̃− R̃[(1− λ)ca + λcb]×
= [ca]×R̃− R̃[ca]× + λ([cb − ca]×R̃− R̃[cb − ca]×)
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should not depend on λ. We see that [cb − ca]×R̃− R̃[cb − ca]× = 0. This case
is the same as the previous one.

Non-Axial Camera There are three non-collinear centers ca, cb, cc. The
constraint on R̃ is

0 = [ca−cb]×R̃−R̃[ca−cb]× = [cb−cc]×R̃−R̃[cb−cc]× = [cc−ca]×R̃−R̃[cc−ca]×.

This constraint is three times that obtained for the stereo camera. Let’s change
the coordinate basis such that {ca− cb, cb− cc, cc− ca} is the canonical basis
and write the solutions for the three stereo cases: any R̃ ∈ V ect{I3×3} is
possible.

Whether Matches are Simple or Not

In this case, the “simple match” constraint is not enforced.

Central Camera It does not occur here.

Stereo Camera We have (c0i, c1i) ∈ {(ca, ca), (cb, cb), (ca, cb), (cb, ca)} and
Ẽ = [ca]×R̃ − R̃[ca]× = [cb]×R̃ − R̃[cb]× = [ca]×R̃ − R̃[cb]× = [cb]×R̃ − R̃[ca]×.
Thus, the constraint on R̃ is 0 = [ca − cb]×R̃ = R̃[ca − cb]×. This constraint is
stronger than that for the stereo camera with simple matches: we see that any
R̃ ∈ V ect{(ca − cb)(ca − cb)

⊤} is possible.

Axial Camera There are ca and cb such that c0i = (1− λ0i)ca + λ0icb and
c1i = (1− λ1i)ca + λ1icb with λ0i ∈ ℜ and λ1i ∈ ℜ. Thus,

Ẽ(λ0, λ1)= [(1− λ0)ca + λ0cb]×R̃− R̃[(1− λ1)ca + λ1cb]×
= [ca]×R̃− R̃[ca]× + λ0[cb − ca]×R̃− λ1R̃[cb − ca]×

should not depend on λ0 and λ1: we have 0 = [cb − ca]×R̃ = R̃[cb − ca]×. This
case is the same as the previous one.

Non-Axial Camera There are three non-collinear centers ca, cb, cc and the
constraint on R̃ is three times the one obtained for the stereo camera:

0 = [ca−cb]×R̃ = R̃[ca−cb]× = [cb−cc]×R̃ = R̃[cb−cc]× = [cc−ca]×R̃ = R̃[cc−ca]×.

Let’s change the coordinate basis such that {ca − cb, cb − cc, cc − ca} is the
canonical basis and write the solutions for the three stereo cases: we obtain
R̃ = 0. This method does not provide exact solutions.
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