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ABSTRACT:

This paper describes a system to generate 3D model from isegeence taken in complex environment including variabbeed
surface, buildings and trajectory loops. Here we use a $t8€@@ioptric camera and an approximate knowledge of itbregiion. This
contrasts to current systems which rely on more costly hardwuch as the (calibrated) spherical vision camera Lagyhlli steps of
the method are summarized. Experiments include a campagsstaction from thousands of images.

1 INTRODUCTION Our over-segmentation is defined by triangle mesh in imagh su
that (1) super-pixel is a list of connected triangles andtiian-
The automatic 3D modeling of environment from image seqeenc gles of the view-centered model are back-projected trizsigf
is a long-term and still active field of research. Wide viewdie the image mesh. In work (Zitnick and Kang, 2007, Micusik and
camera is a natural choice for ground-based sequence. r€urreKosecka, 2009), super-pixel is pixel list and is unused bfase
systems include multi-camera and accurate GPS and INSe(Pollmeshing. Our choice has several advantages. Mesh regsariz
feys et al., 2008) at high cost-$100K), the Ladybug multi- super-pixel shape and defines the resolution of final renanst
camera (www.ptgrey.com, 2010) at medium ces${2K). Here  tion by view field sampling. This is useful to compress large
we use a catadioptric camera at low cost$(K): a mirror of ~ scene. Besides, we obtain triangles in 3D such that the sonsi
revolution (www.0—360.com, 2010) mounted on a perspective tency with image contours can not be degraded by depth error
still camera (Nikon Coolpix 8700) thanks to adapter ring.eTh unlike (Chai et al., 2004). This is not a luxury because degth
medium and high cost systems are more convenient since theyation is difficult in uncontrolled environment. Our supgxels
provide video sequences and wide view field without sacnifici  are not restricted to be planar in 3D contrary to those innizk
image resolution. and Kang, 2007, Micusik and Kosecka, 2009).

The first step is the estimation of successive camera pogeg us 1 he last step is filtering of triangles in view-centered miedét
Structure-from-Motion (SfM). Recent work (Micusik and kka, reduces the redundancy and removes the most inaccuratéand u
2009) suggests that bundle adjustment (BA) is not needewif s €XPected triangles. Here we accept non-incremental metitod
eral good experimental conditions are meet: large resniytiide ~ COMPlexity greater than linear in the number of camera poses
view field, and accurate knowledge of calibration. Here waolp ~ Since the main calculations are done in the previous stepfwh
require accurate calibration since it depends on both mgmo- @S linear complexity and is parallelizable using multies).

file (mirror manufacturer may not like to rev_eal it) and thespo ;g paper improves work (Lhuillier, 2008a, Lhuillier, 28i6)
between the perspective camera and the mirror. Furthetm@e  ,21ks to polygons for super-pixels, drift removal using/CBc-

would like to avoid calibration pattern handling for entets  cjerations for larger sequence (feature selection in thesgep,
For these reasons, BA is needed to estimate simultanecasly ¢ - cmplexity handling in the triangle filtering step), redandy re-
era poses, reconstructed points and intrinsic parameters. duction, experiments on more challenging sequence.

Drift or error accumulation occurs in SfM of long image sences.

It should be detected between images taken at similar mgatn 2 OVERVIEW OF THE RECONSTRUCTION METHOD

the scene (Anan and Hartley, 2005, Havlena et al., 2009)end r _ ) . .

moved using BA (Cornelis et al., 2004). Here we remove dsft u This Section has six parts describing camera model, Steictu
ing constrained bundle adjustment (CBA) based on (Triggs.et from-Motion, drift removal, over-segmentation mesh, vieen-
2000), instead of a re-weighted version of the standard Bér(C -tered model and triangle filtering.

nelis et al., 2004) which relies much on heuristic initiatinn. 21 Camera Model

The next step is the estimation of the 3D scene. Like (Pollexp gingle view-point camera model with a general radial diito
feys et al., 2008, Micusik and Kosecka, 2009), we apply densg,nction and a symmetry axis is used (Lhuillier, 2008a) irttysli-

stereo method on a small number Jof consecutive images, it-  fies the reconstruction process for non-single view-poamera
erate this process several times along the sequence, amg MeXit any), assuming that depth is large enough.
the obtained view-centered 3D models into the global and fina '

