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ABSTRACT:

This paper describes a system to generate 3D model from imagesequence taken in complex environment including variable ground
surface, buildings and trajectory loops. Here we use a $1000catadioptric camera and an approximate knowledge of its calibration. This
contrasts to current systems which rely on more costly hardware such as the (calibrated) spherical vision camera Ladybug. All steps of
the method are summarized. Experiments include a campus reconstruction from thousands of images.

1 INTRODUCTION

The automatic 3D modeling of environment from image sequence
is a long-term and still active field of research. Wide view field
camera is a natural choice for ground-based sequence. Current
systems include multi-camera and accurate GPS and INS (Polle-
feys et al., 2008) at high cost (>$100K), the Ladybug multi-
camera (www.ptgrey.com, 2010) at medium cost (≈$12K). Here
we use a catadioptric camera at low cost (≈$1K): a mirror of
revolution (www.0−360.com, 2010) mounted on a perspective
still camera (Nikon Coolpix 8700) thanks to adapter ring. The
medium and high cost systems are more convenient since they
provide video sequences and wide view field without sacrificing
image resolution.

The first step is the estimation of successive camera poses using
Structure-from-Motion (SfM). Recent work (Micusik and Kosecka,
2009) suggests that bundle adjustment (BA) is not needed if sev-
eral good experimental conditions are meet: large resolution, wide
view field, and accurate knowledge of calibration. Here we donot
require accurate calibration since it depends on both mirror pro-
file (mirror manufacturer may not like to reveal it) and the pose
between the perspective camera and the mirror. Furthermore, we
would like to avoid calibration pattern handling for end-users.
For these reasons, BA is needed to estimate simultaneously cam-
era poses, reconstructed points and intrinsic parameters.

Drift or error accumulation occurs in SfM of long image sequences.
It should be detected between images taken at similar locations in
the scene (Anan and Hartley, 2005, Havlena et al., 2009) and re-
moved using BA (Cornelis et al., 2004). Here we remove drift us-
ing constrained bundle adjustment (CBA) based on (Triggs etal.,
2000), instead of a re-weighted version of the standard BA (Cor-
nelis et al., 2004) which relies much on heuristic initialization.

The next step is the estimation of the 3D scene. Like (Polle-
feys et al., 2008, Micusik and Kosecka, 2009), we apply dense
stereo method on a small number ofM consecutive images, it-
erate this process several times along the sequence, and merge
the obtained view-centered 3D models into the global and final
3D model. Furthermore, we use an over-segmentation in the ref-
erence image of view-centered model in conjunction with dense
stereo (Zitnick and Kang, 2007, Micusik and Kosecka, 2009).
Super-pixels (small regions) are useful to reduce stereo ambigu-
ity, to constrain depth discontinuities at super-pixel borders se-
lected among image contours, to reduce computational complex-
ity.

Our over-segmentation is defined by triangle mesh in image such
that (1) super-pixel is a list of connected triangles and (2)trian-
gles of the view-centered model are back-projected triangles of
the image mesh. In work (Zitnick and Kang, 2007, Micusik and
Kosecka, 2009), super-pixel is pixel list and is unused by surface
meshing. Our choice has several advantages. Mesh regularizes
super-pixel shape and defines the resolution of final reconstruc-
tion by view field sampling. This is useful to compress large
scene. Besides, we obtain triangles in 3D such that the consis-
tency with image contours can not be degraded by depth error
unlike (Chai et al., 2004). This is not a luxury because depthesti-
mation is difficult in uncontrolled environment. Our super-pixels
are not restricted to be planar in 3D contrary to those in (Zitnick
and Kang, 2007, Micusik and Kosecka, 2009).

The last step is filtering of triangles in view-centered models. It
reduces the redundancy and removes the most inaccurate and un-
expected triangles. Here we accept non-incremental methodwith
complexity greater than linear in the number of camera poses,
since the main calculations are done in the previous step (which
has linear complexity and is parallelizable using multi-cores).

This paper improves work (Lhuillier, 2008a, Lhuillier, 2008b)
thanks to polygons for super-pixels, drift removal using CBA, ac-
celerations for larger sequence (feature selection in the SfM step,
complexity handling in the triangle filtering step), redundancy re-
duction, experiments on more challenging sequence.

