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Abstract

The Simultaneous Localisation And Mapping
(SLAM) for a camera moving in a scene is a long term
research problem. Here we improve a recent visual
SLAM which applies Local Bundle Adjustments (LBA)
on selected key-frames of a video: we show how to
correct the scale drift observed in long monocular
video sequence using an additional odometry sensor.
Our method and results are interesting for several
reasons: (1) the pose accuracy is improved on real
examples (2) we do not sacrifice the consistency be-
tween the reconstructed 3D points and image features
to fit odometry data (3) the modification of the original
visual SLAM method is not difficult.

1 Introduction

Monocular visual SLAM has been introduced in the
last decade by using different techniques. At least
two kinds of mechanics are proposed: techniques from
data fusion field (using Kalman filter [3]) and tech-
niques from Structure-from-Motion (using bundle ad-
justment [9]). In theory, the scene structure and cam-
era motion are reconstructed up to an unknown scale
factor and this result may be used in applications. Un-
fortunately, experiments show that the scale factor drift
during the camera motion in the scene. This problem
makes the use of pure monocular visual SLAM very
difficult in practice for long trajectories.

To reduce this problem, Lothe et al. [8] use the
known distance between the road and the camera or
Scaramuzza et al. [10] use the nonholonomic constraint
of the vehicle to evaluate the scale factor. But this eval-
uation could be done only in specific situation and did
not provided a reliable scale estimation at all time.

Like Cumani et al. [2], we use the information pro-
vided by the vehicle odometer to have a correct scale
estimation. But we integrate it in the monocular SLAM

proposed by Mouragnon et al. [9] to take advantage of
bundle adjustment optimisation.

2 LBA-based Monocular SLAM

In this section, the different steps of our monocular
visual SLAM is summarized. For more details, please
refer to [9]. We assume that the initialization of the al-
gorithm is done (the first three camera poses and their
3D point cloud are estimated).

Tracking 2D The first step of the method is a 2D
tracking of interest points which provides 2D/2D cor-
respondences between consecutive images. The track-
ing step is based on the matching of Harris interest
points [7] using a GPU accelerated version of SURF
descriptor [1].

Camera pose estimation Thanks to the 2D/2D
matching, we determine where the already triangulated
3D points are observed in the new frame and obtain
3D/2D correspondences. Then we estimate the new
camera pose (6 d.o.f.) using Grunert’s algorithm [6] ap-
plied in the RANSAC [5] scheme.

Key-frame they make a sub-sampling of the input
image sequence. We decide that the new frame is a
key-frame thanks to a criterion based on the number of
2D/2D correspondences. In those special images, the
scene (3D point cloud) is updated by triangulation and
the geometry (last camera poses and their 3D points) is
optimized by local bundle adjustment.

Local Bundle Adjustment Bundle adjustment is a
well known iterative method [11] designed to solve non-
linear least square problems for Structure-from-Motion.
It refines the scene (3D points clouds) and the camera
poses all together by minimizing the reprojection errors.
Unfortunately, this method becomes rapidly intractable
for real-time performance.

For this reason we use a Local Bundle Adjustment
(LBA).This is a bundle adjustment such that (1) the es-
timated parameters are the poses of the n most recent



key-frames and the list of 3D points which have at least
one detected projection in these n frames (2) the repro-
jection errors are only considered in the N most recent
key-frames. We use n = 3 and N = 10.

In this case, there are only 6n + 3p parameters to
estimate (p is the number of 3D points in the n last key-
frames) and the geometry of long sequence can be iter-
atively refined in real-time.

3 Odometry Integration

In this section, we present our improvement of the
visual SLAM previously described.

Odometer Odometer is a distance sensor only. Note
that several odometers (one for each vehicle wheel) are
theoretically sufficient to estimate a planar trajectory,
but in practice, the result exhibits large drift due to error
on the vehicle orientation estimation. Fortunately, one
odometer on standard driving condition provides us a
reliable enough distance to be used in our visual SLAM.

Improved method Here we would like to cancel the
problem of scale factor unobservability in the monoc-
ular visual SLAM without increasing the computation
time.

