
HAL Id: hal-01635610
https://hal.science/hal-01635610v1

Submitted on 27 Nov 2017 (v1), last revised 30 Jan 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning of Binocular Fixations using Anomaly
Detection with Deep Reinforcement Learning

François Jean de La Bourdonnaye, Céline Teulière, Thierry Chateau, Jochen
Triesch

To cite this version:
François Jean de La Bourdonnaye, Céline Teulière, Thierry Chateau, Jochen Triesch. Learning of
Binocular Fixations using Anomaly Detection with Deep Reinforcement Learning. International joint
conference on neural networks, May 2017, anchorage, United States. �hal-01635610v1�

https://hal.science/hal-01635610v1
https://hal.archives-ouvertes.fr

Learning of Binocular Fixations using Anomaly
Detection with Deep Reinforcement Learning

François de La Bourdonnaye,
Céline Teulière and Thierry Chateau

Université Clermont Auvergne, Institut Pascal
CNRS, UMR 6602

63178 Aubière, France

Jochen Triesch
Frankfurt Institute for Advanced Studies

Ruth-Moufang-Straße 1
60438 Frankfurt am Main, Germany

Abstract—Due to its ability to learn complex behaviors in
high-dimensional state-action spaces, deep reinforcement learning
algorithms have attracted much interest in the robotics com-
munity. For a practical reinforcement learning implementation
on a robot, it has to be provided with an informative reward
signal that makes it easy to discriminate the values of nearby
states. To address this issue, prior information, e.g. in the
form of a geometric model, or human supervision are often
assumed. This paper proposes a method to learn binocular
fixations without such prior information. Instead, it uses an
informative reward requiring little supervised information. The
reward computation is based on an anomaly detection mechanism
which uses convolutional autoencoders. These detectors estimate
in a weakly supervised way an object’s pixellic position. This
position estimate is affected by noise, which makes the reward
signal noisy. We first show that this affects both the learning speed
and the resulting policy. Then, we propose a method to partially
remove the noise using regression on the detection change given
sensor data. The binocular fixation task is learned in a simulated
environment on an object training set with various shapes and
colors. The learned policy is compared with another one learned
with a highly informative and noiseless reward signal. The tests
are carried out on the training set and on a test set of new objects.
We observe similar performances, showing that the environment-
encoding step can replace the prior information.

I. INTRODUCTION

Autonomous learning of sensori-motor skills is of prime
importance in uncertain and complex environments. Within
this context, the field of developmental robotics is relevant
since it replicates human infant abilities to learn with little
supervision. E.g. children learn skills such as fixating and
grasping objects or walking mostly autonomously without
much external supervision. For this setting, reinforcement
learning (RL) is a particularly appealing framework.

In the past few years, RL applications have benefited from
progress in deep learning and have become increasingly com-
plex in terms of state space size. For example, [1] successfully
learns pixel-to-move policies on different Atari games. Pixel-
to-torque policies have also been learned in several manipula-
tion robotics applications [2], [3], [4]. Novel RL approaches
were demonstrated on high-dimensional simulated tasks [5],
[6], [7].

One of the limitations of these applications is the use of
external supervision for the reward function. Indeed, to ensure
a practical deep reinforcement learning application, reward

signals must properly discriminate the values of certain close
states and must not be too noisy. For this, external supervision
is often used. In Atari games, the environment provides the
score which is an informative reward that does not apply to the
real world setting. In manipulation robotics, a reward function
is often defined based on a distance measure between the
end-effector current position and a target pose. This generally
requires a geometric model and object pose information.
Moreover, when the desired policy has to generalize over
several target poses, finding the target position information is
often tedious. The need to dispense with human supervision
is also expressed in [8]. The authors choose a simple way to
define a goal in various situations and apply their idea along
with model predictive control in a box-pushing task. It consists
of choosing some pixels and their target positions. However,
defining those target locations requires supervision.

The aim of this paper is to learn an object fixation task using
neither prior information about the environment (object poses)
nor geometric models or camera parameters. More precisely,
the task consists of fixating a random object located at a
random position on a table with both cameras. This learned
skill could be reused later to simplify manipulation tasks such
as reaching or grasping. Humans first look at an object and
then grasp it and this strategy reduces the complexity of
the reaching problem. The policy is learned using the deep
deterministic policy gradient algorithm [5], mapping pixels
and camera coordinates to camera movements. To design a
reward function requiring as little external information as
possible, we propose to use a weakly-supervised anomaly
detection mechanism, which can also be related to a maximal-
entropy seeking mechanism. In our approach, the object is
viewed as an anomaly with respect to the agent’s knowledge
about the environment. The goal is to locate it in the image
and then bring it to the image center.