2 OVERVIEW OF THE RECONSTRUCTION METHOD

This Section has six parts describing camera model, Structure-
from-Motion, drift removal, over-segmentation mesh, view-cen-
-tered model and triangle filtering.

2.1 Camera Model

A single view-point camera model with a general radial distortion
function and a symmetry axis is used (Lhuillier, 2008a). It simpli-
fies the reconstruction process for non-single view-point camera
(if any), assuming that depth is large enough.

We assume that the projection of the whole view field is delim-
ited by two concentric circles which can be detected in images.
Furthermore, the mirror manufacturer provides the lower and up-
per bounds of the “ray angle” between observation ray and the
symmetry axis. The initial calibration is that of equiangular cam-
era: the mapping from the ray angle of 3D point to the distance
between the point projection and the circle center is linear.



2.2 Structure-from-Motion

Structure-from-Motion (Lhuillier, 2008a) is applied to estimate
geometry (camera poses and a sparse cloud of 3D points) using
the calibration initialization of Section 2.1: estimate the 2-view
and 3-view geometries of consecutive images from matched Har-
ris points (step 1) and then estimate the whole sequence geometry
using bundle adjustment (BA) applied in a hierarchical frame-
work (step 2). Another BA is applied to refine simultaneously
radial distortion parameters and the 3D assuming that the radial
distortion is constant in the whole sequence (step 3).

Although it is important to get a maximum number of recon-
structed features for 3D scene modeling, we noticed that there
are many more 3D points than needed to initialize the geometry
in our wide view field context. Indeed, this is not uncommon to
have more than 2000 features per outdoor image involved in BA,
and this implies a waste of computation time. So the numbernf

of features per image is limited to 500 in all BAs of steps 1-2-3:
3D points are randomly selected and removed whilenf is larger
than 500 in all images. In practice, this simple scheme holdsa
good point distribution in the view field. The4th step is the fol-
lowing: step 3 is applied a second time withoutnf limit to get
a maximum number of reconstructed features consistent withthe
poses and calibration.

Our BA is the sparse Levenberg-Marquardt method assuming that
there are more structure parameters than camera ones: it includes
profile Choleski decomposition (Triggs et al., 2000) of the re-
duced camera system.

2.3 Drift Removal

Drift or error accumulation is unavoidable in the geometry esti-
mation of long sequence. Methods (Havlena et al., 2009, Anan
and Hartley, 2005, Cornelis et al., 2004) detect the drift between
two reconstructed imagesi and j if these images are taken at
similar locations. These methods also provide listLi,j of point
matches betweeni andj, which is used to remove drift. Without
drift removal, scene part visible ini andj is reconstructed twice.

Adequate BA and its initialization are applied to remove recon-
struction duplicates while maintaining low re-projectionerrors in
the whole sequence of images{0, 1 · · ·n− 1}. Once the 2D fea-
ture match listLi,j is given for pair{i, j}, we remove the drift
betweeni andj as follows. First, we choose integerk such that
the neighborhoodN (i) of i is the list{i− k · · · i · · · i+ k}. Sec-
ond,N (i) and its data (3D geometry and image features) are du-
plicated in imagesN (n + k) = {n · · ·n + 2k} such that images
n + k andi are the same. Third, we use RANSAC to fit the simi-
larity transformations of 3D points matched byLi,j and applys
to obtainN (n + k) geometry in the same basis as{0 · · ·n− 1}
geometry. Fourth,{0 · · ·n + 2k} geometry is refined by BA tak-
ing into accountLn+k,j (Ln+k,j is a copy ofLi,j with image
index changes). NowN (n + k) geometry is the drift correction
of N (i) geometry. Fifth, constrained bundle adjustment (CBA)
is applied to minimize the global re-projection error subject to
constraintc(x) = 0, wherex concatenates 3D parameters of
{0 · · ·n + 2k} andc(x) concatenates the drifts between poses
of N (i) andN (n + k) (more details in Appendix B). At this
point, the drift betweeni andj is removed butN (n + k) is re-
dundant. Last, we remove data involvingN (n + k) and apply
BA to {0 · · ·n− 1} geometry by taking into accountLi,j .

