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Abstract

Local Bundle Adjustments were recently introduced for visual SLAM (Simultaneous
Localization and Mapping). In Monocular Visual SLAM, the scale factor is not observ-
able and the reconstruction scale drifts as time goes by. On long trajectory, this problem
makes absolute localisation not usable. To overcome this major problem, data fusion is
a possible solution. In this paper, we describe Weighted Local Bundle Adjustment(W-
LBA) for monocular visual SLAM purposes. We show that W-LBA used with local
covariance gives better results than Local Bundle Adjustment especially on the scale
propagation. Moreover W-LBA is well designed for sensor fusion. Since odometer is a
common sensor and is reliable to obtain a scale information, we apply W-LBA to fuse
visual SLAM with odometry data. The method performance is shown on a large scale
sequence.

1 Introduction
Monocular Visual SLAM is a still active topic in computer vision. A first approach comes
from Davison[3] in 2003. He adapts SLAM community techniques based on Kalman filter
to input images in SLAM algorithms.

Next, Nister et al. [13] take the problem of visual SLAM with the photogrammetric
community point of view and adapts Structure from Motion algorithms to be used in real
time. There is no optimisation to improve accuracy in the first work of Nister et al. Later, in
2006, Mouragnon et al. [12] introduce local bundle adjustment (LBA) to solve this problem.
Even if bundle adjustment based SLAM is more accurate than Kalman based one[14], no
covariance is provided in [12]. That makes data fusion not optimal.

Recently, we introduce in [5] uncertainty on the localisation and open the possibility
to make fusion from LBA-based visual SLAM. We use weighted local bundle adjustment

c© 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Davison} 2003

Citation
Citation
{Nister, Naroditsky, and Bergen} 

Citation
Citation
{Mouragnon, Lhuillier, Dhome, Dekeyser, and Sayd} 

Citation
Citation
{Strasdat, Montiel, and Davison} 2010

Citation
Citation
{Mouragnon, Lhuillier, Dhome, Dekeyser, and Sayd} 

Citation
Citation
{Eudes and Lhuillier} 



2 EUDES,NAUDET,LHUILLIER,DHOME: WEIGHTED LBA & ODOMETRY FUSION

(W-LBA) only for uncertainty propagation but keep (non weighted) LBA for geometry op-
timisation.

In monocular SLAM, the scene structure and camera motion are theoretically recon-
structed up to an unknown scale factor. This reconstruction can be updated to the real world
scale by rescaling with only one extra measurement. Unfortunately, experiments show that
the scale factor drifts during long trajectories. This problem is a major limitation in monoc-
ular visual SLAM.

One possible solution of this problem is to rely on another sensor to estimate the scale. It
involves the fusion of monocular visual information with an other sensor. Odometer seems
to be the most adapted sensor: it’s a common sensor in robotics and automotive industry and
it provides reliable scale information. Karlsson et al. (fusion algorithm[11]) and Goncalves
et al. (vision algorithm[7]) use a particle filter to fuse odometer with distance between robot
and visual landmark. Cumani et al. [2] reconstruct the scene and camera position by chaining
triples of cameras reconstructed by standard SfM techniques. The odometer is then used to
correct the scale propagation and the 3D point positions. Their method is similar to the
method described in Section 5.1 but additional optimisations are performed in our work.

In this paper, we propose different applications of W-LBA to reduce drift in scale. In
Section 2 and 3, we recall visual SLAM and local bundle adjustment process. In Section
4, we show that W-LBA can also be used for geometry optimisation and propose another
weighting scheme in order to improve efficiency. In Section 5, we use the W-LBA to fuse
visual SLAM with odometer measurements. Finally in Section 6, we provide experimental
results and compare the proposed solution with previous work.