Our object detection approach belongs to the class of semi-
supervised anomaly detection methods. It is similar to [9]
where learning to detect network intrusions and breast cancers
is proposed. To that aim, a multi-layer perceptron is used as an
autoencoder to reconstruct inputs labelled as “with anomalies”
or “anomaly free”. A positive aspect similar to ours is that it
allows to locate the anomaly. However, the applications are
rather low-dimensional since no more than 50 neural network

inputs are used in the experiments. [10] uses support vector
machine methods to learn how to detect outliers in digit
images. For each kind of digit, a support vector machine is
trained to model a density. Abnormal images are detected
when they are incompatible with the trained density. Similar
to [9], the problem is rather low-dimensional since it involves
256 binary dimensions.

These approaches are labelled as semi-supervised methods
because they use very few labels while accomplishing unsuper-
vised work such as density estimation or self-reconstruction.
For instance, [10] uses class labels for each kind of digit
while learning densities, [9] uses the labels “with anomalies”
and “anomaly free” while learning self-reconstruction. In our
work, an autoencoder is first learnt without any object in the
environment. Then, if an object is added to the environment,
the autoencoder reconstruction error map allows to estimate
the object pixellic position. We choose to refer to our work as
“weakly supervised” to highlight the fact that the supervised
information is both easy to find and limited. Indeed, the
proposed approach does not use any human supervision with
two minor exceptions. First, the image center is computed and
is required for the reward function. However, this computation
can be viewed as universal. Second, the autoencoder training
database is labelled as “without object” and the learning phase
is always achieved with an object present in the scene, which
is not particularly tedious. After the object detection step, the
reward is computed by calculating the distance between the
estimated object position and the image center.

Another contribution of the proposed work is the handling
of reward noise. Indeed, due to impulse noise present in
the object position estimation, learning has to deal with
very noisy rewards, which is not the case in most deep
reinforcement learning applications. Previously, [11] used a
moving average filter on the temporal reward signal with
good results at removing impulse and Gaussian noise in
a low-dimensional gridworld problem. This method can be
applied to high-dimensional RL problems but it would modify
noiseless rewards. More recently, [12] studied the influence
of noise on the state-action value function overestimation.
They developed a method to cancel this effect, penalizing
unlikely actions in the update given prior knowledge. This
method cannot be integrated in our work since we want as
little prior information as possible. In our method, we choose
to apply a learning approach to remove the reward impulse
noise. First, we show that this reward noise effectively reduces
learning speed. Second, we propose a solution by learning a
mapping between movement amplitudes and object detection
changes. This is achieved by a generic regression algorithm.
The method for noise removal can be generalized to other
learning applications with rewards affected by impulse noise.

The last interesting feature of the proposed method concerns
generalization. The learned sensori-motor mapping for object
fixation has to apply to any object. To achieve this, the system
learns on a training set of objects with various shapes and
colors and its generalization capability is demonstrated on a
test set of new objects.

The remainder of the paper is organized as follows. Section
II reviews the theoretical tools used in the paper and presents
the weakly supervised reward computation framework. Section
III describes the experiments made to test the reward computa-
tion framework and presents the results. Section IV discusses
the work from a broader perspective.

II. METHODS

A. Background

1) Reinforcement learning:
A reinforcement learning framework is usually defined on a
Markov decision process < S,A,R, T > where:

• S is the set of states
• A is the set of actions
• T is the transition model (T : S ×A→ S)
• R is the reward function (R : S ×A× S → R)

The goal of a reinforcement learning agent is to optimize a
criterion based on future rewards. Here, a sum of discounted
future rewards is used as optimization criterion:

J =

∞∑
k=0

rkγ
k, (1)

where γ ∈ [0, 1] is a discount factor.
To optimize the criterion, we train a deterministic policy

π : S → A. In the paper, the state-action value function is
used:

Qπ(s, a) = Eπ

[∞∑
k=0

rkγ
k

∣∣∣∣∣s, a
]
. (2)

2) Deep reinforcement learning:
Reinforcement learning suffers from with the “curse of
dimensionality”[13]. Since 2010’s, with the emergence of the
deep learning field and the arrival of better computers and
GPUs, the usual value functions Q, A or V, the policies and
dynamics are more and more frequently approximated by deep
neural networks. Using deep approximators allows to represent
high-dimensional functions by automatically extracting a hier-
archy of features. Furthermore, the state space of the RL tasks
is more and more often high-dimensional. The first so-called
deep reinforcement learning application learned on raw pixels
without using hand-designed features [14] uses a combination
of batch Q learning with deep autoencoders to reduce the
dimensionality of the state space. The deep Q-network (DQN)
[1] beats human experts in many of the Atari games. It uses a
convolutional neural network to approximate the Q function.
A stable and reliable learning is obtained by using two tricks.
First, in order to have a stable learning, the Q update uses a
target network. It is a Q-network whose weights are frozen
for a given number of iterations. Second, in order to have a
mini-batch of i.i.d samples, they are uniformly chosen from a
large memory buffer.

3) Deep deterministic policy gradient algorithm:
Even though the DQN achieves impressive performances in
Atari games, it cannot be applied to tasks involving a con-
tinuous action space. The deep deterministic policy gradient
algorithm (DDPG) [5] leverages this limitation by combining
the deterministic policy gradient algorithm [15] and the DQN
[1]. It is an “actor-critic” algorithm updating the critic Qφ with
parameters φ and the deterministic policy πθ with parameters
θ according to the equations below:

Let Tb be a batch of transitions:
< si, ai, ri, s

′

i >i∈{1,...,Nb}∈ S×A×R×S, with Nb being
the batch size.

The targets of the Qφ neural network are computed using
a TD(0) update (with a learning rate equal to 1):

∀i ∈ {1, ..., Nb}, yi = ri + γQT(s
′

i, πθ(s
′

i)), (3)

with QT being a target network which copies Qφ every K
iterations. The Qφ network updates its weights by minimizing
the least square error 1

2Nb

∑Nb

i=1(yi −Qφ(si, ai))
2. Using the

Qφ network and the fact that the policy is deterministic, the
following policy gradient is derived:

∂Qφ
∂θ
' 1

Nb

Nb∑
i=1

∂Qφ(si, πθ(si))

∂a

∂πθ(si)

∂θ
. (4)

This update makes the policy select the actions that maximize
the Q function at the batch states. Note that in [5], a target
network is used for both the policy and the Q function. In our
work, it is used only for the Q function.

In addition to this algorithm, we use the inverting gradient
procedure of [16] to bound the actions. This method down-
scales the gradient when the action computed by the policy
approaches its limit. When it exceeds its limit, the gradient is
inverted. This mechanism prevents the actions from being too
large.

B. Fixation Task definition
1) Task:

The fixation on an object is achieved when the object is at the
center of both cameras (see Figure 1).

Mathematically, the problem is modelled as a Markov
decision process where:
• S = (I left, Iright, q), the set of states involves the two

RGB left and right images (I left and Iright) and the
camera coordinates q (three continuous scalars). The
camera coordinates q = (J1, J2, J3) are represented by
two pan angles for each camera and one joint tilt angle
(see Figure 2).
With a perfect object detector, the object pixellic position
could be used directly as a state instead of images.
However, impulse noise affecting the object detection
makes this unpractical. Learning a direct mapping from
images to actions solves this issue and avoids the need
for any object detector during the exploitation.

• A, the set of actions comprises the three variations of
camera coordinates (three continuous scalars)
A = ∆q = (∆J1,∆J2,∆J3)

Fig. 1. Binocular fixation achieved on a purple cylinder, the red cross stands
for the image center, the green cross is the estimated object pixellic position
according to the method described in II-C1b

Fig. 2. Representation of the two-cameras system with its three DOFs

2) Neural network structures:
The structures of the Q function and the policy are presented
in Figure 3. They have been chosen to optimize learning
performance (improvement of policy, loss of the Q network).

Fig. 3. Structure of the policy and the Q function

C. Reward computation framework
The following section describes how the weakly supervised

reward is computed.
1) General framework for the reward computation:

The reward computation involves three steps:
• A pre-training step in which the agent learns to recon-

struct the environment without object
• An object detection step
• The reward computation step itself

In the following paragraphs, the superscript c represents the
camera left or right.

a) Pre-training step:
For each camera c = left or right, 10000 camera con-
figurations are generated leading to two 10000-sized image
databases Dleft and Dright. The set of camera configurations
covers a regular grid of configurations between the joint limits
(arbitrarily fixed to keep the table inside the field of view).
The images are converted from RGB 200 × 200 format to
grayscale 50× 50 images.
Then, the autoencoder Aψc is trained on Dc with the help of
the Adam solver [17].

b) Object detection:
The object detection step takes into account the reconstruction
error map. The rationale behind the method is that objects
are badly reconstructed since autoencoders are not trained on
them. It makes the reconstruction error localized at the object
position. This feature allows to estimate the object pixellic
position using a kernel density estimator.

Icorigin Icgr Îcgr |Ic − Îc| P c
O, P c

Ic

Fig. 4. Object detection computation scheme

Figure 4 shows the different steps of the reward computa-
tion:
• The image is downsampled and converted into a grayscale

one Icorigin → Icgr.
• The image is reconstructed using the learned autoencoder
Icgr → Îcgr = Aψc(Icgr).

• The error map is computed |Ic − Îc|.
• From the error map, the N points {P (i)}i∈{1,...,N} =
{(x(i), y(i))}i∈{1,...,N} with the highest intensity are
extracted. {I(i)}i∈{1,...,N} is the set of corresponding
luminances.
From these points, a probability distribution
{p(i)}i∈{1,...,N} is computed using a kernel density
estimator with a Gaussian kernel of zero mean and unit
variance:

∀i ∈ {1, ..., N}, p(i) =
1

N

N∑
j=1

I(j)K(Pi − Pj), (5)

with K(Pi − Pj) = 1
2π exp−0.5||Pi−Pj ||22 .

The estimated object pixellic position P cO is at the max-
imal probability:

P cO = Pk, (6)

where k = arg max
i

(p(i)). N is set to 150 in the

experiments.
c) Reward computation:

The reward is a decreasing function of the Euclidean distance
||P cO − P cIc||2. We propose to use an affine function clamping
the values between -1 and 1 for each camera:

rc = 2×
(
dmax − ||P cO − P cIc||2

dmax
− 1

2

)
, (7)

where dmax is the maximal Euclidean distance between the
object pixellic position and the image center.

r = rleft + rright (8)

As aforementioned, this method allows to extract a reward
signal in a weakly supervised way. Moreover, this reward
is informative in the sense it can discriminate the values of
nearby states.

2) Autoencoder structure:
The autoencoder structure is presented in Figure 5. The
encoder is composed of a convolutional layer and two fully
connected layers. The decoder is composed of two fully con-
nected layers. The last fully connected layer of the encoder and
the first fully connected layer of the decoder have transposed
weights.

Fig. 5. The autoencoder structure

The choice of the architecture (number of layers, type
of layers, number of neurons in the third hidden layer) is
made experimentally by trying to get good performances while
ensuring fast learning.

3) Reward noise removal method:
The learned autoencoders do not reconstruct perfectly the
images even without object in the scene. Indeed, some high-
frequency areas such as table legs are difficult to reconstruct.
Consequently, high-frequency areas are sometimes detected,
producing impulse noise in the reward function (cf Figure 6).
Experiments in III-C show that this has a strong influence
on learning even if the impulse noise only concerns about
3% of the samples. We choose to model the function ∆d =
f(||∆q||2) to detect an abnormal object detection variation
in function of the movement amplitude. ∆d is the Euclidean
distance in the pixel space between two successive object
detections.

This function can be approximated by any regression
method including neural networks, Gaussian processes or
support-vector machines. Here, a Gaussian process with a
squared exponential interaction function is used and trained
with 1000 transitions. Using it allows to remove transitions
whose difference (in pixels) between the real detection varia-
tion and the estimated detection variation is above a threshold.

Fig. 6. Evolution of the error in object motion estimation.

Figure 6 illustrates the partial noise removal results and
reveals the impulse nature of the noise. The threshold has
been set to 10, removing around 3% of the samples.