This scheme is applied using a limit ofnf = 500 features per
image to avoid waste of time as in Section 2.2, with the only
difference thatLi,j andLn+k,j are not counted by this limit.

2.4 Over-Segmentation Mesh

This mesh has the following purposes. It makes image-based sim-
plification of the scene such that the view field is uniformly sam-
pled. This is useful for time and space complexities of further
processing and more adequate than storing depth maps for allim-
ages. Furthermore, it segments the image into polygons suchthat
depth discontinuities are constrained to be at polygon borders.
These borders are selected among image contours. If contours
are lacking, borders are preferred on concentric circles orradial
segments of the donut image. This roughly corresponds to hori-
zontal and vertical depth discontinuities for standard orientation
of the catadioptric camera (if its symmetry axis is vertical).

In short, the image mesh is build in four steps: initialization
checkerboard (rows are concentric rings, columns have radial di-
rections, cells are two Delaunay triangles), gradient edgeinte-
gration (perturb vertices to approximate the most prominent im-
age contours), optimization (perturb all vertices to minimize the
sum, for all triangles, of color variances, plus the sum, forall ver-
tices, of squared moduluses of umbrella operators), and polygon
segmentation (triangles are regrouped in small and convex poly-
gons). In practice, lots of polygons are quadrilaterals similar to
those of the initialization checkerboard.

2.5 View-Centered 3D Model

View-centered 3D model is build from image mesh (Section 2.4)
assuming that the geometry is known (Sections 2.1, 2.2 and 2.3).

Depth Map in the Reference Image We reproject catadioptric
image onto the 6 faces of a virtual cube and apply match prop-
agation (Lhuillier and Quan, 2002) to two parallel faces of two
cubes. The depth map in theith image is obtained by chaining
matches between consecutive images ofN (i). In the next steps,
the over-segmentation mesh in theith image is back-projected to
approximate the depth map.

Mesh Initialization For all polygons in imagei, a plane in 3D
(or nil if failure) is estimated by a RANSAC procedure applied
on depths available inside the polygon. A depth is inlier of ten-
tative plane if the corresponding 3D point is in this plane upto
thresholding (Appendix A). The best planeπ defines 3D points
which are the intersections betweenπ and the observation rays of
the polygon vertices in theith image. These 3D points are called
“3D vertices of polygon” although the polygon is 2D.

For all edgese in imagei, we define booleanbe which will deter-
mine the connection of triangles in both edge sides. Since depth
discontinuity is prohibited inside polygons, we initialize be = 1
if both triangles are in the same polygon (other cases:be = 0).

Connection Connections between polygons are needed to ob-
tain a more realistic 3D model. Thus edge booleans are forcedto
1 if neighboring polygons satisfy coplanarity constraint. For all
polygonsp with a plane in 3D, we collect in listLp the polygons
q in p-neighborhood (includingp) such that all 3D vertices ofq
are in the plane ofp up to thresholding (Appendix A). If the sum
of solid angles of polygons inLp is greater than a threshold, we
have confidence in coplanarity between all polygons inLp and
we setbe = 1 for all edgese between two polygons ofLp.

Hole Filling We fill hole H if its neighborhoodN is copla-
nar. BothH andN are polygon lists. The former is a connected
component of polygons without plane in 3D and the latter con-
tains polygons with plane in 3D. NeighborhoodN is coplanar if
there is a planeπ (generated by random samples of vertices of
N ) such that all 3D vertices inN are in π up to thresholding
(Appendix A). If N is coplanar, all polygons ofH get planeπ
and we setbe = 1 for all edges between two triangles ofH ∪N .



View-Centered Mesh in 3D Now, 3D triangles are generated
by back-projection of triangles in the image mesh using polygon
planes and edge booleans. Trianglet inside a polygonp with
plane in 3D is reconstructed as follows. LetCv be the circularly-
linked list of polygons which have vertexv of t. We obtain sub-
list(s) ofCv by removing theCv-links between consecutive poly-
gons which share edgese such thatbe = 0. A Cv-link is also
removed if one of its two polygons has not plane in 3D. LetSp

v

be the sub-list which containsp. The 3D triangle oft is defined
by its 3 vertices: the 3D vertex reconstructed forv is the mean of
3D vertices of the polygons inSp

v which correspond tov.