2 LBA based SLAM

Figure 1: Visual SLAM overview and additional modules

The figure 1 presents an overview of our monocular visual SLAM. The process is similar
to the Mouragnon et al. [12] implementation. Some additional modules are developed for
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odometer fusion. They are detailed in Section 5.
The aim of this algorithm is to determine the camera localisation at each image in the

reference coordinate frame. In addition, a sparse 3D point cloud is reconstructed to support
the iterative localisation process. We assume that the initialisation of the algorithm is done
(the first three camera poses and their 3D point cloud are estimated).

Matching 2D. The first step of the method is a 2D tracking of interest points which pro-
vides 2D/2D correspondences between consecutive images. Interest points are extracted
from each image using Harris detector [9]. Those points are then matched between the two
images using SURF[1] descriptor.

Camera pose estimation. With this 2D/2D correspondence, we can associate a previously
triangulated 3D point to an observation in the current image. Thanks to those 3D/2D cor-
respondences, the current camera pose is estimated using Grunert’s algorithm [8] applied
in the RANSAC [6] framework. Since the camera intrinsic parameters are known, only 6
parameters (3 for translation, 3 for rotation) need to be estimated.

Key-frames. They are a sub-sampling of the input video. Indeed, we don’t treat all images
to ensure sufficient baseline between two frames for triangulation and reduce computational
time. A frame is declared as key-frame, if a condition based on the number of 2D/2D cor-
respondences is met. In those special frames, new 3D points are triangulated from the two
2D/2D correspondences between the last 3 key-frames. Last, the result of the previous steps
is refined by LBA(Section 3) to optimise the geometry.

3 Bundle Adjustment

3.1 Notation
We denote C(v) the covariance matrix of the random vector v, C(u,v) the covariance matrix
of the random vector (u>v>)> and C(v/u) the covariance between vectors v and u:

C(u,v) =

(
C(u) C(u/v)

C(v/u) C(v)

)
(1)

Notation r∼N (r̄,C(r)) means that the Gaussian vector r has mean r̄ and covariance C(r).

Camera Poses The camera pose at key-frame t is refined by several LBA over time, there-
fore to distinguish the pose between refinements, we define for each camera pose a double
timing index: Ct ′

t represents the pose of key-frame t refined at time t ′. We define ct ′
t as the

3D position of the camera Ct ′
t .

3.2 Global Bundle Adjustment
Bundle adjustment is a well known iterative method [15] designed to solve non-linear least
square problems in Structure-from-Motion. It refines simultaneously the scene (3D points
cloud) and the camera poses by minimising the reprojection errors:

x 7→ ||y−P(x)||2 (2)
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where vector x usually concatenates 6 parameters (3 for rotation,3 for translation) for each
camera pose and 3 parameters for each 3D point. y concatenates interest points detected in
images, P concatenates projection functions, and ||.|| is the Euclidean norm.

Unfortunately, this method becomes very time consuming even with reduction and vari-
able ordering methods [15]. To overcome this limitation, iterative methods based on Bundle
Adjustment, called Local Bundle Adjustment, were introduced. Those methods optimise
only a limited number of cameras and 3D points. Two versions are detailed below.

3.3 Local Bundle Adjustment (LBA)
In this Section, we recall the Local Bundle Adjustment (LBA) presented in [12].

Local Bundle Adjustment is a bundle adjustment such that (1) the estimated parameters
x are the poses of the n most recent key-frames and the list of 3D points which have at least
one observation in these frames, (2) the reprojection errors are only considered in the N most
recent key-frames (n < N).

This LBA B is concisely written as

x = B(p,y) = argminx̃||y−P(p, x̃)||2. (3)

p contains the poses of the N − n cameras which are not estimated, x concatenates the n
poses and the 3D points which are estimated, and y is the vector of detected 2D points.

Even in large sequence, LBA estimates only 6n+ 3s parameters (s is the number of 3D
points in the n last key-frames). In this way the geometry of long sequence can be iteratively
refined in real-time (n = 3 and N = 10 are commonly used values).