III. RESULTS

A. Experimental environment

The experiments are carried out in a simulated environment
using the Gazebo simulator jointly with the ROS middleware.
A two-cameras system is mounted on a robotic platform (cf
Figure 2). A table from the Gazebo database is placed below
the cameras and an object is put on it. The experiments involve
two object sets. The training and the test sets can be seen in
Figure 7. The databases consist of objects from the Gazebo
models and hand-designed objects. In order to potentially
generalize the fixating skill to new objects, the training set
objects were designed with diverse colors and shapes (cylinder,
parallelepiped, and sphere). Every test object has a new shape
compared with training objects and a new color (turquoise)
appears in the test set. The goal is to check if the learned
policy can achieve fixations on objects whose color or shape
is not present in the training set.

B. Implementation details

For all the neural network algorithms, we use the caffe
library [18]. A GPU (nvidia GeForce GTX Titan X) is used for
the experiments. With this hardware set-up, 10 000 learning
iterations of DDPG correspond to about 40 minutes of training.

Fig. 7. Training and test sets

Batch normalization [19] is used to normalize layer inputs
and avoid burdensome pre-processing steps. The solver Adam
is used to train the Q function. The learning rate of the policy
network is hand-tuned.

Hyperparameter values mentioned in Algorithms 1 and 2
are listed in Table I.

Hyperparameters ε Ntot Neps Nb th Ngp

Training 0.02 150000 35 16 10 1000
Test 2000 35

TABLE I
HYPERPARAMETER VALUES

C. Training

Algorithm 1 presents the binocular fixation learning pro-
cedure which uses an episodic set-up. In order to avoid the
problem of correlated data, the object and its position regularly
change according to a uniform probability distribution. Note
that instead of using the Ornstein-Uhlenbeck process for the
exploration as proposed in [5], a constant zero-mean Gaussian
noise is used. With an informative reward function, this simple
exploration setting is sufficient for learning the fixation task.
The number of iterations of the algorithm is set to 150000
because the policy does not improve anymore afterward.

In order to ensure a fast learning, two tricks are implemented
in the training procedure:
• We add a term to the reward penalizing both diver-

gence and a too strong convergence. More precisely, if
dpan = J3 − J2 is the angular difference between the
pan left and right angles, then the additional reward term
rpan is computed as an affine function of dpan when
dpan > 0 (eye divergence) or dpan < −0.4 (strong eye
convergence):

rpan =


−dpan

3 , if dpan > 0
dpan+0.4

3 , if dpan < −0.4

0.1, otherwise.
(9)

• At each episode end, the camera system is set to the same
initial position.

The objective of the experiments on training is twofold.
First, we want to show how the impulse noise affects learning.
Second, we want to demonstrate that learning with the filtered
weakly supervised reward gives similar training performance

Algorithm 1 Training procedure
Parameters:

1: The initial position s0
2: The Gaussian noise variance ε
3: The total number of iterations Ntot

4: The number of iterations per episode Neps

5: The number of transitions per batch Nb

6: The removal threshold th
7: The number of samples required to train Gaussian process
Ngp

Inputs:
8: The training set Dtrain

Outputs: Qφ, πθ
Steps:

1: Set t← 0
2: Initialize the transition circular buffer Tbuf
3: Set cond← (t < Ngp) or ((|∆d− f(||∆q||2)| < th) and

(t > Ngp))
4: while t < Ntot do
5: Choose a random object in Dtrain and place it ran-

domly
6: Go to the initial position s0
7: Set teps ← 0
8: while teps < Neps do
9: Apply at = πθ(st) +N (0, ε)

10: Observe st+1

11: Compute rt and |∆dt|
12: if cond then
13: Add < st, at, rt, st+1 > to Tbuf
14: Pick randomly Nb transitions from Tbuf
15: Update Qφ and πθ using DDPG [5]
16: if t = Ngp then Train ∆d = f(||∆q||2)

17: t← t+ 1
18: teps ← teps + 1

19: Withdraw the object

as with a supervised reward. The supervised reward is obtained
by computing the Euclidean distance between the projection of
the object center of gravity and the image center ||PCpr−PCIc ||2.
This function is also affine with the same parameters as for
the weakly supervised one:

rCsup = 2×

(
dmax − ||PCpr − PCIc ||2

dmax
− 1

2

)
, (10)

rsup = rleftsup + rrightsup . (11)

It requires to compute the camera extrinsic parameters at
each iteration and to do a calibration before learning.