Refinement Here we provide a brief overview of the refine-
ment, which is detailed in (Lhuillier, 2008b). The view-centered
mesh (3D triangles with edge connections) is parametrized by the
depths of its vertices and is optimized by minimizing a weighted
sum of discrepancy and smoothing terms. The discrepancy term
is the sum, for all pixels in a triangle with plane in 3D, of the
squared distance between the plane and 3D point defined by pixel
depth (Appendix A). The smoothing term is the sum, for all edges
which are not at image contour, of the squared difference between
normals of 3D triangles in both edge sides. This minimization is
applied several times by alternating with mesh operations “Trian-
gle Connection” and “Hole Filling” (Lhuillier, 2008b).

2.6 Triangle Filtering

For all i, the method in Section 2.5 provides a 3D model centered
at imagei using imagesN (i). Now, several filters are applied on
the resulting list of triangles to remove the most inaccurate and
unexpected triangles.

Notations We need additional notations in this Section. Here
t is a 3D (not 2D) triangle of theith view-centered model. The
angle between two vectorsu andv is angle(u,v) ∈ [0, π]. Let
di, ci be the camera symmetry direction and center at theith

pose in world coordinates (di points toward the sky). LetUj(v)
be the length of major axis of covariance matrixCv of v ∈ R

3

as ifv is reconstructed by ray intersection fromv projections in
imagesN (j) using Levenberg-Marquardt.

Uncertainty Parts of the scene are reconstructed in several view-
centered models with different accuracies. This is especially true
in our wide view field context where a large part of the scene is
visible in a single image. Thus, the final 3D model can not be de-
fined by a simple union of the triangle lists of all view-centered
models. A selection on the triangles should be done.

We rejectt if the ith model does not provide one of the best avail-
able uncertainties from all models: if all verticesv of t have ratio
Ui(v)/minj Uj(v) greater than thresholdu0.

Prior Knowledge Here we assume that the catadioptric cam-
era is hand-held by a pedestrian walking on the ground such that
(1) the camera symmetry axis is (roughly) vertical (2) the ground
slope is moderated (3) the step length between consecutive im-
ages and the height between ground and camera center do not
change too much. This knowledge is used to reject unexpected
triangles which are not in a “neighborhood of the ground”.

A step length estimate iss = mediani||ci − ci+1||. We choose
anglesαt, αb betweendi and observation rays such that0 <
αt < π

2
< αb < π. Triangle t is rejected if it is below the

ground: if it has vertexv such that angle(di,v − ci) > αb and
height 1

s
dT

i (v − ci) is less than a threshold. The sky rejection
does not depend on scales. We robustly estimate the meanm
and standard deviationσ of heightdT

i (v − ci) for all vertexv

of theith model such that angle(di,v − ci) < αt. Trianglet is
rejected if it has vertexv such that angle(di,v − ci) < αt and
1
σ
(dT

i (v − ci)−m) is greater than a threshold.

Reliability 3D modeling application requires additional filter-
ing to reject “unreliable” triangles that filters above miss. These
triangles includes those which are in the neighborhood of the line
supporting thecj , j ∈ N (i) (if any). Inspired by a two-view
reliability method (Doubek and Svoboda, 2002), we rejectt if it
has vertexv such thatmaxj,k∈N (i) angle(v− cj ,v− ck) is less
than thresholdα0. This method is intuitive:t is rejected if ray
directionsv − cj , j ∈ N (i) are parallel.

Redundancy Previous filters provide a redundant 3D model in-
sofar as scene parts may be reconstructed by several mesh parts
selected in several view-centered models. Redundancy increases
with thresholdu0 of the uncertainty-based filter and the inverse
of thresholdα0 of the reliability-based filter. Our final filter de-
creases redundancy as follows: 3D triangles at mesh bordersare
progressively rejected in the decreasing uncertainty order if they
are redundant with other mesh parts. Trianglet is redundant if its
neighborhood intersects triangle of thejth view-centered model
(j 6= i). The neighborhood oft is the truncated pyramid with
baset and three edges. These edges are the main axes of the 90%
uncertainty ellipsoids of thet verticesv defined byCv.