The idea is to change LBA initialization by replac-
ing the estimated pose of the new key-frame t by a cor-
rected one. After the camera pose estimation of t and
before the triangulation of new 3D points, the estimated
3D location Ct is replaced by C̃t thanks to the scale
correction provided by

C̃t = Ct−1 +
Odo(t− 1, t)
||Ct − Ct−1||2

(Ct − Ct−1) (1)

using notations
t− 1 : previous key-frame
Odo(t− 1, t) : odometer distance between t− 1 and t
||.||2 : Euclidean norm.

The camera orientation is kept unchanged. This is
important to note that this modification not only impacts
the pose but also the new 3D points. Then this new
value of pose t and the new 3D points are optimized by
LBA as in the original method.5

4 Experiments

Experiments include synthetic and real sequences.
The trajectories of original and improved methods (re-
spectively without and with odometry) are compared to
the ground truth.

Two kinds of figures are provided: top views of re-
constructed trajectories and error graphs depending on

time. To simplified visual comparison by the reader,
some interest points marked by blue mark in top views
can be match with black vertical lines in error graphs.

How to Check Trajectory with Ground Truth ?
The estimated trajectories Ct are registered to the
ground truth GT . The trajectory provided by the orig-
inal method is defined up to the scale; this scale is set
by the ground truth distance between the 3D locations
of the two first key-frames. We do not change the scale
of the trajectory provided by the modified method.

We refer to position error as ||Ct − GTt||2 (2). The
inter-camera ratio is computed as ||Ct−1−Ct||2

||GTt−1−GTt||2 (3).
This is the local value of the estimated scale in the re-
construction. This ratio is useful to visualize the scale
error. However it does not inform on the real error since
we can make a large error in percentage on a small
quantity but the real difference could stay small. For
this reason, we add a third information: the difference
of norms ||Ct−1 − Ct||2 − ||GTt−1 −GTt||2 (4).

Synthetic results The synthetic sequence is a corri-
dor with textured walls generated by 3D Studio Max.
This sequence of 2900 frames is 365m long with a 1m/s
camera speed. A virtual odometer is generated from
the ground truth to test the method; the camera inter-
nal parameters and the ground truth are exactly known;
the odometer is noise free. Fig. 3 shows the ground
truth, the trajectory of the original method (pure vi-
sual SLAM) and the trajectory of the improved method
(using odometry). We see that the improved method
closes the loop with near no error (the original method
does not). Furthermore, the localization error of the im-
proved method is at most 4m against about 20m for the
original one (Fig. 2). Fig. 1 shows that our method cor-
rects the existing scale factor drift and that the local er-
ror is greatly reduced.

Real results Fig. 4 shows images(640*480) of the se-
quence taken in standard urban traffic and driving con-
dition (50 km/h) with a calibrated camera, mounted on
the car. The ground truth is given by a trajectometer and
we use the standard odometer of the car. Fig. 7 provides
a top view of the three trajectories (ground truth, orig-
inal method, improved method) in the same coordinate
frame. This 4 km trajectory confirms the scale drift of
the original method.

Fig. 6 and 7 show that the scale factor is close to 1 at
any time and the local error remains low thanks to the
improved method. The loop closure error on this 4 km
sequences is 30m and the maximum localization error
is 80m (Fig. 5).

We see that the improved method corrects the scale
drift and improves localization and reconstruction, even
with standard odometer.

2



Figure 1. Intercamera comparison with
Ground Truth on synthetic sequence:
original (top), improved (bottom).

Figure 2. Localization error (Eq.2) on the
synthetic sequence.

Figure 3. Reconstructions of the synthetic
sequence in the same coordinate system.

Figure 4. images of the real sequence.

Figure 5. Localization Error (Eq.2) on the
real sequence.
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Figure 6. Intercamera comparison with
Ground Truth on real sequence: original
(top), improved (bottom).

5 Conclusion and future work

In this article, we demonstrate the usage of
an odometer with the LBA-based monocular visual
SLAM. Odometry re-scales the pose of a new key-
frame, this improves the list of new 3D points involved
by this key-frame and the LBA result. Experiments on
both synthetic and real sequences show that our method
greatly improves the original method by stabilizing the
scale factor and providing more accurate result. Since
the final result is the output of successive LBAs only
applied on image features, the pose covariance may be
estimated in real-time with the method [4]. The use of
odometry covariance for both visual SLAM and pose
covariance in the context of LBA-based monocular vi-
sual SLAM is still the topic of future work.
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