3.4 Weighted Local Bundle Adjustment (W-LBA)
Here we recall the definition of an other LBA, the Weighted Local Bundle Adjustment (W-
LBA) presented in [5]. W-LBA provides a Maximum Likelihood Estimator (MLE) to es-
timate the structure and camera poses simultaneously. Contrary to the LBA, this estimator
takes care of the uncertainty on previous estimated cameras.

As in the LBA formulation, the W-LBA estimates the structure and n camera poses con-
tained in x. The only difference is that N poses are now optimised. The N cameras are split
in two, n cameras are freely optimised and contained in x and the N−n old cameras are in
p. The old cameras are considered to be already well optimised, so they are less allowed to
move than new one but not fully fixed as in LBA. The constraint on old poses localisation
p is build according to the localisation at the previous step and weighted by a covariance
matrix.

This local bundle assumes that p∼N (p̄,Cp) and y∼N (ȳ,σ2I) are independent, where
ȳ = P(p̄, x̄). According to this Hypothesis, the MLE Bw(p,y) of p̄ and x̄ is:

x = Bw(p,y) = argmin(p̃,x̃)
1

σ2 ||y−P(p̃, x̃)||2 +(p− p̃)>C−1
p (p− p̃), (4)

where σ is the noise on 2D points. In the W-LBA, Cp is the "weight" on camera poses.
This weighting acts on how the W-LBA takes into account of the old estimated poses p. In
previous work[5], we propagate Cp through iterations and call it global covariance. Since the
old camera poses are re-evaluated accordingly to the a priori constraints, this formulation
allows easier integration of external information. In Section 4, we introduce the notion of
local covariance.
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4 Local and Global Covariance
In this Section, we explain the difference between the "global" covariance we defined in [5]
and the "local" one we propose here. In the W-LBA, we defined the Cp in Eq.4 as a global
covariance. The global covariance has the property to increase during time and is similar
to one computed with global bundle adjustment whereas the local one does not grow and
represents uncertainty of camera respectively to the oldest camera in the local bundle.

This covariance is computed with the standard covariance estimation technique[10], by
inverting the approximation of the Hessian (J>J)−1 of the projection function (P in Eq.2)
minimised by Bundle Adjustment on the N last cameras.

To inverse the Hessian, we need to fix the gauge on the BA [15]. This is done by removing
lines of the Jacobian matrix corresponding to fixed parameters. Here, we chose the first frame
pose (Rt−N , tt−N) and the largest coordinate of the 3D location of the (t−n)-th pose Ct−n

t−1.
To integrate it in the W-LBA, the local covariance is evaluated on the result of the optimi-

sation done at the previous key-frame. By keeping only the block of (J>J)−1 corresponding
to the camera parameters, we evaluate :

C(Ct−N
t−1 ,...,C

t−1
t−1)

. (5)

Then, we remove the first and the (n−1) last poses from Eq.5 to get the Cp :

Cp = C(Ct−N+1
t−1 ,...,Ct−n

t−1)
. (6)

This new covariance could now be used in the bundle (Bw) to optimise the next step (at
time t) using Eq.4. Since the Cp in W-LBA is a local covariance, we optimise parameters
with local constraints.

5 Odometer Integration
In this Section, we present two methods of fusion between odometer and visual SLAM. The
first one is a simple modification of the standard visual SLAM process. The second uses the
W-LBA with local covariance to integrate odometer constraints in the optimisation process.

We defined dl the odometer distance between time l and l + 1. Since in this Section all
cameras are evaluated at time t, we omit the second index for improving notation readability.

5.1 LBA Fusion
In this method presented in [4], the idea is to change LBA initialisation by substituting the
estimated pose of the current key-frame t by a corrected one.

The estimated 3D location ct is replaced by c̃t thanks to the scale correction provided by

c̃t = ct−1 +dt−1 ct − ct−1

||ct − ct−1||2
, (7)

where ||.||2 is the Euclidean norm. The camera orientation is kept unchanged.
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We integrate this correction after the camera pose estimation in t and before the triangu-
lation of new 3D points. So the new 3D points are triangulated at a corrected scale. Then
this new value of pose at time t and the new 3D points are optimised by LBA as in the visual
SLAM original process (figure 1).

5.2 W-LBA fusion
W-LBA with local covariance allows to estimate a more accurate position, since all poses in
the sliding window are refined. Moreover, a part of the estimated camera (old cameras p)
are constrained by previous estimation weighted by covariance Cp. Using this property, this
LBA can be used to impose constraint on old cameras (p in Section 3.4). In our case, we will
add constraints coming from the odometer measurement by correcting the constraint on old
poses. Thus we replace all the camera c by c̃ in p.
We introduce the following notations:

norml = ||cl+1− c̃l ||2 : Euclidean distance between c̃l and cl+1.
dirl = cl+1−c̃l

norml : Direction defined by the vector c̃lcl+1.
We do iteratively the same treatment on each pose in p. We initialise the process by:
c̃t−N+2 = ct−N+2 and Cc̃t−N+2 = Cct−N+2 . Then we update the position and the covariance
like described below.

Position update First, we correct the position cl thanks to the odometer measurement
between l and l−1 times. cl is replaced by c̃l thanks to the scale correction provided by

c̃l = c̃l−1 +dl−1dirl−1. (8)

The camera orientation is not modified.
Then we need to compute the covariance of cameras (c̃l) to take into account the above

modification.

Covariance update The covariance matrix of the modified camera is determined thanks
to the covariance of the previous pose, the odometer covariance and the transformation pre-
viously defined (Eq.8). We define Jc̃l−1 ,Jcl ,Jdl−1 the Jacobian of Eq.8 for c̃l−1,cl ,dl−1 respec-
tively. They are given by:

Jc̃l−1 = I− dl−1

norml−1 (I−dirl−1dirl−1>) (9)

Jcl =
dl−1

norml−1 (I−dirl−1dirl−1>) (10)

Jdl−1 = dirl−1 (11)

We compute the covariance Cc̃l :

Cc̃l = J(c̃l−1,cl ,dl−1)C(c̃l−1,cl ,dl−1)J
>
(c̃l−1,cl ,dl−1)

(12)

The camera cl is not independent of other camera in p. Thus we also need to evaluate the
correlation between c̃l with the i-th camera in p. The correlation is computed as follow:

i ∈ [t−N +1...l−1],C(c̃l/c̃i) = C>
(c̃i/c̃l)

= J(c̃l−1,cl ,dl−1)C(c̃l−1,cl ,dl−1/c̃i) (13)

i ∈ [l +1...t−n],C(c̃l/ci) = C>
(c̃i/cl)

= J(c̃l−1,cl ,dl−1)C(c̃l−1,cl ,dl−1/ci) (14)
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Figure 2: Three images of the synthetic sequence.

When the pose (p) and covariance (Cp) of all the (N− n) old cameras are updated, we
just apply the W-LBA with local covariance instead of LBA in the visual SLAM (figure 1).

6 Experiments

First we demonstrate that the W-LBA is more accurate than LBA and more particularly when
local covariance is used. Then, we show that data fusion with W-LBA is possible and that
W-LBA fusion outperforms LBA fusion.

The LBA (Section 3.3) is the method used by Mouragnon et al. for poses optimisation.
Two W-LBA have been presented here: The global W-LBA, W-LBA with global covariance
(Section 3.4) is our method ([5]) used to propagate error but not for geometry optimisation.
The local W-LBA (Section 4) is our proposal to integrate local covariance in W-LBA.

The LBA fusion (Section 5.1) is the modification of the bundle initialisation([4]). The
W-LBA fusion (Section 5.2) is our proposal to fuse odometer with visual SLAM using local
W-LBA.

First, trajectories are registered to ground truth, then different errors are computed to
compare trajectories (c) to ground truth (GT ). We refer to position error as ||ct −GTt ||2 ,
angular error as angle(ct−1− ct ,GTt−1−GTt) and inter-camera ratio as ||ct−1−ct ||2

||GTt−1−GTt ||2
.

The latter indicates the scale accuracy of the reconstruction. For each error, we give the
mean, standard deviation and minimum or maximum values.

6.1 Compare W-LBA and LBA

In this Section, we make a comparison between LBA, global W-LBA and local W-LBA.
Experiments are made on a synthetic sequence of a corridor with textured walls generated

by 3D Studio Max. This sequence is composed of 2900 frames and is 365m long with a 1
m/s camera speed. Some images of the sequence images are provided in figure 2.

In figure 3, we compare the trajectories given by LBA (in purple) , local (in blue) and
global (in black) W-LBA to the ground truth (in red). The table 1 presents the statistical
results of the different methods.

In [5], there is no performance evaluation of the W-LBA bundle, we only give the math-
ematical formulation and derive the propagation of covariance. We observe that the global
W-LBA gives quite similar results than LBA on the reconstruction on figure 3. However, the
local W-LBA is more appropriate and gives more accurate results than global W-LBA. It is
more accurate in position and has less scale propagation error but we note a minor angular
error increase.
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Figure 3: Top view of the trajectories reconstructed by LBA , global and local W-LBA and
the ground truth of the synthetic sequence.

Inter-camera ratio Position error(m) Angular error(deg)
mean std min mean std max mean std max

LBA 0.793 0.108 0.797 10.558 5.148 21.248 1.104 1.013 6.801
global W-LBA 0.799 0.099 0.656 11.324 5.777 20.332 1.868 1.276 9.687
local W-LBA 0.848 0.076 0.848 8.288 3.431 12.394 1.906 1.220 9.074
Table 1: Statistics on each reconstruction of figure 3 compared with ground truth

6.2 Odometry fusion

The odometry fusion has been tested in a real 4 km long sequence taken in urban area by
a car in normal driving conditions (50 km/h maximum, in standard traffic). The camera
provides 640×480 grey-scale images at 30 fps. The ground truth is given by a trajectome-
ter(IXSEA landins) and we use the standard odometer of the car. Fig. 5 shows some images
of the sequence. Fig. 4 provides a top view of the four trajectories (ground truth, LBA, LBA
fusion,W-LBA fusion).

We observe that the scale of the trajectory is not constant all over the sequence and the
scale factor drift is important at the end of the sequence. Thus fusion is a necessity to provide
a correct trajectory reconstruction. Indeed, the two fusion methods, contrary to the standard
monocular SLAM (LBA), achieved to reconstruct the 4 km sequences with less that 40m
error. Statistics (in table 2) show that our method is more compliant with ground truth scale
and has a lower error in position with a mean error of only 18 meters (about 50% error
reduction compared to LBA fusion).
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Figure 4: Top view of the reconstruction of the different methods of fusion with odometer
(LBA fusion and W-LBA fusion) and the ground truth of the real sequence.

Intercamera ratio Position error(m) Angular error(deg)
mean std max mean std max mean std max

LBA 0.177 0.256 2.071 348.980 271.22 894.79 15.382 8.243 161.47
LBA fusion 0.985 0.074 2.117 33.690 23.144 85.471 5.086 5.797 17.650

W-LBA fusion 1.016 0.151 5.350 18.012 11.286 43.235 3.397 12.018 17.938
Table 2: Statistics on each reconstruction of figure 4 compared with ground truth

7 Conclusion
In this paper, we highlight the use of Weighted Local Bundle Adjustment with local co-
variance to increase the accuracy of reconstruction and reduce the drift of scale factor. We
demonstrate and prove with experiments, that W-LBA used with local covariance is more
appropriate for data fusion. The fusion with odometer data allows to reduce the scale factor
drift due to lack of constraint in the monocular visual SLAM.

Future works include the fusion between visual SLAM and GPS, loop closing using W-
LBA and check global uncertainty propagation with fusion as in [5].

Figure 5: Three images of the real sequence.
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