Complexity Handling We apply the filters above in the in-
creasing complexity order to deal with large number of trian-
gles (tens of millions in our case). Filters based on prior knowl-
edge and reliability are applied first. Thanks tocj and relia-
bility angle α0, we estimate radiusri and centerbi of a ball
which encloses the selected part of theith view-centered model:
bi = 1

2
(ci−1 +ci+1) andtan(α0/2) = ||ci+1−ci−1||/(2ri) if

N (i) = {i− 1, i, i + 1}. LetN(i) = {j, ||bi−bj || ≤ ri + rj}
be the list of view-centered modelsj which may have intersec-
tion with the ith view-centered model. Then the uncertainty-
based filter is accelerated thanks toN(i): triangle t is rejected
if Ui(v)/minj∈N(i) Uj(v) ≥ u0 for all verticesv of t. Last,
the redundancy-based filter is applied. Its complexity due to un-
certainty sort isO(p log(p)), wherep is the number of triangles.
Its complexity due to redundancy triangle tests isO(p2), but this
is accelerated using test eliminations and hierarchical bounding
boxes.

3 EXPERIMENTS

The image sequence is taken in the university campus on au-
gust 15-16th afternoons without people. There are several tra-
jectory loops, variable ground surface (road, foot path, unmown
grass), buildings, corridor and vegetation (bushes, trees). This
scene accumulates several difficulties: not 100% rigid scene (due
to breath of wind), illuminations changes between day 1-2 sub-
sequences (Fig 2), low-textured areas, camera gain changes(un-
corrected), aperture problem and non-uniform sky at building-sky
edges. The sequence has 22603264×2448 JPEG images, which
are reduced by 2 in both dimensions to accelerate all calculations.

The perspective camera points toward the sky, it is hand-held and
mounted on a monopod. The mirror (www.0−360.com, 2010)
provides large view field: 360 degrees in the horizontal plane,
about 52 degrees above and 62 degrees below. The view field is
projected between concentric circles of radii 572 and 103 pixels.
We use a core 2 duo 2.5Ghz laptop with 4Go 667MHz DDR2.

First, the geometry is estimated thanks to the methods in Sec-
tions 2.1, 2.2 and 2.3. The user provides the list of image pairs
{i, j} such that drift betweeni andj should be removed (drift de-
tection method is not integrated in the current version of the sys-
tem). Once the geometry of days 1 and 2 sub-sequences are es-
timated using the initial calibration, points are matched between
imagesi andj using correlation (Fig. 2) and CBA is applied to



Figure 1: Geometry estimation steps: (a) day 1 sequence, (b)re-
move drift, (c) merge day 1-2 sequences, (d-f) remove drifts, (g)
use all features. All results are registered in rectangle[0, 1] ×
[0, 0.8] by enforcing constant coordinates on the two poses sur-
rounded by gray disks in (a). Gray disks in (b,d,e,f) show poses
where drift is corrected. Day 1-2 sequences are merged on gray
disk in (c).

remove drifts usingk = 1. Cases (b,d,e,f) of Fig. 1 are trajec-
tory loops with (424,451,1434,216) images and are obtainedby
(16,62,39,9) CBA iterations in (190,2400,1460,370) seconds, re-
spectively. We think that a large part of the drift in case (d)is
due to the single view point approximation, which is inaccurate
in the outdoor corridor (top right corner of Fig. 4) with small
scene depth. A last BA is applied to refine the geometry (3D
and intrinsic parameters) and to increase the list of reconstructed
points. The final geometry (Fig. 1.g) has 699410 points recon-
structed from 3.9M Harris features; the means of track lengths
and 3D points visible in one view are 5.5 and 1721, respectively.

