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Sharp non-asymptotic Concentration Inequalities for the Approximation of the Invariant Measure of a Diffusion

dY t = b(Y t )dt + σ(Y t )dW t ,
where (W t ) t≥0 stands for a Wiener process of dimension r ∈ N on a given filtered probability space (Ω, G, (G t ) t≥0 , P), b : R d → R d , and σ : R d → R d ⊗ R r are Lipschitz continuous functions and satisfy a Lyapunov condition (see further Assumption L V ) which provides the existence of an invariant measure ν. Throughout the article, uniqueness of the invariant measure ν is assumed. The purpose of this work is to estimate the invariant measure of the diffusion equation (1.1).

In order to make a clear parallel with the objects we will introduce for the approximation of ν, let us first recall some basic facts on (Y t ) t≥0 and ν.

Introduce for a bounded continuous function f and t ∈ R + the average occupation measure:

(1.2)

ν t (f ) := 1 t t 0 f (Y s )ds.
Foremost, bear in mind the usual ergodic theorem which holds under appropriate Lyapunov conditions (see e.g. [START_REF] Khasminskii | Stochastic Stability of Differential Equations[END_REF]):

(1.3) ν t (f ) a.s.

-→ t→+∞ ν(f ) := f dν.

Under suitable stability and regularity conditions, Bhattacharya [START_REF] Bhattacharya | On the functional central limit theorem and the law of the iterated logarithm for Markov processes[END_REF] then established a corresponding Central Limit Theorem (CLT). Namely, for all smooth enough function f ,

(1.4) √ t ν t (f ) -ν(f )
where ϕ is the solution of the Poisson equation Aϕ = f -ν(f ) and A stands for the infinitesimal operator of the diffusion (1.1) (see (2.3) below for more details). In the following, we say that f is coboundary when there is a smooth solution ϕ to the Poisson equation Aϕ = f -ν(f ). Identity (1.4) is a Central Limit Theorem (CLT) whose asymptotic variance is the integral of the well known carré du champ (called energy but we will say, from now on, by abuse of terminology, carré du champ), for more precision, see [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF] and [START_REF] Ledoux | Concentration of measure and logarithmic Sobolev inequalities[END_REF]. The carré du champ is actually a bilinear operator defined for any smooth functions ϕ, ψ by Γ(ϕ, ψ) := A(ϕ • ψ) -Aϕ • ψ -ϕ • Aψ, and so:

ν (Γ (ϕ, ϕ)) = R d Γ(ϕ, ϕ)ν(dx) = -2 R d Aϕ • ϕ ν(dx) = R d |σ * ∇ϕ| 2 ν(dx).
Indeed, observe that ν (A (ϕ • ψ)) = 0. This is a consequence of the fact that ν solves in the distributional sense the Fokker-Planck equation A * ν = 0. Also, this observation yields that, in order to bypass solving a Poisson equation, a common trick consists in dealing with smooth functions of the form Aϕ.

From a practical point of view, several questions appear: how to approach the process (Y t ) t≥0 , the integral ν t , and the deviation from the asymptotic measure appearing in (1.4)? Here, the first question is addressed by considering a suitable discretization scheme with decreasing time steps, (γ k ) k≥1 . The integral ν t can then be approximated by the associated empirical measure, whose deviations will be controlled in our main results. In particular, we take advantage of the discrete analogue to (1.4) established by Lamberton and Pagès in [START_REF] Lamberton | Recursive computation of the invariant distribution of a diffusion[END_REF] for the current approximation scheme, to derive sharp non-asymptotic bounds for the empirical measure.

We propose an approximation algorithm based on an Euler like discretization with decreasing time step, first introduced by Lamberton and Pagès in [START_REF] Lamberton | Recursive computation of the invariant distribution of a diffusion[END_REF] who derived related asymptotic limit theorem in the spirit of (1.4), and exploited as well in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF] where some corresponding non-asymptotic bounds are obtained.

For the decreasing step sequence (γ k ) k≥1 and n ≥ 0, the scheme deriving from (1.1) is defined by: (S)

X n+1 = X n + γ n+1 b(X n ) + √ γ n+1 σ(X n )U n+1 , X 0 ∈ L 2 (Ω, F 0 , P),
where (U n ) n≥1 is an i.i.d. sequence of random variables on R r , independent of X 0 , and whose moments match with the Gaussian ones up to order 3. In particular, more general innovations than the Brownian increments can be used. Intuitively, the decreasing steps in (S) allow to be more and more precise when time grows. The empirical (random) occupation measure of the scheme is defined for all A ∈ B(R d ) (where B(R d ) denotes the Borel σ-field on R d ) by:

(1.5)

ν n (A) := ν n (ω, A) := n k=1 γ k δ X k-1 (ω) (A) n k=1 γ k .
We are interested in the long time approximation, so we need to consider steps (γ k ) k≥1 such that

Γ n := n k=1 γ k → n +∞.
Under suitable Lyapunov like assumptions, Lamberton and Pagès in [START_REF] Lamberton | Recursive computation of the invariant distribution of a diffusion[END_REF] first proved the following ergodic result: for any ν -a.s. continuous function f with polynomial growth, ν n (f )

a.s. -→ n ν(f ) = R d f (x)ν(dx)
, which is the discrete analogue of (1.3). The main benefit of decreasing steps instead of constant ones is thus that the empirical measure directly converges towards the invariant one. Otherwise, taking γ k = h > 0 in (S), the previous ergodic theorem must be changed into: ν n (f )

a.s. -→ n ν h (f ) = R d f (x)ν h (dx)
, where ν h is the invariant measure of the scheme. So, an extra study must be carried out, namely the difference ν -ν h should be estimated. For more details about this approach we refer to [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF], [START_REF] Talay | Stochastic Hamiltonian invariant and discretization by the implicit Euler scheme[END_REF] and the work of Malrieu and Talay [START_REF] Malrieu | Concentration inequalities for Euler Schemes[END_REF]. This work first addressed the issue of deriving non-asymptotic controls for the deviations of empirical measure of type (1.5) when γ k = γ > 0 (constant step). The backbone of their approach consisted in establishing a Log Sobolev inequality, which implies Gaussian concentration, for the Euler scheme. In whole generality, functional inequalities (such as the Log Sobolev one) are a powerful tools to get simple controls on the invariant distribution associated with the diffusion process (1.1), see e.g. Ledoux [Led99] or Bakry et al. [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]. Withal Log Sobolev, and Poincaré inequalities turn out to be quite rigid in the framework of discretization schemes like (S) with or without decreasing steps.

For the CLT associated with stationary Markov chains, we refer to Gordin's Theorem (see [START_REF] Gordin | On the central limit theorem for stationnary markov processes[END_REF]). Note as well that the variance of the limit Gaussian law is also the carré du champ for discrete Poisson equation associated with the generator of the chain.

Let us mention as well some related works. In [START_REF] Blower | Concentration inequalities on product spaces with applications to Markov processes[END_REF], Blower and Bolley establish Gaussian concentration properties for deviations of functional of the path in the case of metric space valued homogeneous Markov chains. Non-asymptotic deviation bounds for the Wasserstein distance between the marginal distributions and the stationary law, in the homogeneous case can be found in [START_REF] Boissard | Simple bounds for the convergence of empirical and occupation measures in 1-Wasserstein distance[END_REF] (see also Boissard and Le Gouic in [START_REF] Boissard | On the mean speed of convergence of empirical and occupation measures in Wasserstein distance[END_REF] for controls on the expectations of this Wasserstein distance). The key point of these works is to demonstrate contraction properties of the transition kernel of the homogeneous Markov chain for a Wasserstein metric, which requires some continuity in this metric for the transition law involved, see e.g. [START_REF] Blower | Concentration inequalities on product spaces with applications to Markov processes[END_REF].

In the current work, we aim to establish an optimal non-asymptotic concentration inequality for ν n (f ) -ν(f ). When |σ * ∇ϕ| 2 -ν(|σ * ∇ϕ| 2 ) is a coboundary, we manage to improve the estimates in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF]. Insofar, we better the variance in the upper-bound obtained in Theorem 3 therein: when the time step is such that γ n n -θ , for θ > 1 3 , for all n ∈ N, for a smooth enough function ϕ s.t. Aϕ = f -ν(f ), under suitable assumptions (further called Assumptions (A)), and if σ 2 is coboundary then there exist explicit non-negative sequences ( c n ) n≥1 and ( C n ) n≥1 , respectively increasing and decreasing for n large enough, with lim n C n = lim n c n = 1 s.t. for all n ≥ 1 and 0 < a = o( √ Γ n ):

P Γ n |ν n (f ) -ν(f )| ≥ a = P | Γ n ν n (Aϕ)| ≥ a ≤ 2 C n exp - c n a 2 2ν( σ 2 ) ∇ϕ 2 ∞ .
In fact, we get below the optimal variance bound, namely the carré du champ ν(|σ * ∇ϕ| 2 ), instead of the expression ν( σ 2 ) ∇ϕ 2 ∞ as in the previous inequality. Up to the same previously indicated deviation threshold, a = o( √ Γ n ), we derive the optimal Gaussian concentration. Consequently, we are able to derive directly some sharp non-asymptotic confidence intervals.

To establish our non-asymptotic results, we use martingale increment techniques which turn out to be very robust in a rather large range of application fields. Let us for instance mention the work of Frikha and Menozzi [START_REF] Frikha | Concentration bounds for stochastic approximations[END_REF] which establishes non-asymptotic bounds for the regular Monte Carlo error associated with the Euler discretization of a diffusion until a finite time interval [0, T ] and for a class of stochastic algorithms of Robbins-Monro type. Still with martingale approach, Dedecker and Gouëzel [START_REF] Dedecker | Subgaussian concentration inequalities for geometrically ergodic markov chains[END_REF] have obtained non-asymptotic deviation bounds for separately bounded functionals of geometrically ergodic Markov chains on a general state space. Eventually, we can refer again to the work [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF] in the current setting.

The paper is organized as follows. In Section 2, we state our notations and assumptions as well as some known and useful results related to our approximation scheme. Section 3 is devoted to our main concentration results (for a certain deviation regime that we will call Gaussian deviations), we also state therein several technical lemmas whose proofs are postponed to Section 4. Importantly, we also provide a user's guide to the proof which emphasizes the key steps in our approach. Section 4 is the technical core of the paper. We then discuss in Section 5 some regularity issues for the considered test functions. Namely, we recall some assumptions introduced in [HMP17] which yield appropriate regularity concerning the solution of Poisson equation. We also extend there our main results to test functions f that are Lipschitz continuous, up to some constraints on the step sequence.

We proceed in Section 6 to the explicit optimization of the constants appearing in the concentration bound deriving from our approach. Intrinsically, this procedure conducts to two deviation regimes, the Gaussian one up to a = o( √ Γ n ) and the super Gaussian one for a √ Γ n which deteriorates the concentration rate. Even though awkward at first sight (see e.g. Remark 4 below), this refinement turns out to be useful for some numerical purposes, as it emphasized in Section 7. We conclude there with some numerical results associated with a degenerate diffusion.Some additional technical details needed in Section 6 are gathered in Appendix A.

Assumptions and Existing Results

2.1. General notations. For all step sequence (γ n ) n≥1 , we denote:

∀ ∈ R, Γ ( ) n := n k=1 γ k , Γ n := n k=1 γ k = Γ (1) n .
Practically, the time step sequence is assumed to have the form:

γ n 1 n θ with θ ∈ (0, 1], where for two sequences (u n ) n∈N , (v n ) n∈N the notation u n v n means that ∃n 0 ∈ N, ∃C ≥ 1 s.t. ∀n ≥ n 0 , C -1 v n ≤ u n ≤ Cv n .
We will denote by C a non negative constant, and by (e n ) n≥1 , (R n ) n≥1 deterministic generic sequences s.t. e n → n 0 and R n → n 1, that may change from line to line. The constant C depends, uniformly in time, as well as the sequences (e n ) n≥1 , (R n ) n≥1 , on known parameters appearing in the assumptions introduced in Section 2.2 (called (A) throughout the document). Other possible dependencies will be explicitly specified.

In the following, for any smooth enough function f , for k ∈ N we will denote D k f the tensor of the k th derivatives of f . Namely

D k f = (∂ i 1 . . . ∂ i k f ) 1≤i 1 ,...,i k ≤d . However, for a multi-index α ∈ N d 0 := (N ∪ {0}) d , we set D α f = ∂ α 1 x 1 . . . ∂ α d x d f : R d → R.
For a β-Hölder continuous function f : R d → R, we introduce the notation

[f ] β := sup x =x |f (x) -f (x )| |x -x | β < +∞,
for its Hölder modulus of continuity. Here, |x -x | stands for the Euclidean norm of

x -x ∈ R d . We denote, for (p, m) ∈ N 2 , by C p (R d , R m ) the space of p-times continuously differentiable func- tions from R d to R m . Besides, for f ∈ C p (R d , R m ), p ∈ N, we define for β ∈ (0, 1] the Hölder modulus: [f (p) ] β := sup x =x ,|α|=p |D α f (x) -D α f (x )| |x -x | β ≤ +∞,
where α (viewed as an element of N d ) is a multi-index of length p, i.e. |α| := d i=1 α i = p. Hence, in the above definition, the | • | in the numerator is the usual absolute value. We will as well use the notation [[n, p]], (n, p) ∈ (N 0 ) 2 , n ≤ p, for the set of integers being between n and p.

From now on, we introduce for k ∈ N 0 , β ∈ (0, 1] and m ∈ {1, d, d × r} the Hölder spaces With these notations, C k,β (R d , R m ) stands for the subset of C k (R d , R m ) whose elements have bounded derivatives up to order k and β-Hölder continuous k th derivatives. For instance, the space of Lipschitz continuous functions from

C k,β (R d , R m ) := {f ∈ C k (R d , R m ) : ∀α ∈ N d , |α| ∈ [[1, k]], sup x∈R d |D α f (x)| < +∞, [f (k) ] β < +∞}, C k,β b (R d , R m ) := {f ∈ C k,β (R d , R m ) : f ∞ < +∞}. ( 2 
R d to R m is denoted by C 0,1 (R d , R m ).
Eventually, for a given Borel function f :

R d → E, where E can be R, R d , R d ⊗ R r , R d ⊗ R d , we set for k ∈ N 0 : f k := f (X k ). For k ∈ N 0 , we denote by F k := σ (X j ) j∈[[0,k]] the σ-algebra generated by the (X j ) j∈[[0,k]] .

Hypotheses. (C1)

The first term of the random sequence X 0 is supposed to be sub-Gaussian, i.e. there is a threshold λ 0 > 0 such that:

∀λ < λ 0 , E[exp(λ|X 0 | 2 )] < +∞. (GC)
The innovations (U n ) n≥1 form an i.i.d. sequence with law µ, we also assume that E[U 1 ] = 0 and for all (i, j, k

) ∈ {1, • • • , r} 3 , E[U i 1 U j 1 ] = δ ij , E[U i 1 U j 1 U k 1 ] = 0.
Moreover, (U n ) n≥1 and X 0 are independent. Eventually, U 1 satisfies the following standard Gaussian concentration property, i.e. for every 1-Lipschitz continuous function g : R r → R and every λ > 0:

E exp(λg(U 1 )) ≤ exp λE[g(U 1 )] + λ 2 2 .
In particular, Gaussian and symmetrized Bernoulli random variables (in short r.v.) satisfy this inequality.