To achieve the objectives, learning improvements with the
supervised, noisy weakly supervised and filtered weakly su-
pervised rewards are compared. The fixation error is tracked

over time. We average three experiments for each case. It is
done by using the random variable:

ep(t) =
||P left

p (t)− P left
Ic ||2 + ||P right

p (t)− P right
Ic ||2

2
. (12)

It represents the average (over the left and right images) Eu-
clidean distance between the image center and the projection
of the object center of gravity.

The results are shown in Figure 8 (the curves are filtered
using an exponential smoothing for better readibility). The
vertical axis of the plot represents the aforementioned ep(t)
variable whereas the horizontal one stands for the time steps.
The curve esp(t) represents ep(t) with the use of the supervised
reward, ewp (t) with the noisy weakly supervised reward and
ewf
p (t) with the filtered weakly supervised reward.

The curve ewp (t) presents the worst learning performances.
It shows that the noise affects learning.

The curves esp(t) and ewf
p (t) have similar shapes. We

observe that esp(t) decreases a little more quickly. This small
difference is due to the remaining noise present in the samples.

Fig. 8. Binocular fixation position error over time

D. Test

The objective of the policy test can be divided into three
sub-goals:

Firstly, we want to compare the performance of the learned
policy on the test set with that of the training set. This aims
at checking if there is no overfitting. Secondly, we want to
compare the policies learned with the noisy reward and with
the filtered one. The aim is to show that not only does the noise
alter learning, but the performance of the resulting policy is
also worse. Thirdly, we want to compare it with the policy
learned with an informative and noiseless reward signal. The
purpose is to check if the weakly supervised reward allows to
learn the same kind of behavior as for the supervised reward.

Algorithm 2 Test procedure
Parameters:

1: The total number of episodes Ntot

2: The number of iterations per episode Neps

Inputs:
3: The policy πθ
4: The object set D = Dtest or Dtrain

Output: The set of final fixation errors Dp

Steps:
1: Set t← 0
2: while t < Ntot do
3: Choose a random object in D and place it randomly
4: Go to the initial position s0
5: Set teps ← 0
6: while teps < Neps do
7: Apply at = πθ(st)
8: Observe st+1

9: teps ← teps + 1

10: t← t+ 1
11: Compute the fixation error ep(teps) and append it to

Dp

12: Withdraw the object

Algorithm 2 describes the test procedure. We choose to
evaluate at the end of each episode the random variable
ep(teps). Statistics (mean, median and standard deviations) of
these random variables are computed for 2000 test episodes.
The value of 2000 was set to ensure that the computed
statistics are meaningful. Furthermore, the results are averaged
over three policies for each reward case. Finally, a cumulative
percent curve is presented to more precisely characterize the
distribution of ep(teps).

The results are summarized in Table II. The columns rw,
rwf and rs respectively stand for the case of the noisy weakly
supervised, filtered weakly supervised and supervised rewards,
respectively. Figure 9 gives a more complete view of the
distribution of the fixation error. The vertical axis P (eDp < ep)
represents the percentage of tested samples whose fixation
error is smaller than the values on the horizontal axis.

Several remarks can be made:

• The results of the policy learned with the noisy weakly
supervised reward are the worst.

• The results of the policies learned with the supervised
and filtered weakly supervised rewards do not exhibit
a big difference in both the training and the test set.
The differences that we observe are due to the inter-
experimental variance and the fact we average the results
over 3 trials.

• The errors are higher for the test set compared with those
on the training set. However, the difference is not high.
As a consequence, there is no strong overfitting.

Training set Test set
Statistics (pixels) rw rwf rs rw rwf rs
mean(ep) 14.11 4.95 4.80 17.10 5.92 6.81
median(ep) 8.57 4.35 4.28 11.20 4.85 5.39
std(ep) 14.66 5.31 3.02 17.77 6.63 8.42

TABLE II
PERFORMANCES OF THE LEARNED POLICIES

Fig. 9. Cumulative distribution function of the fixation error (in %)