Then, 2256 view-centered models are reconstructed thanks to the
methods in Section 2.4 and 2.5 usingk = 1. This is the most time
consuming part of the method since one view-centered model is
computed in about 3 min 30s. The first step of view-centered
model computation is the over-segmentation mesh in the refer-
ence image. It samples the view field such that the super-pixels at
the neighborhood of horizontal plane projection are initialized by
squares of size8 × 8 pixels in the images. The mean of number
of 3D triangles is 17547. Fig. 3 shows super-pixels of a reference
image and the resulting view-centered model.

Figure 2: From top to bottom: 722 and 535 matches ofLi,j used
to remove drift in cases (d) and (e) of Fig. 1. Images of days 1
and 2 are on the left and right, respectively.

Last, the methods in Section 2.6 are applied to filter the 39.6M
triangles stored in hard disk. A first filtering is done using relia-
bility (α0 = 5 degrees), prior knowledge and uncertainty filters
(u0 = 1.1): we obtain 6.5M triangles in 40 min and store them in
RAM. Redundancy removal is the last filtering and selects 4.5M
triangles in 44 min. Texture packing and VRML file saving take
9 min. Fig. 4 shows views of the final model. We note that the
scene is curved as if it lie on a sphere surface whose diameterhas
several kilometers: a vertical component of drift is left.

An other experiment is the quantitative evaluation of sceneac-
curacy (discrepancy between scene reconstruction and ground
truth) for a view-centered model usingk = 1. A represen-
tative range of baselines is obtained with the following ground
truth: the [0, 5]3 cube and camera locations defined byci =
`

1 1 + i/5 1
´T

, i ∈ {0, 1, 2} (numbers in meters). First,
synthetic images are generated using ray-tracing and the knowl-
edge of mirror/perspective camera/textured cube. Second,meth-
ods in Sections 2.1, 2.2, 2.4 and 2.5 are applied. Third, a camera-
based registration is applied to put the scene estimation inthe
coordinate frame of ground truth. Last, the scene accuracya0.9

is estimated using the distancee between vertexv of the model
and the ground truth surface: inequality|e(v)| ≤ a0.9||v − c1||
is true for 90% of vertices. We obtaina0.9 = 0.015.

4 CONCLUSION

We present an environment reconstruction system from images
acquired by a $1000 camera. Several items are described: camera
model, structure-from-motion, drift removal, view field sampling
by super-pixels, view-centered model and triangle filtering. Un-
like previous work, image meshes define both super-pixels (con-
vex polygons) and triangles of 3D models. The current system
is fully automatic up to the loop detection step (that previous
methods could solve). Last it is experimented on a challenging
sequence.

Future work includes loop detection integration, better use of
visibility and prior knowledge for scene reconstruction, joining



Figure 4: Top view (top left), local views (top right) and oblique view (bottom) of the final 3D model of the campus. The top view can
be matched with Fig. 1.g. The transformation between top andoblique views is a rotation around horizontal axis.

meshes of view-centered models to form a continuous surface,
and accelerations using GPU.
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APPENDIX A: POINT AND PLANE THRESHOLDING

Let p be a 3D point. The covariance matrixCp of p is pro-
vided by ray intersection fromp projections in imagesN (i) =
{i − k · · · i · · · i + k} using Levenberg-Marquardt. In this pa-
per, ray intersection and covarianceCp result from the angle er-
ror in (Lhuillier, 2008b). The Mahalanobis distanceDp between

pointsp andp′ is Dp(p′) =
q

(p− p′)TC
−1
p (p− p′).

We define pointsp = ci + zu andp′ = ci + z′u using camera
locationci, ray directionu and depthsz, z′. If z is large enough,

u is a good approximation of the main axis ofCp: we haveCp ≈
σ2
puuT anduT

C
−1
p u ≈ σ−2

p whereσ2
p is the largest singular

value ofCp. In this context, we obtainDp(p′) ≈ |z−z′|
σp

.

If x has the Gaussian distribution with meanp and covariance
Cp, D2

p(x) has theX 2 distribution with 3 d.o.f. We decide that
pointsp andp′ are the same (up to error) if bothD2

p(p′) and
D2

p′(p) are less than the 90% quantile of this distribution: we
decide thatp andp′ are the same point ifD(p, p′) ≤ 2.5 where

D(p,p′) = max{Dp(p′), Dp′ (p)} ≈ |z−z′|
min{σp,σ

p′}
.