Pay attention that a wider class of sub-Gaussian distributions could be considered. Namely, random variables for which there exists > 0 s.t. for all λ > 0:

(2.2)

E exp(λg(U 1 )) ≤ exp λE[g(U 1 )] + λ 2 4 .
It is well know that this assumption yields that for all r ≥ 0,

P[|U 1 | ≥ r] ≤ 2 exp(-r 2 ).
(C2) There is a positive constant κ s.t., defining for all x ∈ R d , Σ(x) := σσ * (x):

sup x∈R d Tr(Σ(x)) = sup x∈R d σ(x) 2 ≤ κ.
(L V ) We consider the following Lyapunov like stability condition:

There exists V : R d -→ [v * , +∞[ with v * > 0 s.t. i) V ∈ C 2 (R d , R), D 2 V ∞ < ∞, and lim |x|→∞ V (x) = +∞.
ii) There exists C V ∈ (0, +∞) s.t. for all x ∈ R d :

|∇V (x)| 2 + |b(x)| 2 ≤ C V V (x).
iii) Let A be the infinitesimal generator associated with the diffusion equation (1.1), defined for all ϕ ∈ C 2 0 (R d , R) and for all x ∈ R d by:

(2.3)

Aϕ(x) = b(x) • ∇ϕ(x) + 1 2 Tr Σ(x)D 2 ϕ(x) ,
where, for two vectors v 1 , v 2 ∈ R d , the symbol v 1 • v 2 stands for the canonical inner product of v 1 and v 2 . There exist

α V > 0, β V ∈ R + s.t. for all x ∈ R d , AV (x) ≤ -α V V (x) + β V .
(U) There is a unique invariant measure ν to equation (1.1).

For β ∈ (0, 1], we introduce: (T β ) We choose a test function ϕ for which i) ϕ smooth enough, i.e. ϕ ∈ C 3,β (R d , R), We further assume that:

ii) the mapping x → b(x), ∇ϕ(x) is Lipschitz continuous. iii) there exists C V,ϕ > 0 s.t. for all x ∈ R d |ϕ(x)| ≤ C V,ϕ (1 + V (x)).
(S) We assume that the sequence (γ k ) k≥1 is small enough, Namely, we suppose that for all k ≥ 1:

γ k ≤ min 1 2 √ C V c , α V 2C V D 2 V ∞ .
The constraint in (S) means that the time steps have to be sufficiently small w.r.t. the diffusion coefficients and the Lyapunov function.

Remark 1. The above condition (L V ) actually implies that the drift coefficient b lies, out of a compact set, between two hyperplanes separated from 0. Also, the Lyapunov function is lower than the square norm. In other words, there exist constants K, c > 0 such that for all |x| ≥ K,

|V (x)| ≤ c|x| 2 , |b(x)| ≤ C V c|x|. (2.4)
Observe that we have supposed (U) without imposing any non-degeneracy conditions. Existence of invariant measure follows from (L V ) (see [START_REF] Ethier | Markov Processes. Characterization and Convergence[END_REF]). For uniqueness, additional conditions need to be considered ((hypo)ellipticity [START_REF] Khasminskii | Stochastic Stability of Differential Equations[END_REF], [START_REF] Pardoux | On the Poisson Equation and Diffusion Approximation[END_REF], [Vil09] or confluence [START_REF] Pagès | Ergodic approximation of the distribution of a stationary diffusion: rate of convergence[END_REF]).

Remark 2. In (T β ), condition ii) is direct if we consider Lyapunov function V (x) 1 + |x| 2 . Indeed, ϕ is supposed, in condition (T β ) i), to be Lipschitz continuous and so under a linear map. Hypothesis ii) is natural when there is a function

f ∈ C 1,β (R d , R) with ν(f ) = 0 s.t. (2.5) Aϕ = f.
From the definition of A in (2.3), we rewrite:

(2.6) ∇ϕ(x), b(x) = f (x) -ν(f ) - 1 2 Tr Σ(x)D 2 x ϕ(x) .
Since the source f is Lipschitz continuous, and σ, D 2 x ϕ are bounded and Lipschitz continuous, the left hande side of the equation (2.6) is also Lispchitz continuous.

We say that assumption (A) holds whenever (C1), (GC), (C2), (L V ), (U), (T β ) for some β ∈ (0, 1] and (S) are fulfilled. Except when explicitly indicated, we assume throughout the paper that assumption (A) is in force.

Assume the step sequence (γ k ) k≥1 is chosen s.t. γ k k -θ , θ ∈ (0, 1]. In particular, this implies that, for any ε ≥ 0, Γ

(ε) n n 1-εθ if εθ < 1, Γ (ε) n ln(n) if εθ = 1 and Γ (ε) n 1 if εθ > 1.
2.3. On some Related Existing Result. In [START_REF] Lamberton | Recursive computation of the invariant distribution of a diffusion[END_REF], Lamberton and Pagès, proved an asymptotic result with the decreasing step scheme (S). Precisely, they obtain the discrete counterpart of (1.4) established in [START_REF] Bhattacharya | On the functional central limit theorem and the law of the iterated logarithm for Markov processes[END_REF], emphasizing as well some discretization effects, leading to a bias in the limit law, when the time step becomes too coarse. This last case is however the one leading to the highest convergence rates in the CLT. We recall here their main results, Theorem 10 of the above reference, for the sake of completeness.

Theorem 1. [Asymptotic Limit Results in [LP02]] Assume (C2), (L V ), (U) hold. If E[U 1 ] = 0, E[U ⊗3
1 ] = 0, we get the following limit results where ν n stands for the empirical measure defined in (1.5).

(a) Fast decreasing step. If θ ∈ ( 1 3 , 1] and E[|U 1 | 6 ] < +∞, then, for all function ϕ ∈ C 2,1 (R d , R)∩ C 3 (R d , R), one has: Γ n ν n (Aϕ) L -→ n→∞ N 0, R d |σ * ∇ϕ| 2 dν . (b) Critical decreasing step. If θ = 1 3 and if E[|U 1 | 8 ] < +∞, then for all function ϕ ∈ C 3,1 (R d , R) ∩ C 4 (R d , R), one gets: Γ n ν n (Aϕ) L -→ n→∞ N γm, R d |σ * ∇ϕ| 2 dν , where γ := lim n→+∞ Γ (2) n √ Γ n , m := - R d Tr 1 2 D 2 ϕ(x)b(x) ⊗2 + Φ 4 (x) ν(dx), Φ 4 (x) := R r Tr 1 2 D 3 ϕ(x)b(x)(σ(x)u) ⊗2 + 1 24 D 4 ϕ(x)(σ(x)u) ⊗4 µ(du),
recalling that µ denotes the law of the i.i.d. innovations (U k ) k≥1 2 .

(c) Slowly decreasing step. If θ ∈ (0, 1 3 ) and if E[|U 1 | 8 ] < +∞, then for all globally Lipschitz function ϕ ∈ C 3,1 (R d , R) ∩ C 4 (R d , R), one gets:

Γ n Γ (2) n ν n (Aϕ) P -→ m.
It is possible to relax the boundedness condition on σ in (C2), considering lim |x|→+∞

|σ * ∇ϕ(x)| 2 V (x)
= 0 (strictly sublinear diffusion) in case (a) and sup

x∈R d |σ * ∇ϕ(x)| 2 V (x)
< +∞ (sublinear diffusion) in case (b). We refer to Theorems 9 and 10 in [START_REF] Lamberton | Recursive computation of the invariant distribution of a diffusion[END_REF] for additional details.

Remark 3. First of all, observe that the normalization is the same as for (1.4). It is the square root of the considered running time, namely t for the diffusion and Γ n for the scheme. In other words, a CLT is still available for the discretization procedure. However, by choosing a critical time step, i.e. for the fast convergence θ = 1 3 , a bias is begot. It can be regarded as a discretization effect. Note that, for all θ ≥ 1 3 , any step leads to the same asymptotic variance, namely the carré du champ, R d |σ * ∇ϕ| 2 dν, like in [START_REF] Bhattacharya | On the functional central limit theorem and the law of the iterated logarithm for Markov processes[END_REF]. However, for the slow decreasing step, θ < 1 3 , the discretization effect is prominent and "hides" the CLT.

Let us also mention the work of Panloup [START_REF] Panloup | Recursive computation of the invariant measure of a stochastic differential equation driven by a lévy process[END_REF], where under similar assumptions for stochastic equation driven by a Lévy process, the convergence of the decreasing time step algorithm towards the invariant measure of the stochastic process is established (see also [START_REF] Panloup | Computation of the invariant measure of a levy driven SDE: Rate of convergence[END_REF] for the CLT 2. With our tensor notations,

D 2 ϕ(x)b(x) ⊗2 ∈ (R d ) ⊗2 , D 3 ϕ(x)b(x)(σ(x)u) ⊗2 ∈ (R d ) ⊗3 , and D 4 ϕ(x)(σ(x)u) ⊗4 ∈ (R d ) ⊗4 .
associated with square integrable Lévy innovations).

In the current diffusive context, i.e. under (A), some non-asymptotic results were successfully established in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF]. It was as well observed there that if we slacken the regularity of the test function ϕ, a new bias looms. For ϕ ∈ C 3,β (R d , R) with β ∈ (0, 1), if θ = 1 2+β then √ Γ n ν n (Aϕ) exhibits deviations similar to the ones of a biased normal law with a different bias than in Theorem 1, c.f. Theorems 2, 3, 4 and 5 in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF]. When β = 1, the two biases correspond. We willingly shirk any discussion about bias appearance, which is discussed in the formerly mentioned article. Our target is to refine Theorem 4 in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF] that we recall:

Theorem 2. [Non-asymptotic concentration inequalities in [HMP17]] Assume (A) holds, if there is ϑ ∈ C 3,β (R d , R) satisfying (T β ) and s.t. Aϑ = σ 2 -ν( σ 2 ).
For β ∈ (0, 1] and θ ∈ ( 1 2+β , 1], there exist two explicit monotonic sequences cn ≤ 1 ≤ Cn , n ≥ 1, with lim n Cn = lim n cn = 1 such that for all n ≥ 1 and a > 0:

P | Γ n ν n (Aϕ)| ≥ a ≤ 2 C n exp - c n 2ν( σ 2 ) ∇ϕ 2 ∞ Φ n (a) , Φ n (a) := a 2 1 - 2 1 + 1 + 4 c3 n Γn a 2 ∨ a 4 3 Γ 1 3 n cn 1 - 2 3 cn Γ n a 2 1 3 + , (2.7)
where x + = max(x, 0) and cn :=

[ϕ] 1 [ϑ] 1 2/3 ν( σ 2 ) σ -2/3
∞ čn with čn being an explicit nonnegative sequence s.t. čn ↓ n 1.

Remark 4. Observe that two regimes compete in the above bound. From now on, we refer to Gaussian deviations when a √ Γn → n 0. In this case, asymptotically the right hand side of the inequality (2.7) is 2 exp -

a 2 2ν( σ 2 ) ∇ϕ 2 ∞ .
In other words, the empirical measure is sub-Gaussian with asymptotic variance equals to ν( σ 2 ) ∇ϕ 2 ∞ which is an upper-bound of the carré du champ, ν(|σ * ∇ϕ| 2 ) (asymptotic variance in the limit theorem). Thus, this is not fully satisfactory. Throughout the article, we refer to super Gaussian deviations when a √ Γn → n +∞. In this case, a subtle phenomenon appears: the right hand side gives a super Gaussian regime. In particular, the term in the exponential of the r.h.s. of (2.7) is bounded from above and below by a 4/3 Γ 1/3 n . We anyhow emphasize that Theorem 2 in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF] provides a non-asymptotic Gaussian concentration for all deviation regimes:

(2.8) P | Γ n ν n (Aϕ)| ≥ a ≤ 2 C n exp - c n a 2 2 σ 2 ∞ ∇ϕ 2 ∞ .
In particular, for super Gaussian deviations, the deviation (2.8) is asymptotically better. However, it had already been observed in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF] that the bound (2.7) turned out to be useful for numerical purposes as it led to bounds closer to the empirical realizations. We will derive in Theorem 6 of Section 6 a deviation bound similar to (2.7) with an improved variance bound. Namely, we succeed to replace ν( σ 2 ) ∇ϕ 2 ∞ by the carré du champ. We then observe in the numerical results of Section 7 that the associated deviation bounds match rather precisely those of the empirical realizations.

We will also employ the terminology of intermediate Gaussian deviations

when a √ Γn → n C > 0.
For this regime, we keep a Gaussian regime with deteriorated constants. Again, we first deal with Gaussian deviations, and we postpone the study of super Gaussian deviations to Section 6.

Remark 5. Actually, in the proof of Theorem 2, we can only use a map ϑ satisfying assumption (T β ) s.t. Aϑ ≥ |σ * ∇ϕ| 2 -ν(|σ * ∇ϕ| 2 ). However, this inequality is equivalent to the coboundary condition ν -a.s.. In fact, we set the function f := Aϑ -|σ * ∇ϕ| 2 + ν(|σ * ∇ϕ| 2 ) ≥ 0, and

(2.9) ν(f ) = ν(Aϑ) = 0.
As f is continuous and non negative, f = 0 ν -a.s. Hence Aϑ = |σ * ∇ϕ| 2 -ν(|σ * ∇ϕ| 2 ) ν -a.s.

Main results

Our main contribution consists in establishing a concentration inequality whose variance matches asymptotically the carré du champ, see (1.4) and Theorem 1 in what we called the regime of Gaussian deviations. In the numerical part of [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF], we see that changing the bound ν( σ 2 ) ∇ϕ 2 ∞ by the carré du champ, leads to bounds much closer to the realizations. Here, we state a simple and "sharp" inequality.

Theorem 3 (Sharp non-asymptotic deviation results). Assume (A) is in force. Suppose that there exists

ϑ ∈ C 3,β (R d , R) satisfying (T β ) for some β ∈ (0, 1] s.t. (3.1) Aϑ = |σ * ∇ϕ| 2 -ν(|σ * ∇ϕ| 2 ).
Then, for θ ∈ ( 1 2+β , 1], there exist explicit non-negative sequences (c n ) n≥1 and (C n ) n≥1 , respectively increasing and decreasing for n large enough, with lim n C n = lim n c n = 1 s.t. for all n ≥ 1, a > 0 satisfying a √ Γn → 0 (Gaussian deviations), the following bound holds:

P | Γ n ν n (Aϕ)| ≥ a ≤ 2 C n exp -c n a 2 2ν(|σ * ∇ϕ| 2 ) .
Remark 6. We obtain the optimal Gaussian bound with the carré du champ as variance which corresponds to CLT. This is asymptotically the sharpest result that we can expect. This inequality is very important for confidence intervals, as in this context a is supposed to be "small", i.e. bounded. Under suitable regularity assumptions on f , which guarantee that the function ϕ solving Aϕ = f -ν(f ) satisfies (T β ) for some β ∈ (0, 1], it readily follows from Theorem 3 that:

P ν(f ) ∈ ν n (f ) - a √ Γ n , ν n (f ) + a √ Γ n ≥ 1 -2C n exp -c n a 2 2ν(|σ * ∇ϕ| 2 )
.

