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Abstract—This paper presents a fast approach for penalized
least squares (LS) regression problems using a 2D Gaussian
Markov random field (GMRF) prior. More precisely, the compu-
tation of the proximity operator of the LS criterion regularized by
different GMRF potentials is formulated as solving a Sylvester-
like matrix equation. By exploiting the structural properties
of GMREFs, this matrix equation is solved column-wise in an
analytical way. The proposed algorithm can be embedded into
a wide range of proximal algorithms to solve LS regression
problems including a convex penalty. Experiments carried out
in the case of a constrained LS regression problem arising in a
multichannel image processing application, provide evidence that
an alternating direction method of multipliers performs quite
efficiently in this context.

I. INTRODUCTION

Constrained or penalized least squares (LS) problems have
been widely encountered in various signal/image processing
applications, such as spectral unmixing [1]-[3], supervised
source separation [4], image classification [5], material quan-
tification [6] or subpixel detection [7]. The LS problem often
results from the following linear model which has been
successfully used in the applications mentioned above:

Y=WH+N (1)
where Y € R™*™ is the observed data matrix (each row of
Y is the vectorized version of an image), W & R™*d jg a
basis matrix that will be assumed to be known in this work,
H € R " is a matrix containing the regression coefficients,
and N € R™*" is the noise term which can be assumed to
follow a multivariate Gaussian distribution. Note that LS can
be classically interpreted as projecting the observed data onto
the subspace spanned by the columns of W.

As the LS problem associated with (1) is usually ill-posed,
e.g., some columns of W may be similar, it is necessary to
introduce priors/regularizations for H to make the problem
well-conditioned [8]. Enforcing spatial regularization on the
matrix H is a strategy for incorporating prior information,
e.g., total variation (TV), Markov random field (MRF) penalty,
sparsity constraints in the wavelet domain, etc. Among these,
a powerful and important way of exploiting the correlations
between pixels of an image is to consider Gaussian Markov
random fields (GMRFs), which have been extensively used
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in image processing applications such as denoising [9], super-
resolution [10], segmentation [11] and spectral unmixing [12].
Constructing a GMRF amounts to define a finite-dimensional
random vector with a multivariate normal distribution having
nontrivial conditional Markov dependence properties. GM-
RFs allow us to exploit analytical results obtained for the
Gaussian distribution and to enforce Markovian properties,
leading to computationally efficient algorithms. In general,
different images can be characterized by GMRF distributions
with different parameters. For example, the distributions of
water and soil in a remote sensing image can be modeled by
two different GMRF distributions based upon their physical
locations. Mathematically, the GMRF regularizations associ-
ated with the two rows of H corresponding to water and
soil should obviously be different. This diversity makes the
corresponding optimization problem quite challenging, leading
to the solution of a tensor equation. A number of efficient
sampling algorithms such as those based on Markov chain
Monte Carlo (MCMC) algorithms have been designed for
statistical inference, which are effective but generally time
consuming [12], [13].

In this paper, we adopt a proximal approach [14] to ad-
dress this variational problem. We start by showing that the
computation of the proximity operator of the LS criterion with
GMREF regularization can be performed by solving a Sylvester-
like matrix equation and propose an algorithm to solve it
analytically by taking advantage of the properties of stationary
2D GMRFs. More specifically, the block circulant properties
of the covariance matrix of such a field is exploited to simplify
the associated matrix equation. The resulting closed-form
solution is easy to implement and very fast to compute.

This paper is organized as follows. Section II formulates
the regularized LS regression for the considered class of
linear models and GMRF priors. Section III addresses the
problem of computing the associated proximity operator by
solving in a fast manner a Sylvester-like matrix equation.
Section IV shows the benefit of this approach for solving more
challenging convex optimization problems. Simulation results
are presented in Section V showing the good performance of
the proposed approach, whereas conclusions are reported in
Section VI.



II. PROBLEM FORMULATION
A. Observation model

Decomposing the matrices W and H as W =
[wi,--,wq] and HT = [hy,--- , hy], where wy, is the kth
column of W and hiT is the ¢th row of H, (1) can be rewritten

as
d

Y = Zwih? +N. ()
i=1

Note that each pixel (column) of the image (matrix) Y is
the linear combination of d basis vectors wy,--- ,wy (e.g., d
materials whose signatures are the columns of W). Estimating
the matrix H from the observed matrix Y with possible
constraints about the vectors h; is a classical LS problem that
has been considered in particular in source separation [15] and
spectral unmixing [1], [16].