Letπ be the planenT x+d = 0. The point-to-plane Mahalanobis

distance isD2
p(π) = minx∈π D2

p(x) = (nT
p+d)2

nT Cpn
(Schindler

and Bischof, 2003). ThusCp ≈ σ2
puuT and p′ ∈ π imply

D2
p(π) ≈ (nT

p
′+d+n

T (p−p
′))2

σ2
p(nT u)2

= (z−z′)2

σ2
p

≈ D2
p(p′).

Last, we obtain the point-to-plane thresholding and distance used
in Section 2.5. We decide thatp is in planeπ if D(p, p′) ≤
2.5 wherep′ ∈ π. The robust distance betweenp and π is

min{D(p, p′), 2.5} ≈ min{ |z−z′|
min{σp,σ

p′}
, 2.5}, z′ = −n

T
ci+d

nT u
.

APPENDIX B: CONSTRAINED BUNDLE ADJUSTMENT

In Section 2.3, we would like to apply CBA (constrained bun-
dle adjustment) summarized in (Triggs et al., 2000) to remove
the drift. This method minimizes the re-projection error func-
tion x 7→ f(x) subject to the drift removal constraintc(x) = 0,
wherex concatenates poses and 3D points. Here we havec(x) =
x1 − x

g
1 wherex1 andx

g
1 concatenate 3D locations of images

N (i) and their duplicates of imagesN (n + k), respectively. All
3D parameters of sequence{0 · · ·n+2k} are inx except the 3D
locations ofN (j) andN (n + k). During CBA,xg

1 is fixed and
x1 evolves towardsxg

1.

However, there is a difficulty with this scheme. CBA iteration
(Triggs et al., 2000) improvesx by adding step∆ which mini-
mizes quadratic Taylor expansion off subject to0 ≈ c(x + ∆)
and linear Taylor expansionc(x+∆) ≈ c(x)+C∆. We use no-
tationsxT =

`

xT
1 xT

2

´

, ∆T =
`

∆T
1 ∆T

2

´

, C =
`

C1 C2

´

and obtainC1 = I, C2 = 0. Thus, we have∆1 = −c(x) at the
first CBA iteration. On the one hand,∆1 = −c(x) is the drift
and may be very large. On the other hand,∆ should be small
enough for quadratic Taylor approximation off .

The “reduced problem” in (Triggs et al., 2000) is used: BA itera-
tion minimizes the quadratic Taylor expansion of∆2 7→ g(∆2)
whereg(∆2) = f(∆(∆2)) and∆(∆2)

T =
`

−c(x)T ∆T
2

´

.
Step∆2 meetsH2(λ)∆2 = −g2, where(λ,g2, H2(λ)) are
damping parameter, gradient and damped hessian ofg. Update
x ← x + ∆(∆2) holds if g(∆2) < min{1.1f0, g(0)}, where
f0 is the value off(x) before CBA. It can be shown that this
inequality is true ifc(x) is small enough andλ is large enough.

Here we resetc by cn at thenth iteration of CBA to have a small
enoughc(x). Let x0

1 be the value ofx1 before CBA. We use
cn(x) = x1 − ((1 − γn)x0

1 + γnx
g
1), whereγn increases pro-

gressively from0 (no constraint at CBA start) to1 (full constraint
at CBA end). One CBA iteration is summarized as follows. First,
estimate∆2(γn) for the current value of(λ,x) (a single linear
systemH2(λ)X = Y is solved for allγn ∈ [0, 1]). Second, try
to increaseγn such thatg(∆2(γn)) < min{1.1f0, g(0)}. If the
iteration succeeds, applyx ← x + ∆(∆2). Furthermore, apply
λ← λ/10 if γn = γn−1. If the iteration fails, applyλ← 100λ.
If γn > γn−1 or γn = 1, chooseγn+1 = γn at the(n + 1)th

iteration to obtain∆(∆2)
T =

`

0T ∆T
2

´

and to decreasef as
soon (or much) as possible.