3D model. Furthermore, we use an over-segmentation in fne reWe assume that the projection of the whole view field is delim-
erence image of view-centered model in conjunction withsgen ited by two concentric circles which can be detected in insage
stereo (Zitnick and Kang, 2007, Micusik and Kosecka, 2009) Furthermore, the mirror manufacturer provides the lowet ap-
Super-pixels (small regions) are useful to reduce sterdaigam  per bounds of the “ray angle” between observation ray and the
ity, to constrain depth discontinuities at super-pixeldsss se- symmetry axis. The initial calibration is that of equiargutam-
lected among image contours, to reduce computational @mpl era: the mapping from the ray angle of 3D point to the distance
ity. between the point projection and the circle center is linear



2.2 Structure-from-Motion 2.4 Over-Segmentation Mesh

This mesh has the following purposes. It makes image-based s
ification of the scene such that the view field is uniforméyrs

ed. This is useful for time and space complexities of ferth
aProcessing and more adequate than storing depth maps for-all
ages. Furthermore, it segments the image into polygonstiath
depth discontinuities are constrained to be at polygon drsrd
These borders are selected among image contours. [If cantour
are lacking, borders are preferred on concentric circlesadial
segments of the donut image. This roughly corresponds te hor
zontal and vertical depth discontinuities for standaremt@tion
Although it is important to get a maximum number of recon- of the catadioptric camera (if its symmetry axis is vertjcal
structed features for 3D scene modeling, we noticed thaethe |, short the image mesh is build in four steps: initialinati
are many more 3D points than needed to initialize the gegmetr .pecrerhoard (rows are concentric rings, columns haver

in our wide view field context. Indeed, this is not uncommon to rections, cells are two Delaunay triangles), gradient eidige-

have more th_an 2000 features per ou_tdoqr image involved in BAgration (perturb vertices to approximate the most prontiien
and this implies a waste of computation time. So the number

. o ) : age contours), optimization (perturb all vertices to miizienthe
of features per image is limited to 500 in all BAs of steps 3:2- g, for all triangles, of color variances, plus the sumafbver-
?hD pgl(r)lés_are”r andomly slelecte(tj_ andﬂ:gmc_)ve(? whyl:s larghearld tices, of squared moduluses of umbrella operators), anggpal

an In all images. In practice, this simple scheme Nalds gegmentation (triangles are regrouped in small and cong
good point distribution in the view field. Th&" step is the fol- g ( g group & p

8 ) . i i - gons). In practice, lots of polygons are quadrilateralsilainto
lowing: step 3 is applied a second time withoeut limit to get those of the initialization checkerboard.
a maximum number of reconstructed features consistentttith
poses and calibration. 2.5 View-Centered 3D Model

Structure-from-Motion (Lhuillier, 2008a) is applied totiesate
geometry (camera poses and a sparse cloud of 3D points) usir&’
the calibration initialization of Section 2.1: estimate th-view P
and 3-view geometries of consecutive images from matched H
ris points (step 1) and then estimate the whole sequenceeigom
using bundle adjustment (BA) applied in a hierarchical feam
work (step 2). Another BA is applied to refine simultaneously
radial distortion parameters and the 3D assuming that tiialra
distortion is constant in the whole sequence (step 3).