The conditions on f that lead to the required smoothness on ϕ and ϑ are discussed in Section 5 (see in particular Theorem 4 and Corollary 1). Briefly, it suffices to consider that, additionally to (C2) and

(L V ), Σ is also uniformly elliptic, b ∈ C 1,β (R d , R d ), σ ∈ C 1,β (R d , R d ⊗ R d ) and that the source f ∈ C 1,β (R d , R d ).
This last assumption on f can be weakened to Lipschitz continuous (see Theorem 5) with some restriction on the steps.

3.1. User's guide to the proof. Recall that, for a fixed given n ∈ N and ϕ ∈ C 3,β (R d , R), we want to estimate the quantity

P[ Γ n |ν n (Aϕ)| ≥ a], ∀a > 0, where ν n (Aϕ) = 1 Γn n k=1 γ k Aϕ(X k-1
). We focus below on the term P[

√ Γ n ν n (Aϕ) ≥ a]. Indeed, the contribution P[ √ Γ n ν n (Aϕ) ≤ -a
] can be handled by symmetry. The first step of the proof consists in writing Aϕ(X k-1 ) k∈[[1,n]] with a splitting method to isolate the terms depending on the current innovation U k for Aϕ(X k-1 ). This is done in Lemma 1 below.

Precisely, for all

k ∈ [[1, n]] and ϕ ∈ C 3,β (R d , R) we prove that: ϕ(X k ) -ϕ(X k-1 ) = γ k Aϕ(X k-1 ) + γ k 1 0 ∇ϕ(X k-1 + tγ k b k-1 ) -∇ϕ(X k-1 ), b k-1 dt + 1 2 γ k Tr D 2 ϕ(X k-1 + γ k b k-1 ) -D 2 ϕ(X k-1 ) Σ k-1 + ψ k (X k-1 , U k ), (3.2) where ψ k (X k-1 , U k ) = √ γ k σ k-1 U k • ∇ϕ(X k-1 + γ k b k-1 ) + γ k 1 0 (1 -t)Tr D 2 ϕ(X k-1 + γ k b k-1 + t √ γ k σ k-1 U k )σ k-1 U k ⊗ U k σ * k-1 -D 2 ϕ(X k-1 + γ k b k-1 )Σ k-1 dt. (3.3) Observe that the term ψ k (X k-1 , U k ) in the r.h.s. of (3.2) is the only term containing the current innovation U k . Thus, the mapping u → ψ k (X k-1 , u) is Lipschitz continuous, because ϕ is.
This property is crucial to proceed with a martingale increment technique. Indeed, introducing the compensated increment ∆

k (X k-1 , U k ) := ψ k (X k-1 , U k ) -E[ψ k (X k-1 , U k )|F k-1 ], assumption (GC) allows to derive: (3.4) ∀λ > 0, E[exp(-λ∆ k (X k-1 , U k ))|F k-1 ] ≤ exp λ 2 [ψ(X k-1 , •)] 2 1 2 .
The corner stone of the proof is then to apply recursively this control to the martingale

M m := m k=1 ∆ k (X k-1 , U k ), m ∈ [[1, n]].
To control the deviation, the first step is an exponential inequality which combined to (3.2) yields:

P[ Γ n ν n (Aϕ) ≥ a] ≤ exp - aλ √ Γ n E exp(λν n (Aϕ)) ≤ exp - aλ √ Γ n E exp - λqM n Γ n 1/q R n , (3.5) 
for λ > 0, q > 1 and R n is a remainder (whose behaviour is investigated in Lemma 6). The main contribution in the above equation is the one involving M n which can be analyzed thanks to (3.4). Namely:

E exp - qλ Γ n M n = E exp - qλ Γ n M n-1 E exp - qλ Γ n ∆ n (X n-1 , U n ) F n-1 ≤ E exp - qλ Γ n M n-1 exp q 2 λ 2 [ψ(X n-1 , •)] 2 1 2Γ 2 n . (3.6)
A first approach in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF], in order to iterate the estimates involving the conditional expectations, consisted in bounding uniformly

[ψ(X n-1 , •)] 1 ≤ √ γ n σ ∞ ∇ϕ ∞ (which is easily deduced from (3.2))
. Iterating the procedure led to the estimate

(3.7) P[ Γ n ν n (Aϕ) ≥ a] ≤ exp - aλ √ Γ n exp qλ 2 2Γ n σ 2 ∞ ∇ϕ 2 ∞ R n .
Optimizing over λ, letting as well q ↓ n 1 in a suitable way, gives the deviation upper-bound

C n exp(-c n a 2 2 σ 2 ∞ ∇ϕ 2 ∞
), with C n , c n > 0 respectively increasing and decreasing to 1 with n (see Theorem 2 of [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF] for details).

To obtain the expected variance corresponding to the carré du champ ν(|σ * ∇ϕ| 2 ), the key point is to control finely the Lipschitz modulus of ψ k (X k-1 , •) in (3.4), (5.4).

From (3.2), we get the following simple expression of the derivative

∇ u ψ k (X k-1 , u)| u=U k = √ γ k σ * k-1 ∇ϕ(X k ). Hence, there is a remainder term R(γ k , X k-1 , U k ) and a constant C (3.8) = C (3.8) ((A)) > 0 s.t. (3.8) |∇ u ψ k (X k-1 , u)| 2 | u=U k = γ k |σ * k-1 ∇ϕ k-1 | 2 +C (3.8) γ 2 k V k-1 + R(γ k , X k-1 , U k ), for more details see (3.29) below.
In order to exhibit for each evaluation of the conditional expectations in (3.4), the contribution ν(|σ * ∇ϕ| 2 ), we use the auxiliary Poisson problem:

(3.9) Aϑ = |σ * ∇ϕ| 2 -ν(|σ * ∇ϕ| 2 ).
We then write for the main term to control in (3.5),

(3.10)

E[exp(- λqM n Γ n )] ≤ T 1 ρ 1 T ρ-1 qρ 2 T ρ-1 pρ 3 ,
for ρ > 1, p, q > 1 s.t. 1 p + 1 q = 1 where:

T 1 := E exp -ρ qλ Γ n M n - ρ 2 q 2 λ 2 2Γ 2 n n k=1 γ k Aϑ(X k-1 ) -C (3.8) γ 2 k V k-1 , T 2 := E exp λ 2 q 2 ρ 2 q 2(ρ -1)Γ 2 n n k=1 γ k Aϑ(X k-1 ) , T 3 := E exp λ 2 q 2 ρ 2 p 2(ρ -1)Γ 2 n n k=1 C (3.8) γ 2 k V k-1 . (3.11)
Exploiting (3.9), we can now rewrite

T 1 = E exp -ρ qλ Γ n M n - ρ 2 q 2 λ 2 2Γ 2 n n k=1 γ k |σ * ∇ϕ(X k-1 )| 2 -ν(|σ * ∇ϕ| 2 ) + C (3.8) γ 2 k V k-1 = exp ρ 2 q 2 λ 2 2Γ n ν(|σ * ∇ϕ| 2 ) E exp -ρ qλ Γ n M n - ρ 2 q 2 λ 2 2Γ 2 n n k=1 γ k |σ * ∇ϕ(X k-1 )| 2 + C (3.8) γ 2 k V k-1 .
(3.12)

The first term in the above r.h.s. yields the expected variance when we optimize over λ for q and ρ going to 1, which is the case in the regime of so called Gaussian deviations in Theorem 3. It improves the previous bound (3.7). Introduce now for m ∈ [[1, n]],

(3.13)

S m := exp - ρqλ Γ n M m - ρ 2 q 2 λ 2 2Γ 2 n m k=1 γ k |σ * ∇ϕ(X k-1 )| 2 + Cγ 2 k V k-1 . Bringing to mind that M m = m k=1 ∆ k (X k-1 , U k ), where E[∆ k (X k-1 , U k )|F k-1 ] = 0 and [∆ k (X k-1 , •)] 1 = [ψ k (X k-1 , •)] 1 , we get from (3.8), that, up to the remainder term (R(γ k , X k-1 , U k )) k∈[[1,n]]
, S m can be viewed as a super martingale (see Lemma 5 for details). We actually rigorously show that, in the Gaussian regime (i.e. for a √ Γn → 0), for θ ∈ (1/3, 1)

E[S n ] 1 ρq ≤ R n -→ n→+∞ 1.
For θ = 1, or for super Gaussian deviations (i.e. for a √ Γn → +∞, see Section 6) with θ ∈ (1/3, 1) we get:

E[S n ] 1 ρq ≤ R n exp ρqλ 2 Γ n + ρ 3 q 3 λ 4 (ρ -1)Γ 3 n e n ,
where e n > 0 decreases to 0 with n and R n > 0 is still going to 1 with n. The difficulty in the above control is that the optimized λ also depends on n and ρ (see (3.33) below).

The second term T 2 is estimated directly repeating the arguments of the proof of Theorem 2 in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF] which are recalled above (see equations (3.5) to (3.7)). We apply the previous martingale increment technique that previously led to (3.7). Denoting by M ϑ n the martingale associated with the

ψ ϑ k (X k-1 , U k ) k∈[[1,n]]
deriving from the expansion of Aϑ similarly to (3.2), we obtain:

(3.14) T 2 ≤ E exp - λ 2 q 2 ρ 2 qM ϑ n 2(ρ -1)Γ 2 n 1/q R ϑ n ≤ exp λ 4 q 4 ρ 4 q 8(ρ -1) 2 Γ 3 n σ 2 ∞ ∇ϑ 2 ∞ R ϑ n ,
for q > 1 and where the superscript ϑ means that we only need to replace ϕ by ϑ in the previous definitions. Like in (3.5), R ϑ n is here a remainder. The third component T 3 is first controlled by Jensen inequality (over the exponential function and the measure is

1 Γ (3) n n k=1 γ 2 k δ k ): (3.15) T 3 ≤ 1 Γ (2) n n k=1 γ 2 k E exp λ 2 q 2 ρ 2 pΓ (2) n 2(ρ -1)Γ 2 n C V k-1 .
For the control of this term (as well for remainders from Taylor expansion in (3.2) and in Lemma 1), we recall a useful result from [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF] (see Proposition 1 therein). Under (A), there is a constant

c V := c V ((A)) > 0 such that for all λ ∈ [0, c V ], ξ ∈ [0, 1]: (3.16) I ξ V := sup n≥0 E[exp(λV ξ n )] < +∞.
We also refer to Lemaire (see [START_REF] Lemaire | An adaptive scheme for the approximation of dissipative systems[END_REF]) for additional integrability results of the Lyapunov functions in a more general framework. The identity (3.15) is handled by Young inequality

T 3 ≤ exp 1 2c V ( λ 2 q 2 ρ 2 pΓ (2) n 2(ρ-1)Γ 2 n C) 2 Γ (2) n n k=1 γ 2 k E exp c V V k-1 = exp λ 4 Γ 3 n e n Γ (2) n n k=1 γ 2 k E exp c V V k-1 , with p → n +∞ s.t. for fixed ρ, q > 1, e n = 1 2c V ( q 2 ρ 2 p 16c 2 V (ρ-1) 2 Γ (2) n Γ 2 n C) 2 → n 0, note that for all θ ∈ ( 1 3 , 1], Γ (2) n 

√

Γn → n 0. We obtain then by (3.16):

(3.17)

T ρ-1 pρ 3 ≤ exp λ 4 Γ 3 n e n (I 1 V ) ρ-1 pρ = R n exp λ 4 Γ 3 n e n , for p = p(n) → n +∞.
Eventually, by (3.5), (3.12), (3.14) and (3.17) with the different controls of E[S n ] (see Lemma 5):

(3.18) P[ Γ n ν n (Aϕ) ≥ a] ≤ exp - aλ √ Γ n + λ 2 Γ n A n (ρ) + λ 4 Γ 3 n B n (ρ) R n , with R n → 1, A n (ρ) := ρ( qν(|σ * ∇ϑ| 2 ) 2 + e n ), B n := ρ 3 ρ-1 q 3 q 4 ( q σ 2 ∞ ∇ϑ 2 ∞ 2 + e n
) for e n > 0 decreasing to 0 with n.

We perform an optimization over λ with the Cardan method. However, the optimal choice of λ depends on ρ. So an optimization can be done for ρ too. In Lemma 4 below, we choose ρ for the regime of Gaussian deviations (i.e. a √ Γn → n 0) which yields:

P | Γ n ν n (Aϕ)| ≥ a ≤ 2 C n exp -c n a 2 2ν(|σ * ∇ϕ| 2 ) ,
for c n , C n > 0 respectively decreasing and increasing (for n big enough) to 1 with n.

The optimal choices of λ and ρ for the regime of super Gaussian deviations (i.e. a √ Γn → n +∞) is eventually discussed in Section 6. This leads to

P | Γ n ν n (Aϕ)| ≥ a ≤ 2 C n exp -c n a 4/3 Γ 1/3 n 2 σ 2/3 ∞ ∇ϑ 2/3 ∞ .

Technical lemmas and Proof of the Main Results

. We first give a decomposition lemma of ν n (Aϕ) which is the starting point of our analysis. Its proof can be found in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF] (see Lemma 1 therein).