IV. DISCUSSION

We have presented an approach for the learning of binocular
fixations based on anomaly detection with deep reinforcement
learning that requires only minimal supervision. Our experi-
ments show that the learned policy generalizes well to new
objects. We have shown that a form of impulse noise in the
object detection affects both the learning speed and the quality
of the resulting policy. We have proposed a noise removal
method to deal with this challenge that greatly improves
the quality of learning. Moreover, our experiments show that
learning with the filtered weakly supervised or the supervised
reward leads to similar performance both during training and
testing. However, learning is a bit slower in the case of the
weakly supervised reward because of the residual impulse
noise. Overall, our study shows that the proposed reward
function, while using hardly any supervised information, is
well suited for learning the binocular fixation task. This
indicates that prior information that is usually used in other
systems [5] might be replaced by an autoencoder training step
coupled with an anomaly detection mechanism.

The reward computation method still has several limitations,
however:
• The environment cannot vary during learning. Otherwise,

the autoencoder must be adapted (this task is difficult
since during learning, the object is in the environment).

• The method works in a rather simple setting and has not
been adapted yet to a cluttered environment with many

objects.

In future work we would like to make the autoencoder adaptive
to increase the system robustness. Furthermore, we would like
to validate the method on a physical robot learning in the real
world. Finally, we wish to adapt our method to other types of
task such as object reaching or grasping.

ACKNOWLEDGMENT

This work is sponsored by the French government research
program “Investissements d’avenir” through the IMobS3 Lab-
oratory of Excellence (ANR-10-LABX-16-01), by the Euro-
pean Union through the program Regional competitiveness and
employment (ERDF Auvergne region), and by the Auvergne
region. JT acknowledges support from the Quandt foundation.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu , D. Silver, A. Rusu Andrei, J. Veness, M.
Bellemare, A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski , S.
Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg , and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[2] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end Training of
Deep Visuomotor Policies,” J. Mach. Learn. Res., vol. 17, no. 1, pp.
1334–1373, 2016.

[3] V. Kumar, E. Todorov, and S. Levine, “Optimal control with learned
local models: Application to dexterous manipulation.” in ICRA, 2016,
pp. 378–383.

[4] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel, “Deep
spatial autoencoders for visuomotor learning,” in ICRA, 2016, pp. 512–
519.

[5] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning.” CoRR, vol. abs/1509.02971, 2015.

[6] N. Heess, G. Wayne, D. Silver, T. P. Lillicrap, T. Erez, and Y. Tassa,
“Learning Continuous Control Policies by Stochastic Value Gradients.”
in NIPS, 2015, pp. 2944–2952.

[7] S. Gu, T. P. Lillicrap, I. Sutskever, and S. Levine, “Continuous Deep
Q-Learning with Model-based Acceleration.” in ICML, ser. JMLR
Workshop and Conference Proceedings, vol. 48, 2016, pp. 2829–2838.

[8] C. Finn and S. Levine, “Deep Visual Foresight for Planning Robot
Motion,” ArXiv, 2016.

[9] S. Hawkins, H. He, G. J. Williams, and R. A. Baxter, “Outlier Detection
Using Replicator Neural Networks.” in DaWaK, ser. Lecture Notes in
Computer Science, vol. 2454, 2002, pp. 170–180.

[10] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C.
Platt, “Support Vector Method for Novelty Detection.” in NIPS, 1999,
pp. 582–588.

[11] A. Moreno, J. D. Martin, E. Soria, R. Magdalena, and M. Martinez,
“Noisy Reinforcements in reinforcement learning: some case studies
based on gridworlds,” in WSEAS, 2006, pp. 296–300.

[12] R. Fox, A. Pakman, and N. Tishby, “Taming the Noise in Reinforcement
Learning via Soft Updates,” in UAI, 2016.

[13] R. E. Bellman, Adaptive Control Processes: A Guided Tour. MIT Press,
1961.

[14] S. Lange and M. Riedmiller, “Deep auto-encoder neural networks in
reinforcement learning,” in IJCNN, 2010, pp. 1–8.

[15] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic Policy Gradient Algorithms,” in ICML, Beijing, China,
2014.

[16] M. J. Hausknecht and P. Stone, “Deep Reinforcement Learning in
Parameterized Action Space.” CoRR, vol. abs/1511.04143, 2015.

[17] D. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in ICLR, 2015.

[18] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for
Fast Feature Embedding,” arXiv, 2014.

[19] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” in ICML, 2015,
pp. 448–456.