Our BA is the sparse Levenberg-Marquardt method assumatg th View-centered 3D model is build from image mesh (Section 2.4
there are more structure parameters than camera onesiuidézc ~ 2ssuming that the geometry is known (Sections 2.1, 2.2 &@)d 2.
profile Choleski decomposition (Triggs et al., 2000) of tiee r

Depth Map in the Reference Image We reproject catadioptric
duced camera system. P P g proj p

image onto the 6 faces of a virtual cube and apply match prop-
agation (Lhuillier and Quan, 2002) to two parallel faceswb t
cubes. The depth map in th€'" image is obtained by chaining
matches between consecutive images/@f). In the next steps,

Drift or error accumulation is unavoidable in the geometsyi€ e over-segmentation mesh in #i& image is back-projected to
mation of long sequence. Methods (Havlena et al., 2009, Ana%pproximate the depth map.

and Hartley, 2005, Cornelis et al., 2004) detect the driftieen
two reconstructed imagesand j if these images are taken at Mesh Initialization  For all polygons in image, a plane in 3D
similar locations. These methods also provide list; of point  (or nil if failure) is estimated by a RANSAC procedure apgdlie
matches betweeinandj, which is used to remove drift. Without on depths available inside the polygon. A depth is inlierepf-t
drift removal, scene part visible inandj is reconstructed twice. tative plane if the corresponding 3D point is in this planetop
thresholding (Appendix A). The best plaredefines 3D points
Adequate BA and its initialization are applied to removeorec  which are the intersections betweeand the observation rays of
struction duplicates while maintaining low re-projectiemors in  the polygon vertices in thé” image. These 3D points are called
the whole sequence of imagé3, 1---n — 1}. Once the 2D fea-  “3D vertices of polygon” although the polygon is 2D.
ture match listZ; ; is given for pair{s, j}, we remove the drift . . . ) .
betweeni andj as follows. First, we choose integersuch that Fc_JraII edges in Imagez, we defln(_e booleah, Wh'.Ch will d_eter-
the neighborhoodV/ (i) of i is the list{i — k- -i---i+ k}. Sec-  Mine th_e connection o_f trla_mg_les in both edge s_ld_gs._ Sinpthde
ond, V(i) and its data (3D geometry and image features) are dudiscontinuity is prohibited inside polygons, we initiaiz. = 1
plicated in images\'(n + k) = {n---n -+ 2k} such that images if both triangles are in the same polygon (other cases: 0).
n+ k andi are the same. Third, we use RANSAC to fit the simi- connection  Connections between polygons are needed to ob-
larity transformations of 3D points matched by.; ; and applys  (ain a more realistic 3D model. Thus edge booleans are farced
to obtain/V(n + k) geometry in the same basis & --n — 1} 1 if neighboring polygons satisfy coplanarity constrainbr &ll
geometry. Fourth{0- - - n + 2k} geometry is refined by BAtak-  ho1ygonsp with a plane in 3D, we collect in lisk,, the polygons
ing into accountlin i ,; (Ln+k,; is @ copy ofL; ; with image ; in ,-neighborhood (including) such that all 3D vertices of
index ghanges). NOW(n +k) ge_ometry is the d_rlft correction  gre in the plane o up to thresholding (Appendix A). If the sum
of N/ (i) geometry. Fifth, constrained bundle adjustment (CBA) ot 5olid angles of polygons i, is greater than a threshold, we
is applied to minimize the global re-projection error subjeo have confidence in coplanarity between all polygond.jnand

constraintc(x) = 0, wherex concatenates 3D parameters of \ye sety, — 1 for all edges: between two polygons df,.
{0---n + 2k} andc¢(x) concatenates the drifts between poses )

of V(i) and N'(n + k) (more details in Appendix B). At this Hole Filling We fill hole H if its neighborhoodN is copla-
point, the drift betweeri andj is removed but\V'(n + k) isre-  nar. BothH and N are polygon lists. The former is a connected
dundant. Last, we remove data involving(n + k) and apply ~ component of polygons without plane in 3D and the latter con-
BAto {0---n — 1} geometry by taking into accout; ;. tains polygons with plane in 3D. Neighborhoddis coplanar if
there is a planer (generated by random samples of vertices of
This scheme is applied using a limit eft = 500 features per  N) such that all 3D vertices iV are in7 up to thresholding
image to avoid waste of time as in Section 2.2, with the only(Appendix A). If N is coplanar, all polygons off get planer
difference that’; ; and L, +,; are not counted by this limit. and we seb. = 1 for all edges between two triangles BfU N.