Lemma 1 (Decomposition of the empirical measure). For all n ≥ 1, k ∈ [[1, n]] and ϕ ∈ C 2 (R d , R), the identity (3.2) holds and we have:

Γ n ν n (Aϕ) = ϕ(X n ) -ϕ(X 0 ) - n k=1 γ k 1 0 ∇ϕ(X k-1 + tγ k b k-1 ) -∇ϕ(X k-1 ), b k-1 dt + 1 2 n k=1 γ k Tr D 2 ϕ(X k-1 + γ k b k-1 ) -D 2 ϕ(X k-1 ) Σ 2 k-1 + n k=1 ψ k (X k-1 , U k ) , (3.19) where ψ k (X k-1 , U k ) is defined in (3.3).
Remark 7. In spite of the square terms in U k appearing in the r.h.s. of (3.3), we have that, conditionally to

F k-1 , u → ψ k (X k-1 , u
) is Lipschitz continuous. Indeed, on the r.h.s. U k only appears in ψ k and on the l.h.s. we know that ϕ is Lipschitz. Hence, for all (u, u ) ∈ (R d ) 2 :

(3.20) |ψ k (X k-1 , u) -ψ k (X k-1 , u )| ≤ √ γ k σ k-1 ∇ϕ ∞ |u -u |.
Our strategy consists in controlling how far the Lipschitz modulus in

(3.20) is from |σ * k-1 ∇ϕ k-1 |. The first step is to obtain an explicit derivative of ψ k (X k-1 , •), see (3.24) below.
For notational convenience we introduce, for a given n ∈ N * the following quantities:

R n := ϕ(X n ) -ϕ(X 0 ) - n k=1 γ k 1 0 ∇ϕ(X k-1 + tγ k b k-1 ) -∇ϕ(X k-1 ), b k-1 dt - 1 2 n k=1 γ k Tr D 2 ϕ(X k-1 + γ k b k-1 ) -D 2 ϕ(X k-1 ) Σ 2 k-1 , M n := n k=1 ∆ k (X k-1 , U k ), R n := R n - n k=1 E ψ k (X k-1 , U k )| F k-1 , (3.21)
where for all k ∈ [[1, n]]:

(3.22) ∆ k (X k-1 , U k ) := ψ k (X k-1 , U j ) -E ψ k (X k-1 , U k )| F k-1 .
From these definitions, Lemma 1 can be rewritten:

(3.23) ν n (Aϕ) = 1 Γ n ( R n -M n ),
where M n is a martingale. The key idea of the proof is to control more precisely the Lipschitz modulus of ψ n (X n-1 , •) than it was done in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF]. From the definition in (3.2), let us write for

all k ∈ [[1, n]]: ψ k (X k-1 , U k ) = ϕ k -ϕ k-1 + R k-1,k , where R k-1,k := -γ k Aϕ(X k-1 ) -γ k 1 0 ∇ϕ(X k-1 + tγ k b k-1 ) -∇ϕ(X k-1 ), b k-1 dt - 1 2 γ k Tr D 2 ϕ(X k-1 + γ k b k-1 ) -D 2 ϕ(X k-1 ) Σ 2 k-1 . Hence, by derivation (3.24) ∇ u ψ k (X k-1 , u)| u=U k = √ γ k σ * k-1 ∇ϕ(X k ). We will establish that the value of ∇ u ψ k (X k-1 , u)| u=U k is not "too far" from √ γ k σ * k-1 ∇ϕ(X k-1 ).
3.2.1. Proof of Theorem 3 for bounded innovations. We first give the complete proof in this particular case. We will specify the additional required controls for possibly unbounded innovations in the next subsection.

A key tool in the derivation of our main results is the following lemma whose proof is postponed to Section 4 for the sake of clarity.

Lemma 2. [Remainders from Taylor decomposition] Under (A), for all q ≥ 1 and λ > 0, we have:

(3.25) P Γ n ν n (Aϕ) ≥ a ≤ exp - aλ √ Γ n E exp - qλ Γ n M n 1 q exp( λ 2 Γ n e n )R n .
We will now sharply control the Lipschitz constant of ψ k (X k-1 , •), or equivalently ∆ k (X k-1 , •), which appears iteratively to handle the martingale term in (3.25).

In case of bounded innovations, we see by assumption (T β ) i) (smoothness of ϕ) that:

|∇ u ∆ k (X k-1 , u)| u=U k | = | √ γ k σ * k-1 ∇ϕ(X k )| ≤ | √ γ k σ * k-1 ∇ϕ(X k-1 )| + | √ γ k σ * k-1 [∇ϕ(X k ) -∇ϕ(X k-1 + γ k b k-1 )] | +| √ γ k σ * k-1 [∇ϕ(X k-1 + γ k b k-1 ) -∇ϕ(X k-1 )] | ≤ √ γ k |σ * k-1 ∇ϕ(X k-1 )| + γ k σ k-1 2 D 2 ϕ ∞ U k ∞ +| √ γ k σ * k-1 [∇ϕ(X k-1 + γ k b k-1 ) -∇ϕ(X k-1 )] |. (3.26)
Remark that we have both controls

| [∇ϕ(X k-1 + γ k b k-1 ) -∇ϕ(X k-1 )] | ≤ γ k D 2 ϕ ∞ |b k-1 | (L V ), ii) ≤ γ k C V D 2 ϕ ∞ √ V k-1 , | [∇ϕ(X k-1 + γ k b k-1 ) -∇ϕ(X k-1 )] | ≤ (2 ∇ϕ ∞ ) 1 2 | [∇ϕ(X k-1 + γ k b k-1 ) -∇ϕ(X k-1 )] | 1 2 (L V ), ii) ≤ (2 ∇ϕ ∞ ) 1 2 γ 1 k /2C 1/4 V D 2 ϕ 1/2 ∞ V 1/4 k-1 , (3.27)
in order to keep integrable powers of the Lyapunov function. We therefore eventually get from (3.28) and inequalities in (3.27):

|∇ u ∆ k (X k-1 , u)| u=U k | 2 ≤ γ k |σ * k-1 ∇ϕ(X k-1 )| 2 +2 √ γ k |σ * k-1 ∇ϕ(X k-1 )| γ k σ k-1 2 D 2 ϕ ∞ U k ∞ + γ 3/2 k σ ∞ C V D 2 ϕ ∞ √ V k-1 + γ k σ k-1 2 D 2 ϕ ∞ U k ∞ + σ ∞ (2 ∇ϕ ∞ ) 1 2 γ k C 1/4 V D 2 ϕ 1/2 ∞ V 1/4 k-1 2 ≤ γ k |σ * k-1 ∇ϕ(X k-1 )| 2 + C 1,(3.28) γ 3/2 k U k ∞ + C 2,(3.28) γ 2 k U k 2 ∞ + C (3.8) γ 2 k √ V k-1 , (3.28) with C 1,(3.28) := 2 σ 3 ∞ ∇ϕ ∞ D 2 ϕ ∞ , C 2,(3.28) := 2 σ 4 ∞ D 2 ϕ 2 ∞ , C (3.8) := 6 σ 2 ∞ ∇ϕ ∞ D 2 ϕ ∞ .
The last inequality above is a consequence of convexity inequality (i.e. for all (x, y) ∈ R 2 , (x + y) 2 ≤ 2x 2 + 2y 2 ).

Recalling that we consider first U k ∞ ≤ C ∞ , we then derive:

(3.29) [∆ k (X k-1 , •)] 2 1 ≤ γ k |σ * ∇ϕ| 2 (X k-1 ) + Cγ 3/2 k + C (3.8) γ 2 k √ V k-1 ,
where in the above identity

C = C 1,(3.28) C ∞ + C 2,(3.28) γ 1/2 1 C 2 ∞ . Let us introduce for all (m, n) ∈ N 2 0 , m ≤ n and (ρ, q) ∈ (1, +∞) 2 : (3.30) T m := exp - ρqλ Γ n ∆ m (X m-1 , U m ) - ρ 2 (qλ) 2 2Γ 2 n γ m |σ * ∇ϕ(X m-1 )| 2 - m k=1 C (3.8) γ 2 k V k-1 .
From the definition of S m in (3.13), we write S m := m k=1 T k . The coefficients (T m ) m≥1 can be viewed as multiplicative increments of ( Sm ) m≥0 .Inequality (3.29) precisely allows to quantify the martingality default for ( Sm ) m≥0 . These factors appear when we exploit the auxiliary Poisson problem (3.9) in the definition of T 1 in (3.11).

T 1 = exp ρ 2 q 2 λ 2 2Γ n ν(|σ * ∇ϕ| 2 )] E S n-1 E[T n |F n-1 ] .
Thereby, from the upper-bound (3.29) of the Lipschitz modulus, we directly obtain from (3.30) and (GC)

E[T n |F n-1 ] = exp - ρ 2 (qλ) 2 2Γ 2 n γ n |σ * ∇ϕ(X n-1 )| 2 E exp ρqλ Γ n ∆ n (X n-1 , U n ) - n k=1 C (3.8) γ 2 k V k-1 F n-1 ≤ exp ρ 2 (qλ) 2 2Γ 2 n Cγ 3/2 n - n-1 k=1 C (3.8) γ 2 k V k-1 .
Hence, iterating:

T 1 ≤ exp ρ 2 (qλ) 2 2Γ n ν(|σ * ∇ϕ| 2 ) E[S n-1 ] exp ρ 2 (qλ) 2 2Γ 2 n γ 3/2 n C ≤ exp ρ 2 (qλ) 2 2Γ n ν(|σ * ∇ϕ| 2 ) exp ρ 2 (qλ) 2 2Γ n Γ (3/2) n Γ n =en C = exp ρ 2 (qλ) 2 2Γ n (ν(|σ * ∇ϕ| 2 ) + e n ) ,
where e n → 0. The controls for T 2 are deduced from (3.14), and T 3 from (3.17). We now gather the previous estimates into (3.10) (we recall

E[exp(-λqMn Γn )] ≤ T 1 ρ 1 T ρ-1 qρ 2 T ρ-1 pρ 2
) in the following lemma. Note also that the term R ϑ n appearing in (3.14) is controlled similarly to remainders in Lemma 2. Lemma 3 (Gaussian concentration term). With notations of (3.21), under (A), for a bounded ρ > 1, we have:

E exp - λq Γ n M n 1 q ≤ exp λ 2 Γ n A n + λ 4 Γ 3 n B n R n ,
where

(3.31) A n := ρ qν(|σ * ∇ϕ| 2 ) 2 + e n and B n := ρ 3 ρ -1 q 3 q 4 q σ 2 ∞ [ϑ] 2 1 2 + e n ,
for some 1 < q := q(n) → n 1, and with:

e n -→ n→+∞ 0, R n -→ n→+∞ 1 uniformly in λ.
As a consequence of the previous Lemmas 2 and 3, we obtain (3.18), namely:

(3.32)

P Γ n ν n (Aϕ) ≥ a ≤ C n exp P (λ) , with P (λ) := -aλ √ Γn + λ 2 Γn A n + λ 4 Γ 3 n B n , where A n = A n (ρ) = ρ A n and B n = B n (ρ) := ρ 3 ρ-1 B n with A n = qν(|σ * ∇ϕ| 2 ) 2 + e n and B n = q 3 q 4 q σ 2 ∞ ∇ϑ 2 ∞ 2 + e n .
Next, like enunciated at the end of the User's guide to the proof, we optimize a fourth order polynomial by the Cardan method, see (3.33) below (and Section 4 in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF]). If λ n = arg min λ P (λ), then

P (λ n ) = - a √ Γ n + 2λ n Γ n A n + 4λ 3 n Γ 3 n B n = 0.
The Cardan-Tartaglia formula yields only one positive real root. Namely, setting

Φ n (a, ρ) = a √ Γ n Bn + a 2 B2 n Γ n + (ρ -1) 2 Ãn 3 Bn 3 1 2 1 3 + a √ Γ n Bn - a 2 B2 n Γ n + (ρ -1) 2 Ãn 3 Bn 3 1 2 1 3 ,
this conducts to take λ = λ n with:

(3.33)

λ n := Γ n 2 (ρ -1) 1 3 ρ Φ n (a, ρ).
Moreover, remark from the binomial Newton expansion that:

Φ n (a, ρ) 3 = 2a √ Γ n Bn - 2(ρ -1) 1/3 Ãn Bn Φ n (a, ρ).
From (3.33) and the above expression,

P (λ n ) = P min (a, Γ n , ρ) = λ n -a √ Γn + λn Γn A n + λ 3 n Γ 3 n B n , we thus obtain (3.34) P min (a, Γ n , ρ) := - √ Γ n (ρ -1) 1/3 Φ n (a, ρ) 2 3 ρ 3a -Γ n (ρ -1) 1/3 Ãn Φ n (a, ρ) .
Then, from (3.32):

(3.35)

P Γ n ν n (Aϕ) ≥ a ≤ C n exp P min (a, Γ n , ρ) ,
which is exactly the same bound appearing in Remark 11 in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF], up to a modification of Ãn , containing here the expected carré du champ.

The optimization over λ leads to study how ρ should asymptotically behave. The following lemma indicates that, when a = o(

√ Γ n ), taking ρ -1 a √
Γn yields a Gaussian concentration inequality in (3.32) with the optimal constant. Lemma 4 (Choice of ρ for the Gaussian concentration regime). For P min (a, Γ n , ρ) as in (3.34), there is

ρ := ρ(n, a) > 1 s.t. If a √ Γn → n 0, taking ρ -1 a √ Γn P min (a, Γ n , ρ) = a √ Γn → n 0 - a 2 2ν(|σ * ∇ϕ| 2 ) (1 + o(1)).
For the sake of clarity, the proof of Lemma 4 is postponed to Section 4.2. From (3.35) and Lemma 4, we conclude the proof of Theorems 3 and 7 for bounded innovations.

3.2.2. Proof of Theorems 3 for unbounded innovations. Switching to unbounded innovations requires additional technicalities. Our strategy consists in considering a truncation argument writ-

ing ∆ k (X k-1 , U k ) = ∆ k (X k-1 , U k )[1 |U k |≤ r k,n 2 + 1 |U k |> r k,n 2 
], to control the Lipschitz modulus of ψ k-1 where (r k,n ) n≥1,k≤n is a suitable sequence specified in (3.40) below. In particular, r k,n := r k,n ((A), λ, ρ) where λ > 0, ρ > 1 are as in the User's Guide to the Proof.

For our choice below, we will have that, for all k ∈ [[1, n]], r k,n ↑ n +∞. That choice for r k,n also yields that when |U k | ≤ r k,n , our controls behave like for the bounded case. But when |U k | > r k,n , we will handle this large deviation regime by assumption (GC). We indeed know that for all K > 0:

µ({|x| > K}) ≤ 2 exp(- K 2 2 ). (3.36) Let us recall from the definition of ∆ k (X k-1 , U k ) in (3.3) and (3.21) that: (3.37) ∆ k (X k-1 , U k ) = √ γ k σ k-1 U k • ∇ϕ(X k-1 + γ k b k-1 ) + Ξ k (X k-1 , U k ),
where for all (k, u)

∈ [[1, n]] × R r : Ξ k (X k-1 , u) := γ k 1 0 (1 -t)Tr D 2 ϕ(X k-1 + γ k b k-1 + t √ γ k σ k-1 u)σ k-1 u ⊗ uσ * k-1 -E D 2 ϕ(X k-1 + γ k b k-1 + t √ γ k σ k-1 U k )σ k-1 U k ⊗ U k σ * k-1 |F k-1 dt. (3.38)
For the terms (T k ) k≤n defined in (3.30), the lemma below controls the "super martingality" default of

S n = n k=1 T k . Lemma 5. For all k ∈ [[1, n]] E[T k |F k-1 ] ≤ ℵ k,n (λ, γ k , r k,n ) exp - k-1 i=1 C (3.8) γ 2 i V i-1 , with, as in (3.28), C (3.8) := 6 σ 2 ∞ ∇ϕ ∞ D 2 ϕ ∞ , (3.39) ℵ k,n (λ, γ k , r k,n ) := 1 + 2 exp(-Cr 2 k,n ) exp ρqλ Γ n Cγ 1/2 k exp(- r 2 k,n 4 ) exp ρ 2 q 2 λ 2 Γ 2 n Cγ 3/2 k r 2 k,n , and 
(3.40) r k,n = r k,n ((A), λ, ρ) := r n = C(1 + ρqλ Γn ) Γn Γ (3/2) n 1/4 , f or θ ∈ ( 1 3 , 1), C(1 + ρqλ Γn ) ln(n + 1) 1/4 ln(k + 1) 1/2 , f or θ = 1, for C > 0 s.t. r 1,1 > c√ γ 1 σ ∞ ∇ϕ ∞
for c large enough (every c > 8 works, see the proof of Lemma 5, and equation (4.21)). This choice is briefly explained in Remark 8 below.