B. Gaussian Markov Random Fields

According to the Hammersley-Clifford theorem [13], [17],
an MRF can equivalently be characterized by a Gibbs distri-
bution. More specifically, a zero-mean Gaussian random field
(hk)1<k<n € R satisfying!

p(hk ‘ hg,g 7& k) :p(hk | hg,£ GNk) 3)

where N}, contains the neighbors of the kth element hy, is a
GMREF. The distribution of h = [hy,--- , h]? can be written

as
1 A 2
p(h) =~ exp (—QZ (i = > arhy) ) )
k=1 LeN
where A > 0 is a scale parameter and the normalizing constant
¢ > 0 is the partition function of this probability distribution,
which is generally unknown. Equivalently, (4) reads

1 A
pit) = Lexp (3 I - Qi ) ®)

where A(I — Q)7(I — Q) is the precision matrix, I denotes
the identity matrix and, in the 2D stationary case with peri-
odic boundary condition, Q is a block circulant matrix with
circulant blocks (BCCB) with its first column built from the
coefficient vector ¢ = (al,...,aq)T, g = |Nk| being the
number of elements in the neighborhood of hy.

ITI. FAST COMPUTATION OF THE PROXIMITY OPERATOR OF
THE LEAST SQUARES CRITERION WITH GMRF PRIOR

Assuming that the columns of H are independent and
assigned a GMRF prior and considering the likelihood term
from (1) leads to the following LS regression problem:

minimize f(H) (6)
HeR™*"

where
1 d d_
_ 1.T)2 AT LTy 12
fH) = §||Y - ;lelhi &+ ;:1 5 |h; —h; Q;°.

ITo simplify notation, the index of h; has been dropped in this section.

Hereabove, || - ||[r denotes the Frobenius norm, and for every
i€{1,...,d}, \; is a positive parameter and Q; is a BCCB
matrix constructed from the MRF coefficients associated with
the ith row of H. Thus, Q; enforces possible different
spatial structures to hi,--- ,h;. Note that, because of its
form, Q; can be diagonalized in the frequency domain, i.e.,
Q,; = FD,F¥ where F is the 2D FFT matrix and F¥ is its
inverse.

In the following, we will be interested in the following more
general optimization problem:

minimize f(H) + lHH - H]|3 ™)
HE]RdX" 2

where v > 0 and the second term means that H is close to
H. When ~ = 0, this problem reduces to solving (6) and,
when v > 0, this problem corresponds to the computation of
prox,, -1, the proximity operator of v~ Lf [18]. As we will see
in the next section, such a proximity operator constitutes a key
tool for solving optimization problems more involved than (6).
Since f is a quadratic function, it is well-know that Prox, -1z
is a linear operator for which a closed-form expression can
be obtained [14]. We show next that, rather than applying
the direct formula (see [14, Table 10.1xi]), a more efficient
approach can be adopted to compute this proximity operator.
Forcing the derivative of the objective function in (7) w.r.t.
each h; to be zero and substituting Q; = FD,;F in the
resulting equation leads to
w, (WH-Y)+\h/F(I-D;)’F”" +~y(h; —h;)" =0
®)
for every j € {1,...,d}. Note that the matrix \;(I—D;)? is
a real diagonal matrix whose vector of diagonal elements is
denoted by m;. Thus, (8) can be rewritten as

w/ (WH-Y)F+ (hjF)om] +~(h; —h;)"F=0
)]
where © is the Hadamard (element-wise) product. Stacking
these d equations leads to the following matrix equation

(WI'W +4I)HF + (HF) © M = (W'Y +~yH)F. (10)

Note that the matrix M can be decomposed as M =
[my,--+ ,m,] = [my, - ,mgy]T, where a bold italic notation
is used to designate the column of M while a bold non-italic
one designates its rows. Eq. (10) is a Sylvester-like matrix
equationj w.rt. H = HF. Let hy be the kth column of the
matrix H and let [(WTY + yH)F]; be the kth column of
(WTY + vH)F. Decomposing (10) column-wise allows the
estimation of the different vectors (hy,)1<r<y, to be decoupled:

hy = (WTW + 41 + Diag(my)) " (WY +~H)F],
(11
for every k € {1,---,n}, where Diag(my) is the diagonal
matrix whose diagonal is filled with the components of my.

The solution to Problem (7) is finally given by
H = HF". (12)

2A Sylvester equation is a matrix equation of the form AX + XB = C
[19].



If max{d,m} < n, the computational complexity of the
previous strategy is of the order O(3dnlog,n) because of
the low cost of the 2D-FFT operation. The whole procedure

to compute prox. - ;(H) is summarized in Algorithm 1.

Algorithm 1: Computation of the proximity operator
of the LS criterion with GMRF prior

Input: Y, W, (Q;)1<i<a> H, A = (Mi)1<i<ds ¥

// 2D Fourier diagonalisation of (Qi)i<i<d

for i =1 to d do
D, «+ FHQiF; // one 2D-FFT required
m; = \;diag((I — D;)?);

end

// Compute the FFT of H for all pixels
in parallel

for k=1ton do

5
6 Compute flk using (11);
7
8

BOW N -

end
H <« HFY
Output: H

IV. PENALIZED LS WITH A GMRF PRIOR

Having a fast way of computing the proximity operator of
the LS criterion with GMREF prior yields efficient solutions to
the following broad class of variational formulations:

d
minimize }||Y —~ WH|2 + Z &HhT —h!Q;|> + g(H)
HeR4X™ 2 — 2

(13)
where g: R¥" —] — 00, +oc] is an additional regularization
term, here assumed to be a convex, lower-semicontinuous and
proper function. For example, if H is known to belong to a
nonempty closed convex set C C R?*™, a constrained least
squares (CLS) regression is obtained by setting g equal to the
indicator function of C, i.e.

e B [0 ifUecC
(VU e R7™) ¢g(U) = c(U) = { +oo  otherwise.

(14)
Looking for a solution to (13) amounts to finding a minimizer
of f + g. Provided that the proximity operator of g is easy
to compute, a wide range of proximal algorithms can be
employed [14], [20] having good convergence properties. In
particular, if g is given by (14), this operator reduces to the
projection Il onto C.

As an example of proximal approaches which can be used,
Algorithm 2 describes the iterative steps to be followed in
order to implement the alternating direction of multipliers
method (ADMM) [21], [22].

V. EXPERIMENTS

This section evaluates the performance of the proposed
algorithm for a multichannel image processing problem, and
compares it with two widely used optimization algorithms:
forward backward (FB) [23] and FISTA [24]. For a fair

Algorithm 2: Penalized LS with GMRF regular-
ization
Input: Y, W, (Qi)lgigd» U(O), G(O), >\, Yy
// Initialize U and G with U®
and GO
1 U« U,
2 G« GO,
// ADMM iterations
3 repeat
4 Update H: H proxw,lf(ﬂ +G)
5 by feeding Algorithm 1 with
6 (Y, W, (Q)i<i<a: U+ G, A, p);
; NI A
8
9

Update U: U < prox_—. ,(H — G);
Update G: G« G—ﬂ—&—ﬂ;
until convergence;

Output: H
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Fig. 1. Columns of the matrix W.

comparison, all the algorithms have been implemented using
MATLAB R2016b on an HP EliteBook Folio 9470m with
Intel(R) Core(TM) i7-3687U CPU @2.10GHz and 16GB
RAM.

A. Simulation scenario

In all the experiments, we consider a matrix W € R5*3
corresponding to measurements acquired in five channels and
decomposed in a basis defined by three vectors. The three
columns of the basis matrix W are displayed in Fig. 1. These
vectors represent the signatures® of three different fluorescent
protein spectra [25]. One can note that two of them (red and
brown) are quite similar, which makes the model very ill-
posed. The matrix H has been generated row by row after
vectorizing 3 texture images available at http://sipi.usc.edu/
database/. The three images we have considered in this work
are displayed in the first row of Fig. 4 showing clear oriented
structures. The GMRF parameters for these three images have
been estimated using the maximum likelihood method [26] and

3courtesy of Alexandre Jaouen, CNRS-AMU UMR7289.



are summarized in Fig. 2. Note that these GMRFs consider
3 x 3 neighbors around one pixel and that half of them are set
to zeros due to the symmetry property. The size of the images
is 512 x 512. In our simulations, the regularization parameters
(Mi)1<i<gs for all bands are chosen equal to 0.05 empirically
(in real application this value vary depending on the noise
power). The convex penalty function g is the indicator of the
box constraint H € [0, 1]4%™.

The observed data are finally generated using the linear
mixing model (1), i.e., Y = WH+ N, where the noise matrix
N has been generated using samples of a Gaussian distribution
with zero mean and covariance matrix o?I. The variance o
has been adjusted in order to have an initial SNR (signal to
noise ratio) equal to 25dB.

—-0.26 0.55 0] [-0.19 0.78 0| [-0.68 0.79 0
0.13 0 O 0.35 0 O 0.84 0 O
0.58 0 0] (0042 0 0] (0047 O O

Fig. 2. Estimated GMRF coefficients for hi, ho and hs (left to right).

B. Quality Assessment

To analyze the quality of the proposed estimation method,
we have considered the normalized mean square error (NMSE)
defined as

[H — H[F
f=1lF
(the smaller NMSE, the better the estimation quality.

NMSE =

C. Comparison with existing optimization algorithms

The evolution of the relative error between the iterates and
the solution to (13) versus execution time, is displayed in
Fig. 3(top) for the three tested algorithms, namely FB, FISTA
and the proposed one. Here, the optimal solution H* has
been precomputed for each algorithm using a large number
of iterations. We also show the NMSE versus time in Fig.
3(bottom). All the algorithms lead to the same estimation
quality as expected. However, as demonstrated in these plots,
the proposed algorithm based on a Sylvester-like equation
solver is faster than FB and FISTA. More precisely, the
proposed algorithm converges rapidly in a few steps while
the other two need more iterations and time to converge. One
can also note that FISTA converges faster than FB, both in
terms of error on the iterates and NMSE decays.

To demonstrate the role of the GMRF regularization, we
computed the box constrained (H € [0,1]4%™) LS regression
without any regularization, by setting A\; = 0 for every
i € {1,2,3} and use it as a baseline for comparison. The
regression matrix H estimated by LS and by the proposed
approach are displayed in the second and third rows of Fig.
4, respectively. Due to the ill-posedness of the problem, the
inversion without any spatial regularization amplifies the noise,
leading to poor estimation results as shown in the second
row of Fig. 4 (especially for the second and third images).

—FB —FB
——FISTA ——FISTA
P — Proposed

IH = H 3/

0 2 4 6 8 10 0 2 4 6 8 10
time in sec time in sec

Fig. 3. Convergence comparison of different algorithms: (top) relative distance
to the solution vs time, (bottom) NMSE vs time.

Fig. 4. Regression matrix H and its estimates H for texture images (512 x
512): (top) ground-truth, (middle) LS estimator (NMSE = 0.166), (bottom) LS
estimator with GMRF (NMSE = 0.026). A zoom of each image is displayed
in its left top side.

The GMRF model plays a very important role in restoring
satisfactorily the spatial structures and details as shown in the
last row of Fig. 4. The NMSE values indicated in the caption
of Fig. 4 corroborate these visual comparisons.

VI. CONCLUSION

This paper developed a new algorithm for penalized least
squares regression with GMRF regularization based on a
Sylvester-like matrix equation solver. The closed-form solu-
tion of this equation makes it very appealing in terms of
computational complexity. Although we have focused on the
use of ADMM, the proposed approach can be embedded into
most of the existing proximal methods to solve penalized
or constrained least squares regression problems. Numeri-
cal experiments confirmed the effectiveness of the resulting
algorithms. Future work includes the generalization of the
proposed algorithm to applications where the basis matrix is
partially known or unknown.

ACKNOWLEDGMENT

The authors would like to thank CNRS for supporting
this work by the CNRS Imag’In project under grant 2015
OPTIMISME.



[1]
[2]

[3]

[4]

[6]

[7

—

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

N. Keshava and J. F. Mustard, “Spectral unmixing,” /EEE Signal
Process. Mag., vol. 19, no. 1, pp. 44-57, Jan. 2002.

E. Chouzenoux, M. Legendre, S. Moussaoui, and J. Idier, “Fast con-
strained least squares spectral unmixing using primal-dual interior-point
optimization,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 7, no. 1, pp. 59-69, 2014.

Q. Wei, J. Bioucas-Dias, N. Dobigeon, and J.-Y. Tourneret, “Fast
spectral unmixing based on Dykstra’s alternating projection,” Univ. of
Toulouse, IRIT/INP-ENSEEIHT, Tech. Rep., 2015. [Online]. Available:
http://arxiv.org/abs/1505.01740

N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and A. O.
Hero, “Joint Bayesian endmember extraction and linear unmixing for
hyperspectral imagery,” IEEE Trans. Signal Process., vol. 57, no. 11,
pp. 4355-4368, 2009.

C.-I Chang, X.-L. Zhao, M. L. G. Althouse, and J. J. Pan, “Least
squares subspace projection approach to mixed pixel classification for
hyperspectral images,” IEEE Trans. Geosci. Remote Sens., vol. 36, no. 3,
pp- 898-912, May 1998.

J. Wang and C.-I Chang, “Applications of independent component
analysis in endmember extraction and abundance quantification for
hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 4, no. 9,
pp. 2601-2616, Sept. 2006.

D. Manolakis, C. Siracusa, and G. Shaw, “Hyperspectral subpixel target
detection using the linear mixing model,” IEEE Trans. Geosci. Remote
Sens., vol. 39, no. 7, pp. 1392-1409, July 2001.

C. L. Lawson and R. J. Hanson, Solving least squares problems.
Englewood Cliffs, NJ: Prentice-hall, 1974, vol. 161.

M. Malfait and D. Roose, “Wavelet-based image denoising using a
Markov random field a priori model,” IEEE Trans. Image Process.,
vol. 6, no. 4, pp. 549-565, Apr. 1997.

T. Kasetkasem, M. K. Arora, and P. K. Varshney, “Super-resolution land
cover mapping using a Markov random field based approach,” Remote
Sens. Environment, vol. 96, no. 3, pp. 302-314, 2005.

C. D’Elia, G. Poggi, and G. Scarpa, “A tree-structured Markov random
field model for Bayesian image segmentation,” IEEE Trans. Image
Process., vol. 12, no. 10, pp. 1259-1273, Oct. 2003.

O. Eches, J. A. Benediktsson, N. Dobigeon, and J.-Y. Tourneret,
“Adaptive Markov random fields for joint unmixing and segmentation
of hyperspectral images,” IEEE Trans. Image Process., vol. 22, no. 1,
pp. 5-16, Jan. 2013.

H. Rue and L. Held, Gaussian Markov Random Fields: Theory and
Applications. Florida, USA: CRC Press, 2005.

P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal
processing,” in Fixed-Point Algorithms for Inverse Problems in Science
and Engineering, ser. Springer Optimization and Its Applications, H. H.
Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke, and
H. Wolkowicz, Eds. Springer New York, 2011, pp. 185-212.

M. Zibulevsky and B. A. Pearlmutter, “Blind source separation by sparse
decomposition in a signal dictionary,” Neural computation, vol. 13, no. 4,
pp. 863-882, 2001.

D. C. Heinz and C.-I. Chang, “Fully constrained least squares linear
spectral mixture analysis method for material quantification in hyper-
spectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp.
529-545, 2001.

P. Clifford, “Markov random fields in statistics,” Disorder in physical
systems: A volume in honour of John M. Hammersley, pp. 19-32, 1990.
H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone
Operator Theory in Hilbert Spaces. New York: Springer, 2011.

R. H. Bartels and G. Stewart, “Solution of the matrix equation AX+
XB= C [F4],” Communications of the ACM, vol. 15, no. 9, pp. 820-
826, 1972.

N. Komodakis and J.-C. Pesquet, “Playing with duality: An overview
of recent primal-dual approaches for solving large-scale optimization
problems.” IEEE Signal Process. Mag., vol. 32, no. 6, pp. 31-54, Nov.
2015.

J. M. Bioucas-Dias and M. A. Figueiredo, “Alternating direction algo-
rithms for constrained sparse regression: Application to hyperspectral
unmixing,” in Proc. IEEE GRSS Workshop Hyperspectral Image Slgnal
Process.: Evolution in Remote Sens. (WHISPERS), Reykjavik, Iceland,
Jun. 2010, pp. 14.

[22]

[23]

[24]

[25]

[26]

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1-122, 2011.

P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-
backward splitting,” Multiscale Modeling & Simulation, vol. 4, no. 4,
pp- 1168-1200, 2005.

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imaging Sci., vol. 2,
no. 1, pp. 183-202, 2009.

C. Ricard and F. Debarbieux, “Six-color intravital two-photon imaging
of brain tumors and their dynamic microenvironment,” Front Cell
Neurosci., pp. 8-57, Feb. 2014.

C. S. Won and H. Derin, “Maximum likelihood estimation of Gaussian
Markov random field parameters,” in Proc. IEEE Int. Conf. Acoust.,
Speech, and Signal Processing (ICASSP), vol. 2, New York, USA, Apr.
1988, pp. 1040-1043.