2.3 Drift Removal



View-Centered Mesh in 3D Now, 3D triangles are generated
by back-projection of triangles in the image mesh using goty
planes and edge booleans. Trianglmside a polygorp with
plane in 3D is reconstructed as follows. lgf be the circularly-
linked list of polygons which have vertexof ¢. We obtain sub-
list(s) of C’, by removing the”',-links between consecutive poly-
gons which share edgessuch thath. = 0. A C,-link is also
removed if one of its two polygons has not plane in 3D. K&t
be the sub-list which contains The 3D triangle of is defined
by its 3 vertices: the 3D vertex reconstructed #as the mean of
3D vertices of the polygons i6%2 which correspond te.

Refinement Here we provide a brief overview of the refine-
ment, which is detailed in (Lhuillier, 2008b). The view-tered
mesh (3D triangles with edge connections) is parametrigatéd
depths of its vertices and is optimized by minimizing a wéigh

Reliability 3D modeling application requires additional filter-
ing to reject “unreliable” triangles that filters above mighese
triangles includes those which are in the neighborhood efitte
supporting thec;,j € N(i) (if any). Inspired by a two-view
reliability method (Doubek and Svoboda, 2002), we reje€it
has vertex such thaimax; ;e ;) anglgv — c;, v — cx) is less
than thresholdyy. This method is intuitive:t is rejected if ray
directionsv — c;, j € N (i) are parallel.

Redundancy Previous filters provide a redundant 3D model in-
sofar as scene parts may be reconstructed by several mesh par
selected in several view-centered models. Redundancgédees
with thresholduo of the uncertainty-based filter and the inverse
of thresholda of the reliability-based filter. Our final filter de-
creases redundancy as follows: 3D triangles at mesh boaders
progressively rejected in the decreasing uncertaintyrdafdbey

sum of discrepancy and smoothing terms. The discrepanoy ter are redundant with other mesh parts. Triangeredundant if its
is the sum, for all pixels in a triangle with plane in 3D, of the peighborhood intersects triangle of tji¢ view-centered model
squared distance between the plane and 3D point defined &y PiX(j - 4). The neighborhood of is the truncated pyramid with

depth (Appendix A). The smoothing term is the sum, for allexig
which are not atimage contour, of the squared differencedsen
normals of 3D triangles in both edge sides. This minimizat
applied several times by alternating with mesh operatidmsh-
gle Connection” and “Hole Filling” (Lhuillier, 2008b).

2.6 Triangle Filtering

baset and three edges. These edges are the main axes of the 90%
uncertainty ellipsoids of theverticesv defined bycC,,.

Complexity Handling We apply the filters above in the in-
creasing complexity order to deal with large number of trian
gles (tens of millions in our case). Filters based on priamida
edge and reliability are applied first. Thanks dp and relia-

For alli, the method in Section 2.5 provides a 3D model centeredility angle ao, we estimate radius; and centerb; of a ball

atimage: using imagesV(i). Now, several filters are applied on
the resulting list of triangles to remove the most inacaiatd
unexpected triangles.

which encloses the selected part of iHeview-centered model:
b; = %(01;1 +Ci+1) andtan(ao/Q) = ||C~;+1 —Ci—1 ||/(2T2) if

N (i) ={i—1,i,i+1}. Let N(i) = {j,|[b; — bj|| < ri+1;}

be the list of view-centered modejswhich may have intersec-

Notations We need additional notations in this Section. Heretion with the i** view-centered model. Then the uncertainty-

t is a 3D (not 2D) triangle of the'" view-centered model. The
angle between two vectors andv is angléu, v) € [0, 7. Let
d;, c; be the camera symmetry direction and center atithe
pose in world coordinatesi( points toward the sky). LdV;(v)
be the length of major axis of covariance mattix of v € R?
as if v is reconstructed by ray intersection fromprojections in
imagesN (j) using Levenberg-Marquardt.

based filter is accelerated thanksX(<): trianglet is rejected
if Us(v)/min;ene) Usj(v) > uo for all verticesv of ¢. Last,
the redundancy-based filter is applied. Its complexity duernt-
certainty sort i<O(plog(p)), wherep is the number of triangles.
Its complexity due to redundancy triangle test®ig?), but this
is accelerated using test eliminations and hierarchicahtimg
boxes.

Uncertainty Parts of the scene are reconstructed in several view-

centered models with different accuracies. This is espigdrae

3 EXPERIMENTS

in our wide view field context where a large part of the scene is
visible in a Single image. Thus, the final 3D model can not be deThe image sequence is taken in the university campus on au-

fined by a simple union of the triangle lists of all view-ceet®
models. A selection on the triangles should be done.

We rejectt if the " model does not provide one of the best avail-

able uncertainties from all models: if all verticef ¢ have ratio
Ui(v)/ min; U;(v) greater than threshold.

gust 15-16th afternoons without people. There are seveal t
jectory loops, variable ground surface (road, foot pathmawn
grass), buildings, corridor and vegetation (bushes, }Yre@sis
scene accumulates several difficulties: not 100% rigids¢due
to breath of wind), illuminations changes between day 142 su
sequences (Fig 2), low-textured areas, camera gain ch@nges

Prior Knowledge Here we assume that the catadioptric cam-corrected), aperture problem and non-uniform sky at bogesky
era is hand-held by a pedestrian walking on the ground swath th edges. The sequence has 23864 x 2448 JPEG images, which

(1) the camera symmetry axis is (roughly) vertical (2) theugrd

slope is moderated (3) the step length between consecutive i

are reduced by 2 in both dimensions to accelerate all cdionk

ages and the height between ground and camera center do nbf€ perspective camera points toward the sky, it is hand et
change too much. This knowledge is used to reject unexpectediounted on a monopod. The mirror (Www-@860.com, 2010)

triangles which are not in a “neighborhood of the ground”.

A step length estimate is = median||c; — c;+1||. We choose
anglesay, ap betweend; and observation rays such that<
ar < 5 < ap < m. Trianglet is rejected if it is below the
ground: if it has vertew such that angl@l;,v — c¢;) > «ap and

provides large view field: 360 degrees in the horizontal @jan
about 52 degrees above and 62 degrees below. The view field is
projected between concentric circles of radii 572 and 18@lpi

We use a core 2 duo 2.5Ghz laptop with 4Go 667MHz DDR2.

First, the geometry is estimated thanks to the methods in Sec

height%diT(v — ¢;) is less than a threshold. The sky rejection tions 2.1, 2.2 and 2.3. The user provides the list of imagespai

does not depend on scale We robustly estimate the mean
and standard deviation of heightd? (v — c;) for all vertexv
of theit" model such that angld;, v — ¢;) < a;. Trianglet is
rejected if it has vertex such that angl@;,v — ¢;) < a; and
L(df (v — ¢;) — m) is greater than a threshold.

{%, 7} such that drift betweehand; should be removed (drift de-
tection method is not integrated in the current version efdis-

tem). Once the geometry of days 1 and 2 sub-sequences are es-
timated using the initial calibration, points are matchetineen
imagesi andj using correlation (Fig. 2) and CBA is applied to



Figure 2: From top to bottom: 722 and 535 matched gof used
to remove drift in cases (d) and (e) of Fig. 1. Images of days 1
and 2 are on the left and right, respectively.

Last, the methods in Section 2.6 are applied to filter theNd9.6
triangles stored in hard disk. A first filtering is done usiefja-
bility (o = 5 degrees), prior knowledge and uncertainty filters
(uo = 1.1): we obtain 6.5M triangles in 40 min and store them in
RAM. Redundancy removal is the last filtering and select&/4.5
triangles in 44 min. Texture packing and VRML file saving take
9 min. Fig. 4 shows views of the final model. We note that the
scene is curved as if it lie on a sphere surface whose diaraser
several kilometers: a vertical component of drift is left.

Figure 1: Geometry estimation steps: (a) day 1 sequenceg{b)

move drift, (c) merge day 1-2 sequences, (d_'f) remove dliifs curacy (discrepancy between scene reconstruction anchgrou
use all features. All results are registered in rectarjgld] x truth) for a view-centered model using — 1. A represen-
[0,0.8] by enforcing constant coordinates on the two poses SuUrgative range of baselines is obtained with the followinguyo
rounded by gray disks in (a). Gray disks in (b,d,e.f) showesos tryth: the[0,5]? cube and camera locations defined dy =
where drift is corrected. Day 1-2 sequences are merged on gra(1 144/5 1)T ,i € {0,1,2} (numbers in meters). First,

disk in (c). synthetic images are generated using ray-tracing and thwlkn
edge of mirror/perspective camera/textured cube. Seqoeth-
remove drifts using: = 1. Cases (b,d,e,f) of Fig. 1 are trajec- ods in Sections 2.1, 2.2, 2.4 and 2.5 are applied. Third, @cam
tory loops with (424,451,1434,216) images and are obtabyed pased registration is applied to put the scene estimatidhen
(16,62,39,9) CBA iterations in (190,2400,1460,370) selsore-  coordinate frame of ground truth. Last, the scene accusagy
spectively. We think that a large part of the drift in case i) s estimated using the distanedetween vertex' of the model
due to the single view point approximation, which is ina@ter  and the ground truth surface: inequalityfv)| < ao.o||v — c1||
in the outdoor corridor (top right corner of Fig. 4) with sthal s true for 90% of vertices. We obtain, o = 0.015.
scene depth. A last BA is applied to refine the geometry (3D

and intrinsic parameters) and to increase the list of reicocted

points. The final geometry (Fig. 1.g) has 699410 points recon 4 CONCLUSION

structed from 3.9M Harris features; the means of track leagt

and 3D points visible in one view are 5.5 and 1721, respdygtive e present an environment reconstruction system from ismiage
acquired by a $1000 camera. Several items are describedraam

Then, 2256 view-centered models are reconstructed thartket  model, structure-from-motion, drift removal, view fieldspling

methods in Section 2.4 and 2.5 usig= 1. Thisis the mosttime by super-pixels, view-centered model and triangle filtgritun-

consuming part of the method since one view-centered medel ilike previous work, image meshes define both super-pixeis-(c

computed in about 3 min 30s. The first step of view-centeredrex polygons) and triangles of 3D models. The current system

model computation is the over-segmentation mesh in the-refeis fully automatic up to the loop detection step (that presio

ence image. It samples the view field such that the supetspgite  methods could solve). Last it is experimented on a chaltengi

the neighborhood of horizontal plane projection are itig&d by  sequence.

squares of siz8 x 8 pixels in the images. The mean of number

of 3D triangles is 17547. Fig. 3 shows super-pixels of a ifee  Future work includes loop detection integration, bettee 0§

image and the resulting view-centered model. visibility and prior knowledge for scene reconstructioainjng

An other experiment is the quantitative evaluation of scace



Figure 4: Top view (top left), local views (top right) and @hle view (bottom) of the final 3D model of the campus. The tigmwcan
be matched with Fig. 1.g. The transformation between topadique views is a rotation around horizontal axis.

meshes of view-centered models to form a continuous suyrface huillier, M., 2008a. Automatic scene structure and canmeoa

and accelerations using GPU.
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APPENDIX A: POINT AND PLANE THRESHOLDING

Let p be a 3D point. The covariance matig of p is pro-
vided by ray intersection fronp projections in imagesV'(i) =

{i — k---i---1 + k} using Levenberg-Marquardt. In this pa-
per, ray intersection and covarianCg result from the angle er-
ror in (Lhuillier, 2008b). The Mahalanobis distantg, between

pointsp andp’ is Dy (p’) = \/(p —p)7C (P —P).

We define pointpg = c; + zu andp’ = c¢; + z'u using camera
locationc;, ray directionu and depthsg;, 2’. If z is large enough,

u is a good approximation of the main axis@f: we haveC, ~
oguu’ andu’Cy'u &~ o, ? whereo} is the largest singular

value ofCy,. In this context, we obtaiD, (p’)

~
~

~ 2221

p
If x has the Gaussian distribution with meprand covariance
Cp, D3 (x) has thex? distribution with 3 d.o.f. We decide that
pointsp andp’ are the same (up to error) if bothZ(p’) and
D2, (p) are less than the 90% quantile of this distribution: we
decide thap andp’ are the same point iD(p, p’) < 2.5 where

D(p,p’) = max{Dp(p’), Dp' (p)} = |z—2']

min{op 1T 3

Letr be the plane” x+d = 0. The point-to-plane Mahalanobis
distance isD2 (r) = minxer D2(x) = 22D (Schindler

nTCpn
and Bischof, 2003). Thus, ~ oguu’ andp’ € w imply

T/ d T /1\\2 2—2z' 2
DE(W)” (n pi%z’:’}u()pz p))” _ a%) %Df,(p').

Last, we obtain the point-to-plane thresholding and distarsed
in Section 2.5. We decide that is in planer if D(p,p’) <
2.5 wherep’ € 7. The robust distance betwegnand r is

min{D(p, p'), 2.5} ~ min{ 2.5}, 2 = —2gitd

nTu

lz—2'|
min{ap,ap/} ’

APPENDIX B: CONSTRAINED BUNDLE ADJUSTMENT

In Section 2.3, we would like to apply CBA (constrained bun-
dle adjustment) summarized in (Triggs et al., 2000) to reanov
the drift. This method minimizes the re-projection errondu
tionx — f(x) subject to the drift removal constraiatx) = 0,
wherex concatenates poses and 3D points. Here we tave=

x1 — xj wherex; andx] concatenate 3D locations of images
N (i) and their duplicates of images (n + k), respectively. All
3D parameters of sequen¢e- - - n + 2k} are inx except the 3D
locations of /() and N (n + k). During CBA, x{ is fixed and
x1 evolves towardsy.

However, there is a difficulty with this scheme. CBA iteratio
(Triggs et al., 2000) improve= by adding stepA which mini-
mizes quadratic Taylor expansion pfsubject to0 ~ c(x + A)
and linear Taylor expansiaf(x + A) ~ ¢(x) +CA. We use no-
tationsx” = (x] x3), AT = (AT Al),c=(c1 ¢C2)
and obtainc; = I,C, = 0. Thus, we have\; = —c¢(x) at the
first CBA iteration. On the one hand\; = —c¢(x) is the drift
and may be very large. On the other hadsl,should be small
enough for quadratic Taylor approximation ff

The “reduced problem” in (Triggs et al., 2000) is used: BAate
tion minimizes the quadratic Taylor expansion&f — g(A2)
whereg(As) = f(A(Az)) andA(A2)" = (—c(x)"  A7).
Step Az meetsHa (M) Ao —g2, Where (), g2, H2(\)) are
damping parameter, gradient and damped hessian &fpdate
x «— x + A(A32) holds if g(A2) < min{1.1fy,g(0)}, where
fo is the value off(x) before CBA. It can be shown that this
inequality is true ifc(x) is small enough and is large enough.

Here we reset by ¢, at then'” iteration of CBA to have a small
enoughe(x). Let x? be the value ofk; before CBA. We use
en(x) = x1 — (1 — y)x} + vmx7), wherey, increases pro-
gressively fromD (no constraint at CBA start) tb (full constraint
at CBA end). One CBA iteration is summarized as follows. tirs
estimateA(y,) for the current value of\, x) (a single linear
systemH2(\)X = Y is solved for ally, € [0,1]). Second, try
to increasey,, such thay(Az(v»)) < min{1.1fo, g(0)}. If the
iteration succeeds, appky — x + A(As). Furthermore, apply
A — A/10if v = yn—1. If the iteration fails, apply\ < 100).
If 4% > Yn_1 OF v, = 1, choOS€y,11 = 7. at the(n + 1)t
iteration to obtaiMA (A;)” = (07 A7) and to decreasg as
soon (or much) as possible.