Remark 8. The specific form of the truncation and of the time steps chosen yields

r k,n =      O (1 + ρqλ Γn )n 1-θ 4 , if θ ∈ (2/3, 1), O (1 + ρqλ Γn ) ln(n) -1/4 n 1 12 , if θ = 2/3, O (1 + ρqλ Γn )n θ 8 , if θ ∈ (1/3, 2/3).
Anyhow, we always have for each k ≤ n, r k,n -→ n +∞. Identity (3.41) in the following lemma can give an intuition of our choice in (3.40). This result ensures that the terms ℵ k,n (λ, γ k , r k,n ) can be viewed as remainders (observe indeed that some e n → n 0 appear in the exponential (3.41) below). From the optimization in λ performed in the proof Lemma 4 (see equation (4.10)), the contribution ρλ Γn appearing in (3.39) will be large in the regime of super Gaussian deviations (see as well Remark 15). The above choice of r k,n actually permits to control the remainders in all the considered regimes.

For θ ∈ ( 1 3 , 1), the choice in (3.40) can seem natural in order to absorb the term

n k=1 exp ρqλ Γn Cγ 1/2 k exp(- r 2 k,n 16 ) = exp ρqλ Γn CΓ (1/2) n exp(-r 2 n 16
) coming from the iteration of (3.39). For θ = 1, the choice is a bit different due to the associated logarithmic explosion rates (i.e. Γ n ln(n)). Actually, for the Gaussian deviations ( a √ Γn → 0), we have ρqλ Γn → n 0, see again (4.10) and Remark 15 below, and the term ρqλ Γn could be removed in (3.40). On the other hand, the contribution

exp ρ 2 q 2 λ 2 Γ 2 n Cγ 3/2 k r 2
k,n will eventually yield a negligible contribution in the polynomial appearing in Lemma 3. We refer to the proof of Lemma 5 for details.

Lemma 6 (Control of "super martingality default" of S n ). There exist non negative sequences

(R n ) n≥1 , (e n ) n≥1 s.t. R n -→ n 1, e n -→ n 0
, and for all n ≥ 1:

(3.41) E[S n ] ≤ n k=1 ℵ k,n (λ, γ k , r k,n ) = R n exp ρ 2 q 2 λ 2 Γ n + ρ 4 q 4 λ 4 Γ 3 n e n .
Observe that a term in λ 4 appears here for the control of E[S n ]. This is specifically due to the unbounded contributions. Namely, the exponential term in (3.41) comes from exp( ρ 2 q 2 λ 2 Note now carefully that, reproducing the arguments of the bounded case and using as well Lemma 6 to control E[S n ] yields that Lemma 3 remains valid, up to a modification of the remainders e n .

The proof then follows similarly to the bounded case. To sum up, the specificity of the unbounded innovations was to precisely control the Lipschitz constants, considering a suitable truncation, as well as the "martingality default" of S n appearing in T 1 .

Proofs of technical lemmas

4.1. Remainders from the Taylor decomposition.

Proof of Lemma 2. From the notations in (3.21), we recall (3.23):

ν n (Aϕ) = 1 Γn ( R n -M n ).
The idea is now to write for a, λ > 0:

P Γ n ν n (Aϕ) ≥ a ≤ exp - aλ √ Γ n E exp λ Γ n ( R n -M n ) ≤ exp - aλ √ Γ n E exp - qλ Γ n M n 1/q E exp pλ Γ n | R n | 1/p , (4.1)
for 1 p + 1 q = 1, p, q > 1. We rewrite the Taylor expansion with the same notations as in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF]:

R n = L n -(D 2,b,n + D 2,Σ,n + Ḡn ) where: D 2,b,n := n k=1 γ k 1 0 ∇ϕ(X k-1 + tγ k b k-1 ) -∇ϕ(X k-1 ), b k-1 dt, D 2,Σ,n := 1 2 n k=1 γ k Tr D 2 ϕ(X k-1 + γ k b k-1 ) -D 2 ϕ(X k-1 ) Σ 2 k-1 , Ḡn := n k=1 E [ψ k (X k-1 , U k )|F k-1 ],
L n := ϕ(X n ) -ϕ(X 0 ). (4.2) From (4.2), (4.1) and the Cauchy-Schwarz inequality, we get:

P Γ n ν n (Aϕ) ≥ a ≤ exp - aλ √ Γ n E exp - qλ Γ n M n 1 q × E exp 2pλ Γ n L n 1 2p × E exp 4pλ Γ n Ḡn 1 4p E exp 8pλ Γ n D 2,Σ,n 1 8p E exp 8pλ Γ n D 2,b,n 1 8p . (4.3)
The term L n in (4.3) is controlled in Lemma 4 in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF] (for j = 2 therein):

(4.4) E exp 4pλ |L n | Γ n 1 4p ≤ (I 1 V ) 1 4p exp 3pC 2 V,ϕ λ 2 c V Γ 2 n + c V p = R n exp λ 2 n Γ n e n ,
for p = p n → n +∞ s.t. p Γn → n 0. Thanks to Lemma 3 in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF], we obtain:

| Ḡn | √ Γ n ≤ a n := [ϕ (3) ] β σ 3+β ∞ E |U 1 | 3+β (1 + β)(2 + β)(3 + β) Γ ( 3+β 2 ) n √ Γ n , a.s. . Moreover, a n → n a ∞ = 0 for θ ∈ ( 1 2+β , 1].
Hence, for all p > 1:

(4.5) E exp 4pλ Γ n | Ḡn | 1 4p ≤ exp λ √ Γ n a n ≤ exp λ 2 2Γ n p + a 2 n p 2 = R n exp λ 2 Γ n e n .
for p = p n → n +∞ s.t. a 2 n p → n 0.

We handle the term D 2,Σ,n in (4.3) by Lemma 5 in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF]: there exists

C 1 := C 1 ((A), ϕ) > 0 such that E exp 4pλ n Γ n D 2,Σ,n 1 4p ≤ exp C 1 pλ 2 n (Γ (2) n ) 2 Γ 2 n (I 1 V ) 1 4p = R n exp λ 2 n Γ n e n , (4.6) for p = p n → n +∞ s.t. p (Γ (2) n ) 2 Γn → n 0 (we recall that for all θ ∈ ( 1 3 , 1], Γ (2) n √ Γn → n 0).
We deal with the term D 2,b,n from (4.3). Because x → ∇ϕ(x), b(x) is Lipschitz continuous, thanks to Lemma 5 in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF], we know that there exists C 2 := C 2 ((A), ϕ) > 0 such that:

E exp 4pλ n Γ n D 2,b,n 1 4p ≤ exp C 2 ( 3pλ 2 n (Γ (2) n ) 2 2Γ 2 n + 1 2p ) (I 1 V ) 1 4p = R n exp λ 2 n Γ n e n , (4.7) also for p = p n → n +∞ s.t. p (Γ (2) n ) 2 Γn → n 0.
We gather (4.4), (4.5), (4.6) and (4.7) into (4.3), which allows us to control the remainder involving R n previously decomposed in (4.2). There are non-negative sequences (R n ) n≥1 , (e n ) n≥1 s.t. lim n→+∞ R n = 1, lim n→+∞ e n = 0 and:

(4.8) P Γ n ν n (Aϕ) ≥ a ≤ exp - aλ √ Γ n E exp - qλ Γ n M n 1 q exp λ 2 n Γ n e n R n .
4.2. Asymptotics in the parameter ρ. We first begin with the proof of Lemma 4 which is purely analytical and rather independent of our probabilistic setting. We recall that we use it for both bounded and unbounded innovations.

Proof of Lemma 4 . From the expression of Φ n (a, ρ) in Theorem 7, remember that

Φ n (a, ρ) = a √ Γ n Bn + a 2 B2 n Γ n + (ρ -1) 2 Ãn 3 Bn 3 1 2 1 3 + a √ Γ n Bn - a 2 B2 n Γ n + (ρ -1) 2 Ãn 3 Bn 3 1 2 1 3 .
Here, ρ > 1 is a free parameter. Let us set:

(4.9) ρ -1 := ξ 27 8 Bn a 2 Ã3 n Γ n ,
for a parameter ξ := ξ(a, n) > 0 to optimize. This choice yields

Φ n (a, ρ) = a 1/3 B1/3 n Γ 1/6 n (1 + 1 + ξ) 1/3 + (1 -1 + ξ) 1/3 .
Hence, from the definition of λ n in (3.33):

(4.10)

ρλ n Γ n = 1 2 (ρ -1) 1/3 Φ n (a, ρ) = 3 2 2 a Ãn √ Γ n ξ 1/3 (1 + 1 + ξ) 1/3 + (1 -1 + ξ) 1/3 . We point out that ξ -→ ξ 1/3 (1 + √ 1 + ξ) 1/3 + (1 - √ 1 + ξ) 1/3 is a bounded function from [0, +∞) to [0, 2
3 ). In fact,

ξ 1/3 (1 + 1 + ξ) 1/3 + (1 -1 + ξ) 1/3 = ξ→+∞ ξ 1/3 (1 + ξ) 1/6 1 + 1 3 √ 1 + ξ -(1 - 1 3 √ 1 + ξ ) + o( 1 √ 1 + ξ ) ∼ ξ→+∞ 2 3 . (4.11)
From the definition of P min (a, ρ, Γ n ) = P (λ n ) = min x>0 P (x) in (3.34) and from the definition of P (λ) in (3.32),

P λ n = - (ρ -1) 1/3 ρ √ Γ n Φ n (a, ρ) 8 (3a -Γ n (ρ -1) 1/3 Ãn Φ n (a, ρ)) = - (ρ -1) 1/3 Φ n (a, ρ) 2 × √ Γ n 4ρ × (3a -Ãn Γ n (ρ -1) 1/3 Φ n (a, ρ)) = (4.9),(4.10) - 3 2 2 4
a 2 Ãn (ξ 27 Bna 2

Ã3

n Γn + 1) = ρ -1 ξ .

ξ 1/3 (1 + 1 + ξ) 1/3 + (1 -1 + ξ) 1/3 × 1 - ξ 1/3 2 (1 + 1 + ξ) 1/3 + (1 -1 + ξ) 1/3 =: - 3 2 2 4 Ãn a 2 f Ψ (ξ), (4.12) for (4.13) f Ψ : ξ ∈ R + -→ g(ξ) Ψξ + 1 , where g : ξ -→ ξ 1/3 (1 + 1 + ξ) 1/3 + (1 -1 + ξ) 1/3 1 - ξ 1/3 2 (1 + 1 + ξ) 1/3 + (1 -1 + ξ) 1/
We bring to mind that we consider "Gaussian deviations", namely a √ Γn → n 0.

From (6.11) and the asymptotic of Ãn defined in (6.24), i.e. 4 Ãn → n 2ν(|σ * ∇ϕ| ), we want to choose

ξ := ξ(a, n) s.t. Λ(ξ) := 3 2 2 4 f Ψ (ξ) → a √ Γn → n 0 1 4 . This would indeed yield P (λ n ) ∼ a √ Γn → n 0 -a 2 4 Ãn .
From the definition of Ψ in (6.13), we have Ψ = 

0 yields Λ(ξ) = 3 2 2 4 g(ξ) Ψξ+1 → a √ Γn →0
1 4 , noting from (4.11) and the above definition of g that g(ξ)

→ ξ→+∞ 2 3 2 .
Remark 9 (Controls of the optimized parameters λ and ρ for Gaussian deviations). We give here some useful estimates to control the remainder terms in the truncation procedure associated with unbounded innovations, see proof of Lemma 6. They specify the behaviour of the quantity ρλn Γn . In the regime of Gaussian deviations, we get from (4.10) and (4.11):

(4.16) ρλ n Γ n -→ a √ Γn →0 0, λ n a √ Γn →0 a Γ n .
4.3. Technical Lemmas for Unbounded Innovations. We proceed with the proof of Lemmas 5 and 6 which are specifically needed for unbounded innovations.

Proof of Lemma 5. We use a partition at the threshold r k,n on the variable U k , to control finely the term ∆ k (X k-1 , U k ):

E exp - ρqλ Γ n ∆ k (X k-1 , U k ) |F k-1 = E exp - ρqλ Γ n ∆ n (X k-1 , U k ) 1 |U k |≤r k,n |F k-1 +E exp - ρqλ Γ n ∆ k (X k-1 , U k ) 1 |U k |>r k,n |F k-1 =: T M k,s + T M k,l , (4.17)
where T M k,s and T M k,l stand for the contributions in

E[T k |F k-1 ] exp( k-1 i=1 C (3.8) γ 2 i V i-1
) associated with the martingale increment ∆(X k-1 , U k ) for which the innovation is respectively small and large.

Let us first write:

T M k,s = E exp - ρqλ Γ n ∆ n (X k-1 , U k ) 1 |U k |≤r k,n |F k-1 = |u|≤r k,n exp - ρqλ Γ n ∆ n (X k-1 , U k ) µ(du).
Observe now that, similarly to the computations of Section 3.2.1 for bounded innovations, see equation

(3.29), if |u| ≤ r k,n , u ∈ R r → ∆ n (X k-1 , u) is s.t. (4.18) [∆ n (X k-1 , •)] 2 1,B(0,r k,n ) ≤ γ k |σ * k-1 ∇ϕ(X k-1 )| 2 + Cγ 3/2 k r 2 k,n + C (3.8) γ 2 k V k-1 , where [∆ n (X k-1 , •)] 2 1,B(0,r k,n ) denotes the Lipschitz modulus of ∆ n (X k-1 , •) restricted on the ball B(0, r k,n ) of R r with radius r k,n . Let us now extend u ∈ B(0, r k,n ) → ∆ n (X k-1 , u
) into a Lipschitz function on the whole set R r which globally verifies the bound of equation (4.18). The easiest way to do so is to consider:

u ∈ R r → ∆(X k-1 , u) = ∆ X k-1 , Π B(0,r k,n ) (u) ,
where Π B(0,r k,n ) (•) denotes the projection on B(0, r k,n ), namely for u ∈ B(0,

r k,n ), Π B(0,r k,n ) (u) = u, for u ∈ B(0, r k,n ), Π B(0,r k,n ) (u) = u |u| r k,n . It is readily seen that: [ ∆(X k-1 , •)] 2 1 ≤ γ k |σ * k-1 ∇ϕ(X k-1 )| 2 + Cγ 3/2 k r 2 k,n + C (3.8) γ 2 k V k-1 .
Hence:

T M k,s = |u|≤r k,n exp - ρqλ Γ n ∆n (X k-1 , U k ) µ(du) ≤ E exp - ρqλ Γ n ∆n (X k-1 , U k ) |F k-1 ≤ (GC) exp ρ 2 q 2 λ 2 2Γ 2 n [ ∆(X k-1,• )] 2 1 - ρqλ Γ n E[ ∆(X k-1 , U k )] ≤ exp ρ 2 q 2 λ 2 2Γ 2 n (γ k |σ * k-1 ∇ϕ(X k-1 )| 2 + Cγ 3/2 k r 2 k,n + C (3.8) γ 2 k V k-1 ) - ρqλ Γ n E[ ∆(X k-1 , U k )] . (4.19)
Bearing in mind that E[∆(X k-1 , U k )] = 0, and observe now: 

E[ ∆(X k-1 , U k )] = E[∆(X k-1 , U k )1 |U k |<r k,n ] + E[ ∆(X k-1 , U k )1 |U k |≥r k,n ] = -E[∆(X k-1 , U k )1 |U k |≥r k,n ] + E[∆ X k-1 , Π B(0,r k,n ) (U k ) 1 |U k |≥r k,n ] ≤ E[|∆(X k-1 , U k )| 2 ] 1/2 + E[|∆ X k-1 , Π B(0,r k,n ) (U k ))| 2 ] 1/2 P[|U k | ≥ r k,n ] 1/2 ≤ Cγ 1/2 k exp(- r 2 k,n 4 
T M k,s ≤ exp ρ 2 q 2 λ 2 2Γ 2 n (γ k |σ * k-1 ∇ϕ(X k-1 )| 2 + Cγ 3/2 k r 2 k,n + C (3.8) γ 2 k V k-1 ) + Cγ 1/2 k ρqλ Γ n exp(- r 2 k,n 4 
) .

The remaining term in (4.17), involving also the large deviations of the innovation, can be controlled as follows:

T M k,l = E exp - ρqλ Γ n ∆ k (X k-1 , U k ) 1 |U k |>r k,n |F k-1 ≤ E exp - 2ρqλ Γ n ∆ k (X k-1 , U k ) |F k-1 1/2 E 1 |U k |>r k,n 1/2 ≤ 2E exp - 2ρqλ Γ n ∆ k (X k-1 , U k ) |F k-1 1/2 exp(- r 2 k,n 4 ) (GC) ≤ 2 exp ρ 2 q 2 λ 2 Γ 2 n γ k σ 2 ∞ ∇ϕ 2 ∞ - r 2 k,n 4 .
Let us proceed from our definition of r k,n = r k,n ((A), λ, ρ) in (3.40) and write r k,n = (1 + ρqλ Γn )u k,n . One has that for all k ≤ n, u k,n → n +∞. In other words, with the previous inequality, recalling

r 2 k,n ≥ u 2 k,n (1 + ρ 2 q 2 λ 2 Γ 2 n ): T M k,l ≤ 2 exp q 2 ρ 2 λ 2 Γ 2 n (γ k σ 2 ∞ ∇ϕ 2 ∞ - u 2 k,n 4 ) - u 2 k,n 4 ≤ 2 exp -C q 2 ρ 2 λ 2 Γ 2 n u 2 k,n 8 - u 2 k,n 4 ≤ 2 exp -Cr 2 k,n , (4.21) since u 2 k,n > 16γ 1 σ 2 ∞ ∇ϕ 2
∞ (which explains our choice for the constant r k,n in (3.40)). Plugging (4.20) and (4.21) into (4.17) yields:

E exp - ρqλ Γ n ∆ k (X k-1 , U k ) |F k-1 ≤ exp ρ 2 q 2 λ 2 2Γ 2 n γ k |σ * k-1 ∇ϕ k-1 | 2 + Cγ 3/2 k r 2 k,n + C (3.8) γ 2 k V k-1 + ρqλ Γ n Cγ 1/2 k exp(- r 2 k,n 4 ) +2 exp -Cr 2 k,n ≤ exp ρ 2 q 2 λ 2 2Γ 2 n γ k |σ * k-1 ∇ϕ k-1 | 2 + Cγ 3/2 k r 2 k,n + C (3.8) γ 2 k V k-1 + ρqλ Γ n Cγ 1/2 k exp(- r 2 k,n 4 ) × 1 + 2 exp(-Cr 2 k,n ) =: exp ρ 2 q 2 λ 2 2Γ 2 n γ k |σ * k-1 ∇ϕ k-1 | 2 + C (3.8) γ 2 k V k-1 × ℵ k,n (λ, γ k , r k,n ),
where

ℵ k,n (λ, γ k , r k,n ) := 1 + 2 exp -Cr 2 k,n exp ρqλ Γ n Cγ 1/2 k exp(- r 2 k,n 4 ) exp ρ 2 q 2 λ 2 Γ 2 n Cγ 3/2 k r 2 k,n .
We have thus isolated the "significant" term exp

ρ 2 q 2 λ 2 2Γ 2 n γ k |σ * k-1 ∇ϕ k-1 | 2 .
The result follows from the definition of T k in (3.30).

Proof of Lemma 6. We recall for convenience the definition of r k,n in (3.40):

r k,n = r n = C(1 + ρqλ Γn )( Γn Γ (3/2) n ) 1/4 , f or θ ∈ ( 1 3 , 1), C((1 + ρqλ
Γn ) ln(n + 1) 1/4 ln(k + 1) 1/2 , f or θ = 1. From the above definition of ℵ k,n (λ, γ k , r k,n ), we introduce two remainders:

R 1 n := n k=1 1 + 2 exp -Cr 2 k,n × n k=1 exp ρqλ Γ n Cγ 1/2 k exp(- r 2 k,n 4 ) =: R 11 n × R 12 n , R 2 n := exp ρ 2 q 2 λ 2 Γ 2 n C n k=1 γ 3/2 k r 2 k,n , (4.22) 
that naturally appear when we iterate Lemma 5. Precisely:

(4.23) E[S n ] ≤ E[S n-1 ]ℵ n,n (λ, γ n , r n,n ) ≤ n k=1 ℵ k,n (λ, γ k , r k,n ) = R 1 n × R 2 n .
• For θ ∈ (1/3, 1):

We have chosen r k,n = r n in (3.40), so,

R 1 n = 1 + 2 exp -Cr 2 n n exp ρqλ Γn CΓ (1/2) n exp(-r 2 n 4 ) = R 11 n R 12
n , and:

R 11 n = 1 + 2 exp -Cr 2 n n ≤ exp n ln 1 + 2 exp(-C( Γ n Γ (3/2) n ) 1/2 ) ≤ exp 2n exp(-C( Γ n Γ (3/2) n ) 1/2 ) -→ n→+∞ 1,
as, for θ ∈ (1/3, 1),

Γn Γ (3/2) n 1/2 ≥ η(n) where (4.24) η(n) := C n (1-θ)/2 1 θ∈(2/3,1) + (n 1/3 ln(n) -1 )
1 2 1 θ=2/3 + n θ/4 1 θ∈(1/3,2/3) , see also Remark 8. For the remaining of the proof, we will thoroughly exploit this kind of arguments. Precisely, we recall that:

(4.25) ∀ζ ∈ R + , ∃C ζ ≥ 1, s.t. ∀0 ≤ β ≤ ζ, ∀x ∈ R + , x β exp(-x 2 ) ≤ C ζ exp(-C -1 ζ x 2
). Thus, for the remaining term R 12 n in R 1 n , exploiting (4.25), up to a modification of the constant C > 0 from line to line:

R 12 n ≤ exp ρqλ Γ n CΓ (1/2) n exp(- r 2 n 4 ) ≤ exp ρqλ Γ n CΓ (1/2) n exp - ρ 2 q 2 λ 2 Γ 2 n C 4 ( Γ n Γ (3/2) n ) 1/2 exp - C 4 ( Γ n Γ (3/2) n ) 1/2 ≤ exp CΓ (1/2) n ( Γ (3/2) n Γ n ) 1/4 exp - ρ 2 q 2 λ 2 Γ 2 n C 8 ( Γ n Γ (3/2) n ) 1/2 exp(- C 4 ( Γ n Γ (3/2) n ) 1/2 ) ≤ exp CΓ (1/2) n exp(- C 8 ( Γ n Γ (3/2) n ) 1/2 ) ≤ exp Cn 1-θ/2 e -η(n) (4.24),(4.25) -→ n→+∞ 1. Hence R 1 n = R 11 n R 12 n → n 1. Introducing e θ<1 n := C Γ (3/2) n Γ n -→ n→+∞ 0,
we get from the definition of r k,n in (3.40) and (4.22)

R 2 n ≤ exp ρ 2 q 2 λ 2 Γ n + ρ 4 q 4 λ 4 Γ 3 n e θ<1 n .
Recalling, from (4.23), that E[S n ] ≤ R 1 n R 2 n , we thus get from the above computations:

E[S n ] ≤ R n exp ( ρ 2 q 2 λ 2 Γ n + ρ 4 q 4 λ 4 Γ 3 n )e n ,
which gives the result for θ ∈ ( 1 3 , 1). • For θ = 1, using the previous notations:

0 ≤ ln(R 11 n ) ≤ ln n k=1 1 + 2 exp(-Cr 2 k,n ) = n k=1 ln 1 + 2 exp -Cr 2 k,n ≤ C n k=1 exp -Cr 2 k,n ≤ C n k=1 exp -C ln(n + 1) 1/2 ln(k + 1) = C n k=1 (k + 1) -C ln(n+1) 1/2 ≤ C2 -C ln(n+1) 1/2 + C n 2 x -C ln(n+1) 1/2 dx = C2 -C ln(n+1) 1/2 + C 2 1-C ln(n+1) 1/2 -n 1-C ln(n+1) 1/2 C ln(n + 1) 1/2 -1 -→ n→+∞ 0.
We deduce that:

R 11 n = n k=1 1 + 2 exp -Cr 2 k,n -→ n→+∞ 1.
Like for the case θ ∈ (1/3, 1), we get the control:

R 12 n ≤ n k=1 exp ρqλ Γ n Cγ 1/2 k exp(- r 2 k,n 4 ) ≤ n k=1 exp ρqλ Γ n Cγ 1/2 k exp(- C 4 [1 + ( ρqλ Γ n ) 2 ] ln(n + 1) 1/2 ln(k + 1) ≤ (4.25) n k=1 exp Cγ 1/2 k exp - C 4 [1 + C( ρqλ Γ n ) 2 ] ln(n + 1) 1/2 ln(k + 1) ≤ n k=1 exp C 1 k 1/2 (k + 1) -C ln(n+1) 1/2 -→ n→+∞ 1,
in fact, we have already established for the control of R 11 n that n k=1 (k + 1) -C ln(n+1) 1/2 -→ n 0.

Thus, we proved that

R 1 n = R 11 n R 12 n → n 1.
Let us now turn to the other contribution in (4.22):

R 2 n = exp ρ 2 q 2 λ 2 Γ 2 n C n k=1 γ 3/2 k r 2 k,n ≤ exp 2C( ρ 2 q 2 λ 2 Γ 2 n + ρ 4 q 4 λ 4 Γ 4 n ) ln(n + 1) 1/2 n k=1 γ 3/2 k ln(k + 1) ≤ exp 2C( ρ 2 q 2 λ 2 Γ n + ρ 4 q 4 λ 4 Γ 3 n ) n k=1 γ 3/2 k ln(k + 1) √ Γ n = exp ( ρ 2 q 2 λ 2 Γ n + ρ 4 q 2 λ 4 Γ 3 n )e θ=1 n , with e θ=1 1,n := 2C 1 √ Γn n k=1 ln(k+1) k 3/2
-→ n→+∞ 0, and recalling that √ Γ n ln(n + 1) 1/2 for the last inequality.

To sum up, for all θ ∈ ( 1 3 , 1], thanks to inequality (4.23), we know that there exist non negative sequences

(R n ) n≥1 , (e n ) n≥1 , s.t. R n -→ n 1, e n -→ n 0, and E[S n ] ≤ R n exp ρ 2 q 2 λ 2 Γ n + ρ 4 q 4 λ 4 n Γ 3 n e n .

Regularity Results and Consequences

This section is devoted to some regularity results for the Poisson problem (5.1)

Aϕ = f -ν(f ).
In particular, we state below some Schauder like controls, which are, because of our methodology that requires pointwise controls of the derivatives, more adapted than the standard Sobolev estimates (see e.g. Pardoux and Veretennikov [START_REF] Pardoux | On the Poisson Equation and Diffusion Approximation[END_REF]).

There are two kinds of assumptions that guarantee the solution ϕ of (5.1) enjoys the required smoothness of Theorems 3. (a) If b, σ and f are smooth, under suitable confluence like conditions stated below in (D p α ) with the condition on Dσ:

Dσ 2 ∞ ≤ 2α 2(1+β)-p for given (α, p) ∈ (0, +∞) × [1, 2), the probabilistic representation ϕ(x) = - +∞ 0 E f (Y 0,x t ) -ν(f )
dt of the solution of (5.1) can be differentiated using iterated tangent flows to establish that

ϕ ∈ C 3,β (R d , R), for some β ∈ (0, 1]. It suffices for that to have f ∈ C 3,β (R d , R) and b ∈ C 3,β (R d , R d ), σ ∈ C 3,β b (R d , R d ⊗R r
). We refer to Section 2.2 and 5.1 of [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF] for additional details. Importantly, under such assumptions, specific non-degeneracy conditions are not needed. (b) If we do not assume such an a priori smoothness on f, b, σ, we need to make an extra nondegeneracy assumption which will allow some regularity gain (elliptic bootstrap) and a stronger confluence like condition (D p α ) with Dσ 2 ∞ ≤ 2α 2(3+β)-p for given (α, p) ∈ (0, +∞)×[1, 2). Precisely, assuming that the bounded diffusion coefficient Σ is also uniformly elliptic, we exploit the results of Krylov and Priola [KP10] (Theorems 2.4-2.6) to derive that, up to an additional technical condition on Σ when d > 1, we actually have ϕ ∈ C 3,β (R d , R) for some β ∈ (0, 1), as soon as

f ∈ C 1,β (R d , R) and b ∈ C 1,β (R d , R d ), σ ∈ C 1,β b (R d , R d ⊗ R d ).
We point out that the second set of assumptions is very important in order to go towards the usual setting of functional/transport inequalities which typically involves Lipschitz continuous test functions. This is for instance the case for the controls of the Wasserstein distances between the law of Y t in (1.1) and the invariant measure ν (see e.g. [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]). We are thus able, in the nondegenerate framework (b), to consider directly sources f ∈ C 1,β (R d , R). Observe that, when β → 0, we are almost Lipschitz. Actually, we can, in this setting, handle functions f ∈ C 0,1 (R d , R) up to a spatial regularization which leads to a constraint on the steps (see Theorem 5 below). 5.1. Assumptions and Regularity Results. The regularity results stated here can be found in Section 5 of [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF]. Let us now recall the useful assumptions needed. (UE) Uniform ellipticity. We assume that r ≥ d in (1.1) and that there is σ > 0 such that

∀ξ ∈ R d , σσ * (x)ξ, ξ ≥ σ|ξ| 2 .
For β ∈ (0, 1), we introduce the following condition.

(R 1,β ) Regularity Condition. From equation (1.1), we suppose b ∈ C 1,β (R d , R d ), σ ∈ C 1,β b (R d , R d ). (D p α ) Confluence Conditions.
We assume that there exists α > 0 and p ∈ [1, 2) such that for all

x ∈ R d , ξ ∈ R d (5.2) Db(x) + Db(x) * 2 ξ, ξ + 1 2 r j=1 (p -2) | Dσ •j (x)ξ, ξ | 2 |ξ| 2 + |Dσ •j ξ| 2 ≤ -α|ξ| 2 ,
where Db stands here for the Jacobian of b, σ •j stands for the j th column of the diffusion matrix σ and Dσ •j for its Jacobian matrix.

There are others assumptions than (D p α ) which yield, in the non-degenerate setting, gradient control. This is the case for the so-called Bakry and Émery curvature criterion ([BE85, BGL14]) which is however pretty hard to check for general multidimensional diffusion coefficients. However for Hölder control of the gradient, this critetion seems to be not adapted, see [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF] Section 2.2.2 for more details.

We eventually introduce, as in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF], a technical condition on the diffusion coefficient σ. It allows to prove that each partial derivative ∂ x i ϕ of the solution of (5.1) satisfies an autonomous scalar Poisson problem. We suppose:

(Σ) for every (i, j) ∈ [[1, d]] 2 and x = (x 1 , . . . , x d ) ∈ R d , Σ i,j (x) = Σ i,j (x i∧j , • • • , x d ).
We say that assumption (P β ) is satisfied if (UE), (D p α ) with Dσ 2 ∞ ≤ 2α 2(1+β)-p , (R 1,β ), and (Σ) are in force. From Section 5.3 of [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF] we have the following result.

Theorem 4 (Elliptic Bootstrap in a non-degenerate setting). Assume (P β ) holds for some β ∈ (0, 1) and that f ∈ C 1,β (R d , R). Then, there is a unique ϕ ∈ C 3,β (R d , R) solving (5.1).

Note as well from Remark 2, that there exists C > 0, |D 2 ϕ(x)| ≤ C(1 + |x|) -1 . In other words, the solution ϕ of (5.1) satisfies (T β ).

Remark 10 (On Schauder estimates for β = 1). We insist on the fact that β ∈ (0, 1) in the above theorem. Indeed, it is well known that the Hölder exponent β cannot go to 1 in the Schauder estimates. Note that, for the particular case f ∈ C 1,1 (R d , R), we also have f ∈ C 1,β (R d , R) for all β ∈ (0, 1). This means that, for such f , the elliptic bootstrap works up to an arbitrarily small correction.

From Theorem 4 we readily have:

Corollary 1 (Smoothness for the Poisson problem with Carré du champ source). Assume (P β ) holds for some β ∈ (0, 1) and that f ∈ C 1,β (R d , R). Then, there is a unique ϑ ∈ C 3,β (R d , R) solving

Aϑ = |σ * ∇ϕ| 2 -ν(|σ * ∇ϕ| 2 )
and satisfying (T β ).

Indeed, it suffices to observe from Theorem 4 and the assumption (R 1,β ) in (P β ) that f := |σ * ∇ϕ| 2 ∈ C 1,β (R d , R) and to apply again Theorem 4 for this source. 5.2. Concentration bounds for a Lipschitz source in a non-degenerate setting. As indicated in the introduction of the Section, we aim at controlling deviations for Lipschitz sources. In the current Lipschitz framework we aim to address, we need a slightly different set of assumptions. Namely, we will assume that (C1), (GC), (C2), (L V ), (U), (S) and (P β ) are in force and we will say that (L β ) holds. Under this new assumption, we have the following result.

Theorem 5 (Non-asymptotic concentration bounds for Lipschitz continuous source). Assume that (L β ) is in force. Let f be a Lipschitz continuous function. For a time step sequence (γ k ) k≥1 of the form γ k k -θ , θ ∈ (1/2, 1], we have that, there exist two explicit monotonic sequences c n ≤ 1 ≤ C n , n ≥ 1, with lim n C n = lim n c n = 1 such that for all n ≥ 1 and for every a > 0:

P | Γ n ν n (f ) -ν(f ) | ≥ a ≤ 2C n exp -c n a 2 2ν(|σ * ∇ϕ| 2 ) , (5.3) where ϕ ∈ C 0,1 (R d , R) ∩ W 2 2,loc (R d , R
) is a weak solution of the Poisson equation Aϕ = f -ν(f ). Sketch of the proof. To prove the above result, the starting point consists in regularizing the source f by mollification. Namely, we consider f δ = f η δ , where denotes the usual convolution, for a suitable mollifier η δ (•) := 1 δ d η( • δ ), δ > 0, where η is a compactly supported non-negative function s.t.

R d η(x)dx = 1. We then write ν n (f ) -ν(f ) = ν n (f δ ) -ν(f δ ) + (ν n -ν)(f -f δ ) =: ν n f δ -ν(f δ ) + R n,δ
. We aim at letting δ go to 0 so that R n,δ can be viewed as a remainder. On the other hand, we will apply the same strategy as in the proof of Theorem 3 to analyze the deviations of ν n f δ -ν(f δ ) = ν n (Aϕ δ ). Precisely, reproducing the arguments of Section 5.4 of [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF] to equilibrate the explosions of the derivatives of ϕ δ in the proof of Theorem 3 yields that there exists two explicit monotonic sequences cn ≤ 1 ≤ C n , n ≥ 1, with lim n C n = lim n cn = 1 s.t.

(5.4)

P | Γ n ν n (f ) -ν(f ) | ≥ a ≤ 2C n exp -cn a 2 2ν(|σ * ∇ϕ δ | 2 )
).

From the previous Schauder estimates, we know that ϕ δ ∈ C 3,β (R d , R) for all δ > 0 with explosive C 3,β norm in δ but with bounded gradient. Recall indeed that, for all β ∈ (0, 1),

(5.5)

f δ C 1,β ≤ Cδ -β , |∇ϕ δ | ≤ [f δ ] 1 α = [f ] 1 α .
We again refer to Lemma 6 and Section 5.4 in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF] for details. On the other hand, it is well known, see e.g. [START_REF] Pardoux | On the Poisson Equation and Diffusion Approximation[END_REF], that ϕ δ (x) = - Introducing now fδ = f δ -f -ν f δ -f , we rewrite that, for all x ∈ R d :

+∞ 0 E[f δ (Y 0,x t ) -ν(f δ )]dt.
ϕ δ -ϕ (x) = - +∞ 0 E[ fδ (Y 0,x t )]dt, | ϕ δ -ϕ (x)| ≤ +∞ 0 R d | fδ (y)| 2 ν Y 0,x t + ν (dy) 1/2 ν Y 0,x t -ν 1/2 T.V. dt ≤ (5.6) C 1/2 exp( c 2 |x|) fδ ∞ +∞ 0 exp - α 2 t dt.
Recalling that f is Lipschitz and that (f

-f δ )(x) = R d f (x -y) -f (x) η δ (y)dy , we actually have fδ ∞ ≤ C[f ] 1 δ, which establishes the pointwise convergence ϕ δ (x) -→ δ→0 - +∞ 0 E[f (Y 0,x t ) - ν(f )]dt =: ϕ(x)
which is the only weak solution of (5.1) in W 2 p,loc (R d , R), p > 1 (see Theorem 1 in [START_REF] Pardoux | On the Poisson Equation and Diffusion Approximation[END_REF]).

Let us now prove that (5.7) lim

δ→0 ν(|σ * ∇ϕ δ | 2 ) = ν(|σ * ∇ϕ| 2 ).
For all ε > 0, there is a compact K := K(ε) such that, denoting by K c := R d \K, we have:

R d ∇ϕ δ -∇ϕ 2 (x)1 K c (x)ν(dx) ≤ 4 ∇ϕ 2 ∞ R d 1 K c (x)ν(dx) ≤ ε 2 .
Also, since ϕ ∈ W 2 2,loc (R d , R), we write:

R d ∇ϕ δ -∇ϕ 2 (x)1 K (x)ν(dx) ≤ R d R d ∇ϕ(x -z) -∇ϕ(x) ρ δ (z)dz 2 1 K (x)ν(dx) = R d R d 1 0 D 2 ϕ(x -λz)zdλ ρ δ (z)dz 2 1 K (x)ν(dx) ≤ 1 0 dλ R d R d D 2 ϕ(x -λz)zρ δ (z)dz 2 1 K (x)ν(dx) ≤ 1 0 dλ R d dz|z| 2 ρ δ (z) R d |D 2 ϕ(x -λz)| 2 1 K (x)ν(dx) ≤ Cδ 2 ϕ 2 W 2 2 ( K,R) < ε 2 ,
for δ small enough, using the Cauchy-Schwarz inequality for the penultimate control and denoting by K a compact set such that for all z ∈ B(0, Cδ) ⊃ supp(η δ ), x ∈ K, x -z ∈ K. This in particular gives (5.7). Hence, setting

c n := cn ν(|σ * ∇ϕ| 2 ) ν(|σ * ∇ϕ δ | 2 ) → n 1,
and recalling from Section 5.4. in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF] that δ := δ(n) → n 0 3 , we derive that (5.3) follows from (5.4) up to a modification of cn . Furthermore, let us point out that, the result can alternatively be stated replacing the carré du champ in (5.3) by the variance of the Lipschitz source under the invariant law. In fact, we can write by the dominated convergence theorem:

lim δ→0 ν(|σ * ∇ϕ δ | 2 ) = ν(|σ * ∇ϕ| 2 ).
(5.8) Remark 11. The new threshold θ > 1 2 comes from the specific Lipschitz regularity of the test function f . Intuitively, this threshold naturally appears when we consider β → 0 in the previous condition θ ∈ ( 1 2+β , 1] induced by the regularity of ϕ ∈ C 3,β (R d , R) which holds, under (P β ), when f ∈ C 1,β (R d , R). We underline anyhow that, for β = 0, the Schauder estimates do not directly apply.

3. which was anyhow constrained to go to 0 sufficiently slowly in order to balance the explosions in the derivatives coming from the Schauder estimates, see (5.5). It is specifically this feature that led to the condition γn n -θ , θ ∈ (1/2, 1].

Optimisation over ρ under Gaussian and super Gaussian deviations

In Lemma 4, we performed an asymptotic estimation of the upper-bound for Gaussian deviations. However, from a numerical point of view, it appears to be more significant to optimize over ρ in whole generality, i.e. not only when a √ Γn → 0. This procedure conducts to deviations bounds that are much closer to the realizations.

In particular, in super Gaussian deviations framework (i.e. a √ Γn → 0), we provide here a "weaker" concentration inequality than the Gaussian one, which precisely comes from the optimization over ρ for this regime. This loss of concentration, with the terminology of Remark 4, is intrinsic to our method, as it will be shown in the proofs of Theorem 6 and Lemma 7 below, see also Remark 17.

Theorem 6 (Deviations in the super Gaussian regime). Assume (A) is in force. If there exists

ϑ ∈ C 3,β (R d , R), β ∈ (0, 1] satisfying (T β ) s.t. (6.9) Aϑ = |σ * ∇ϕ| 2 -ν(|σ * ∇ϕ| 2 ),
then, for θ ∈ ( 1 2+β , 1] , there exist explicit non-negative sequences (c n ) n≥1 and (C n ) n≥1 , respectively increasing and decreasing for n large enough, with lim n C n = lim n c n = 1 s.t. for all n ≥ 1, a > 0, the following bounds hold. When a √ Γn → +∞ (Super Gaussian deviations):

P | Γ n ν n (Aϕ)| ≥ a ≤ 2 C n exp -c n a 4/3 Γ 1/3 n 2 σ 2/3 ∞ [ϑ] 2/3 1 .
Remark 12. Observe from Corollary 1, that, the function ϑ enjoys the required smoothness as soon as assumption (P β ) introduced in Section 5 holds.

Remark 13. For super Gaussian deviations, we obtain a sharper bound than in Theorem 2. Nonetheless, asymptotically, this regime is less sharp than Theorem 2 in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF] which provides a Gaussian bound with deteriorated constants (see also the User's guide to the proof in Section 3.1 below). Even if, from a numerical point of view, the deviation bounds in Theorem 7 below yield sharper controls with respect to simulated empirical measures (see Figure 1 in the numerical Section below).

For "intermediate Gaussian deviations", i.e. for a √ Γn → n C > 0, the constants in the Gaussian bound deteriorate. So, it seems reasonable to see this situation like for the first regime a √ Γn → n 0, namely where there are constants

C ∞ > 1, c ∞ < 1 such that lim n C n = C ∞ , lim n c n = c ∞ and P | Γ n ν n (Aϕ)| ≥ a ≤ 2 C n exp -c n a 2 2ν(|σ * ∇ϕ| 2 ) .
Observe that for such regimes, there is an equivalence, up to multiplicative constants, between the bounds in Theorem 3 and in Theorem 6.

The idea of the proof of Theorem 6 follows the same lines as for Theorem 3, except for the optimization over ρ which is more fussy, see Lemma 7 below.

We recall that the analysis in the proof of Theorem 3 leaving open a possible optimization over the parameter ρ which we now perform The next lemma indicates that this optimization implies a Gaussian regime for a Lemma 7 (Choice of ρ for the concentration regime). For P min (a, Γ n , ρ) as in (3.34),

(a) If a √ Γn → n 0, taking ρ := ρ(a, n) s.t. ρ -1 = 1 2 B1/2 n a Ã3/2 n √ Γn (1 + o(1)) P min (a, Γ n , ρ) = a √ Γn → n 0 - a 2 2ν(|σ * ∇ϕ| 2 ) (1 + o(1)). (b) If a √ Γn → n +∞, taking ρ := ρ(a, n) s.t. ρ -1 = 1 2 + o(1) P min (a, Γ n , ρ) = a √ Γn →+∞ - a 4/3 Γ 1/3 n 2 σ 2/3 ∞ [ϑ] 2/3 1 (1 + o(1)). Remark 14. For Gaussian deviations, ρ -1 = 1 2 B1/2 n a Ã3/2 n √ Γn (1 + o(1)) a √
Γn which corresponds to our choice in Lemma 4. We then retrieve the Gaussian regime. In the super Gaussian deviations framework, the optimization over ρ leads to consider ρ -1 = 1 2 + o(1) which yields the loss in the concentration inequality.

Let us first continue with the proof of Lemma 7 which is purely analytical and rather independent of our probabilistic setting.

Proof of Lemma 7 . We keep the notations of Lemma 4, that we bring to mind.

Φ n (a, ρ) = a √ Γ n Bn + a 2 B2 n Γ n + (ρ -1) 2 Ãn 3 Bn 3 1 2 1 3 + a √ n Bn - a 2 B2 n Γ n + (ρ -1) 2 Ãn 3 Bn 3 1 2 1 3 = a 1/3 B1/3 n Γ 1/6 n (1 + 1 + ξ) 1/3 + (1 -1 + ξ) 1/3 , for (6.10) ρ -1 := ξ 27 8 Bn a 2 Ã3 n Γ n ,
where ξ := ξ(a, n) > 0 is a parameter that we are going to optimize. Furthermore: (6.11)

P (λ n ) = - 3 2 2 4 Ãn a 2 f Ψ (ξ), for (6.12) f Ψ : ξ ∈ R + -→ g(ξ) Ψξ + 1 , where g : ξ -→ ξ 1/3 (1 + 1 + ξ) 1/3 + (1 -1 + ξ) 1/3 1 - ξ 1/3 2 (1 + 1 + ξ) 1/3 + (1 -1 + ξ) 1/3 , and (6.13) Ψ := 27 8 Bn a 2 Ã3 n Γ n (4.9) = ρ -1 ξ .
• Let us first focus on case (a), "Gaussian deviations" ( a √ Γn → n 0). We, now anyhow, want to maximize Λ in ξ to obtain the best possible concentration bound. Let A := {ξ ∈ [0, +∞] : f Ψ (ξ) = f Ψ ∞ } be the set of points where f Ψ reaches its maximum. Observe that for a fixed Ψ, f Ψ (ξ) → ξ→∞ 0.

Thus, +∞ ∈ A . Let now ξ * be an arbitrary point in A . From the smoothness of f Ψ , the optimality condition writes:

(6.14) f Ψ (ξ * ) = g (ξ * ) (Ψξ * + 1) - Ψg(ξ * ) (Ψξ * + 1) 2 = 0 ⇔ g (ξ * ) (Ψξ * + 1) = Ψf Ψ (ξ * ) (Ψξ * + 1) ⇔ f Ψ (ξ * ) = g (ξ * ) Ψ .
Recall now that we want to maximize over the ξ s.t. ξ → +∞, ξΨ → a √ Γ n →0 0. Indeed, from the proof of Lemma 4, we saw that for such a choice, we obtain the expected Gaussian concentration, namely

P (λ n ) ∼ a √ Γn → n 0 -a 2 4 Ãn .
From the computations of Lemma 8 in Appendix A, we have:

(6.15) g (ξ) = ξ→+∞ 8 3 5 ξ 2 + o( 1 ξ 2 ). So, (6.16) Λ(ξ * ) = ξ * →+∞ 1 2 • 3 3 ξ 2 * Ψ (1 + o(1)) → a √ Γ n →0 1 4 ,
where o(1) denotes here a quantity going to 0 as ξ * → +∞ and ξ * Ψ → a √ Γ n →0 0. Inspired by the identity (6.16), and motivated the numerical simulations (see Section 7), we set (6.17)

ξ * := 2 1/2 3 3/2 √ Ψ = 2 2 Ã3/2 n √ Γ n 3 9 B1/2 n a
, indeed satisfies (4.15), so that

min ρ>1 P (λ n ) ≤ - a 2 Ãn Λ( ξ * )(1 + o(1)) = a 2 4 Ãn (1 + o(1)) ∼ n→+∞ - a 2 2ν(|σ * ∇ϕ| 2 )
.

Observe as well that this choice yields:

(6.18) ρ -1 = 2 1/2 Ψ 3 3/2 √ Ψ = 1 2 B1/2 n a Ã3/2 n √ Γ n
.

• Now we will study the the case (b) Gaussian deviations" for which a √ Γn → n +∞. Note that we cannot expect a Gaussian regime in this case. In fact, for Ψ going to infinity (see definition (6.13)), by (6.14), to get a Gaussian regime at a maximizer ξ * of Λ, we have from (6.11) that f Ψ (ξ * ) = g (ξ * ) Ψ has to remain separated from 0 when a √ Γn → +∞. Since, in this case Ψ → n +∞, this imposes to consider points ξ → 0 in order to exploit the asymptotic behaviour (see again Lemma 8 for more details):

(6.19) g (ξ) = ξ→0 2 1/3 3ξ 2 3 1 + o(1) .
In other words, from (6.19), we expect that there is a constant K * > 0 s.t.

f Ψ (ξ * ) ∼ ξ * →0 2 1/3 3ξ 2/3 * Ψ ≥ K * . So ξ * ≤ C Ψ 3/2 → Ψ→+∞ 0. Now, |f Ψ (ξ * )| = | g(ξ * ) Ψξ+1 | ≤ |g(ξ * )| → ξ * →0
0. This means that it is impossible to stay in a Gaussian regime. We now still look at the optimal ξ * → 0 which allows to stay at "the biggest possible regime". Thenceforth, we will estimate ξ * directly from the map f Ψ defined in (6.12): (6.20) f Ψ (ξ) = ξ→0 2 1/3 ξ 1/3 Ψξ + 1 (1 + o(1)) =: f Ψ,0 (ξ)(1 + o(1)).

It can be directly checked that arg max ξ∈R + f Ψ,0 (ξ) = 1 2Ψ . We therefore get: (1 + o(1)).

(
From equations (4.9) and (6.13), the choice (6.21) yields:

(6.22) ρ -1 = ξΨ = 1 2 + o(1).

Remark 15 (Controls of the optimized parameters λ and ρ for super Gaussian deviations). We give here some useful estimates to control the remainder terms in the truncation procedure associated with unbounded innovations, see proof of Lemma 6. They specify the behaviour of the quantity ρλn Γn . In the regime of super Gaussian deviations, identities (4.10), (6.13) and the choice (6.21) (i.e. ξ * = 1 2Ψ ) yields:

ρ 2 λ 2 n Γ 2 n CΨ ξ 2/3 * (1 + 1 + ξ * ) 1/3 + (1 -1 + ξ * ) 1/3 2 2 1/3 Ψ 2/3 → a √ Γn →+∞
+∞.

Remark 16. Theorems 3 and 6 are actually a consequence of the more general following result which has a real importance for numerical applications. Indeed, for a given n ∈ N, we have to control the non-asymptotic error in Theorems 3 and 6 . Furthermore, in Section 7 (see Remark 18) we will see that for θ ∈ ( 1 3 , 1] , for "reasonable" n (e.g. n = 5 • 10 4 in the following Section 7) and a (≈ 1) we are already "out" of the Gaussian deviations regime, namely a √ Γn 1. This illustration justifies the interest of optimizing over ρ for Gaussian deviations and super Gaussian deviations.

Theorem 7. Let the assumptions of Theorem 3 be in force. For θ ∈ ( 1 3 , 1], there exist explicit nonnegative sequences (c n ) n≥1 and (C n ) n≥1 , respectively increasing and decreasing for n large enough, with lim n C n = lim n c n = 1 s.t. for all n ≥ 1 for all a > 0, 

P | Γ n ν n (Aϕ)| ≥ a ≤ 2 C n exp
q 3 q 4 q σ 2 ∞ ∇ϑ 2 ∞ 2 + e n ,
where q := q(n) > 1, q := q(n) > 1, q := q(n) with q, q q → n 1 and e n is an explicit sequence going to 0.

The results of Theorem 3 explicitly follow taking (see for more details the proof of Lemma 7):

ρ -1 = 1 2 B1/2 n a Ã3/2 n √ Γ n , for a √ Γ n → n 0, ρ -1 = 1 2 , for a √ Γ n → +∞.
Remark 17. It is natural to wonder if it is possible to get a sharper variance for super Gaussian deviations. Thereby it would be tempting to bootstrap Lemma 3. Such an iteration would lead to optimize polynomials of higher degrees. Recall from Lemma 4, that we already have to handle a polynomial of order 4 in the current setting. This illustrates that for very large deviations the highest term dominates and deteriorates the concentration. This is intrinsic to our approach. Such a phenomenon would even more pregnant when iterating the procedure the polynomial of higher degree yields, for a certain very large deviation regime, concentration bounds that become closer and closer to the exponential. However, bootstrapping might allow to improve the constants in the successive deteriorated concentration regimes. As indicated in Remark 16, this could be useful for some numerical purposes.

Numerical Results

7.1. Degenerate diffusion. Here, we have chosen to highlight the possible absence of non-degeneracy assumption for our results. To oversimplify, simulations are done with r = d = 1, X 0 and U 1 follow the standard normal distribution. Naturally, for a better convergence speed, we take θ ≈ 1 3 , precisely θ = 1 3 + 1 1000 . For this first example, we choose ϕ (solution of the Poisson equation). We take ϕ = σ = cos and for all x ∈ R, b(x) = -x 2 . By this pick, we compute numerically ν(|σ * ∇ϕ| 2 ) ≈ 0.1515 and ν(|σ| 2 ) ≈ 0.4171 (that we provide here for comparison with the previous results in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF]), with the same parameters (θ = 1 3 + 1 1000 , n = 5 • 10 4 and M C = 10 4 ).

Heed, for a non trivial test function ϕ, with our method, we cannot choose functions b and σ = 0 canceling at the same point (0 here). Otherwise, the Poisson equation associated with the carré du champ source, Aϑ = |σ * ∇ϕ| 2 -ν(|σ * ∇ϕ| 2 ), would imply that -ν(|σ * ∇ϕ| 2 ) = 0, then ∇ϕ = 0, ν almost surely. Note that, we have chosen a diffusion coefficient σ which degenerates on {kπ, k ∈ Z}. However, thanks to the smoothness of the diffusion parameters, we can still here apply Lemma 6 in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF] 6 and 7. Thus, we can compare our main results with Remark 10 of [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF] which is a weakened form of Theorem 7 where the carré du champ is changed into ∇ϕ 2 ∞ ν( σ 2 ) like in Theorem 2. Figure 1 reveals that the asymptotic curve S is much less sharp with respect to the realizations g n than our main estimations P n and P n,0,∞ . In fact, these latter are very close to the realization g n . This claim enhances the significance of controlling finely, non-asymptotically, the deviation of the empirical measure.

In this plot, we can see that our pick of ρ for P n,0,∞ , set in Lemma 7, is very close to the numerical optimization of P n over ρ. Nevertheless, observe that for a > 0.5, P n,0,∞ (a) and P n (a) slightly differ. It means that progressively the regime goes from Gaussian deviations (i.e. a 

  Statement of the problem. Consider the stochastic differential equation (1.1)

  .1) In the above definition, for a bounded mapping ζ : R d → R m , m ∈ {1, d, d × r}, we write ζ ∞ := sup x∈R d ζζ * (x) with ζ(x) = Tr (ζζ * (x)) 1/2 , where for M ∈ R m ⊗ R m , Tr(M ) stands for the trace of M . Hence • is the Fröbenius norm 1 .

  in (3.39), the definition of r k,n in (3.40), and using as well that e n Γ (3/2) n Γn → n→∞ 0. The other terms in (3.39), corresponding to sub-Gaussian tails, give the remainder R n .

  From their Proposition 1, we have in our case that, denoting by ν Y 0,x t the law of Y 0,x t we have the following control for the total variation between ν Y 0,x t and ν. There exists constants (C, c) := (C, c)((L β )) s.t. (5.6) ν Y 0,x t -ν T.V. ≤ C exp(c|x|) exp(-αt).

  Let us now check that the Confluence Conditions (D p α ) are satisfied. For p ∈ [1, 2), we have for allx ∈ R d , ξ ∈ R d Db(x) + Db(x) | Dσ •j (x)ξ, ξ | 2 |ξ| 2 + |Dσ •j ξ| 2 2 (x)ξ 2 ≤ -1 4ξ 2 =: -αξ 2 . (7.2)

Figure 1 .

 1 Figure 1. Plot of a → g n (a) with ϕ(x) = σ(x) = cos(x).

√

  Γn → 0) to intermediate Gaussian deviations (i.e. a √ Γn = O(1)). Hence, the importance of optimizing globally the function ρ → P min (a, Γ n , ρ) (appearing in (3.35)) in all regimes. Remark 18. Remark that for the graphic 1, we chose n = 5 • 10 4 , but for θ ≈ 1 3 , √ Γ n ≈ 37 and for θ ≈ 1 2+0.5 , √ Γ n ≈ 26. In other words, for a ≈ 1 we have intermediate Gaussian deviations as emphasized by the graphic. Hence the importance of the study of both regimes, Gaussian deviations ( a √ Γn → 0) and super Gaussian deviations ( a √ Γn → +∞).

  which yields thatg (ξ) = h (ξ) 1 -h(ξ) =

  c n P min (a, Γ n , ρ) ,

	where ρ > 1 and															
	P min a, Γ n , ρ = -	(ρ -1) 1/3 ρ	√	Γ n Φ n (a, ρ) 8	(3a -Γ n (ρ -1) 1/3	Ãn Φ n (a, ρ)),
	with																
	(6.23)																
	Φ n (a, ρ) :=	√	a Γ n Bn	+	a 2 B2 n Γ n	+ (ρ -1)	2 Ãn 3 Bn	3 1 2	1 3 +	√	a Γ n Bn	-	a 2 B2 n Γ n	+ (ρ -1)	3 Bn 2 Ãn	3 1 2	1 3
	(6.24)	A															

n := qν(|σ * ∇ϕ| 2 )

2 + e n and B n =
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which gives us a pointwise gradient bound of the solution of the Poisson problem in the current degenerate context. In other words:

Hence, this inequality leads us to approximate [ϑ] 1 by 2. Pay attention that the control of the Lipschitz constant [ϑ] 1 is important for the super Gaussian deviations. Like illustrated in Remarks 16 and 18, this regime appears "sooner" than we might expect.

From Theorem 3, the function a → g n (a) := ln(P[

where (c n ) n≥1 and (C n ) n≥1 are sequences respectively increasing and decreasing for n large enough, with lim n C n = lim n c n = 1.

For Figure 1, the simulations have been performed for n = 5 • 10 4 and the probability estimated by Monte Carlo simulation for M C = 10 4 realizations of the random variable √ Γ n |ν n (Aϕ)|. The corresponding 95% confidence intervals have size at most of order 0.0016. We introduce the functions:

Like in Theorem 7, we take

where Ãn , Bn and Φ n (a, ρ) are defined in (6.24). Through our numerical results, we take e n = 0. We set also:

We recall here that ρ and ρ ∞ respectivly correspond to the optimal values of ρ in the Gaussian deviations and super Gaussian deviations (see Lemma 7). Eventually, we introduce:

Note that, the function P n,0,∞ takes into account the multi-regime competition. We have estimated P n (a) by a mesh method for ρ ∈ (1, 2) and for a grid with 5 • 10 5 steps.

From the above notations, we add the subscript σ to mean that we change ν(|σ The quantities with subscript σ are those associated with the results in [START_REF] Honoré | Non-Asymptotic Gaussian Estimates for the Recursive Approximation of the Invariant Measure of a Diffusion[END_REF], recalled in the previous Theorem 2, where the variance is less sharp than the constants appearing in Theorems 3, Appendix this we perform asymptotic analysis for g defined in (6.12) in proof of Lemma 4. We recall that for all ξ ∈ R:

2 ). Differentiating, we get:

In order to estimate g we need to do a Taylor expansion up to the third order:

Differentiating the above expression, we get: