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Abstract

A new lower bound for the maximal length of a multivector is obtained. It is much closer

to the best known upper bound than previously reported lower bound estimates. The

maximal length appears to be unexpectedly large for n-vectors, with n > 2, since the

few exactly known values seem to grow linearly with vector space dimension, whereas

the new lower bound has a polynomial order equal to n − 1 like the best known upper

bound. This result has implications for quantum chemistry.
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1. Introduction

The algebraic problem addressed in this article arised in the following context: The

wave function, Ψ, of a quantum system made of identical Fermionic particles, such as

the electrons of a molecule, or the nucleons of an atomic nucleus, is an element of the

Grassmann (or Exterior) algebra, ∧H, of a “one-particle” Hilbert space, H. In the non-

relativistic approximation, the number of particles is a constant integer, say n, and the

wave function actually belongs to the nth exterior product, ∧nH, of the Exterior algebra.

In practice, in quantum physics, only approximate wave functions can be computed by

solving numerically the Schrödinger equation, as soon as n > 1. The first step of the

approach consists usually in a Galerkin-type approximation, that is to say, in reducing

the infinite-dimensional, Hilbert space, H, to an appropriately-chosen vector subspace,

H0, of finite dimension, say m. However, such a reduction is rarely sufficient: The di-

mension of ∧nH0, Dim ∧n H0 =
(
m
n

)
, is still untractable, except for m-values that are

too small to solve accurately the time-independent Schrödinger equation by numerical

methods. So, quantum chemists define hierarchies of approximation methods that cor-

respond to families of embedded subspaces (not necessarily vector subspaces) of ∧nH0,

V1 ⊂ V2 ⊂ · · · ⊂ Vk ⊂ · · · ⊂ ∧nH0, the kth-order approximation corresponding to the

search of an approximate solution restricted to Vk.

The most commonly used hierarchy is based on the concept of excitation. One starts

with a zero order approximate wave function, Ψ0, and a given basis sets of H0, B :=

(ψ1, . . . , ψm). Then, roughly speaking, i.e. omitting subtilities related to particle spin and

other symmetries, Vk is the vector space spanned by all n-vectors built by substituting

in the expansion of Ψ0 =
∑
I

aIΨI in the induced basis set, ∧nB := (ΨI)I=i1<···<in :=

(ψi1 ∧ · · · ∧ ψin)i1<···<in , at most k elements of B by k other such basis elements. Vk is
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the space of the so-called “l-excited configurations (from Ψ0)” with l ≤ k [1].

Another common hierarchy is based on the rank of an n-vector, r(Ψ) defined as

the least integer l such that ∃F ⊆ H0, DimF = l and Ψ ∈ ∧nF . In this case,

Vk = {Ψ ∈ ∧nH0, r(Ψ) ≤ k}, that is the space of n-vectors of rank less than or equal

to k. The method which consists in finding the best wave function in the variational

sense, that is to say, by minimizing the energy functional of the system, subject to the

constraint that the wave function belongs to Vk, is called the “complete active space

self-consistent field” method (with active space of dimension k) [2, 3].

A third possible hierarchy is based on the so-called “depth” of an n-vector, d(Ψ)

defined as the largest integer l such that ∃Ψ1 ∈ ∧n1H0, . . . ,∃Ψl ∈ ∧nlH0, with n1, . . . , nl

non negative integers, and Ψ = Ψ1∧· · ·∧Ψl [6]. If one sets, Vk = {Ψ ∈ ∧nH0, d(Ψ) ≥ k},

a hierarchy of approximations corresponds to the embedding, Vn ⊂ · · · ⊂ V1 = ∧nH0.

The variational solution of maximal depth, i.e. Ψ ∈ Vn, is actually the unrestricted

Hartree-Fock [4, 5] wave function, where all its factors Ψi ∈ H0 ≡ ∧1H0. The case where

all factors Ψi ∈ ∧2H0 for n even, has been explored in [7, 8, 9].

These hierarchies can give rise to interesting algebraic problems. However, the prob-

lem we are dealing with in this paper is related to yet another hierchachy based on the

length of an n-vector. The length of an n-vector, l(Ψ) is the least positive integer l, such

that, ∃Ψ1 ∈ ∧nH0, . . . ,∃Ψl ∈ ∧nH0, with Ψ1, ...,Ψl decomposable (also called “pure” or

“simple”) n-vectors, and Ψ = Ψ1+· · ·+Ψl. Note that generalizations of this concept and

their connection to quantum physics can be found in [10]. The length-based hierarchy

has been proposed in the early 90’s [11, 3]. In this case, Vk = {Ψ ∈ ∧nH0, l(Ψ) ≤ k},

that is the space of n-vectors of length less than or equal to k. The variational solution of

minimal length, i.e. Ψ ∈ V1, is again the unrestricted Hartree-Fock wave function. More

recently, Beylkin and coworkers have worked out techniques to overcome the numerical
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difficulties (mostly related to non-orthogonality of the elements of H0 making up the

decomposable Ψk terms) in optimizing wave functions of increasing length [12].

However, to be really effective, such a method must be able to give accurate approxi-

mate wave functions of reasonably small length. There is a priori no reason for the best

approximate wave function Ψ ∈ ∧nH0 to have a length less than the maximal length

achievable by an n-vector. Hence, the interest of determining such a maximal length,

which is still an open problem. This topics has been reviewed by MacDougall [13]. The

maximal length depends not only upon n and m, but also upon the field K ≡ ∧0H0 [14],

so we will use the notation N(K,m, n) for it. In quantum physics , the relevant field is

usually taken to be the field of complex numbers C. However, in many occasions, one

uses the field of real numbers R, and, in some instances, the field of quaternions, H,

can also be considered. When a result is independent of the field, we will write simply,

N(m,n).

The purpose of this paper is to give a new lower bound to N(C,m, n), which improves

drastically those reported previously. This is achieved in the next section, before we

conclude in the final section.

2. Lower bound to the maximal length

What is known about the maximal length N(K,m, n) is essentially summarized in

[13]. First, it is useful to note that N(m,n) = N(m,m − n) by what would be called

in quantum physics the “particle-hole duality” between ∧nH0 and ∧m−nH0. So, we can

limit the study to N(m,n), n ≤ bm
2
c, denoting by bkc the floor value of k. Exact values

are known in very few cases: For the limiting case n = 1, obviously N(m, 1) = 1. For

n = 2, one obtains easily by making use of Schmidt decomposition that N(m, 2) = bm
2
c.

For n = 3, Glassco showed that N(K, 6, 3) = 3 for any K of characteristic 0 [13]; West-
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wick showed that N(C, 7, 3) = 4 and that N(C, 8, 3) = 5. This is all, to our knowledge.

Exact values being difficult to obtain, one has tried to find bounds. In the general

case, i.e. for arbitrary values of n and m, the best known lower bound to N(m,n) is

bm−n+2
2
c, [14], whereas the best upper bound is a polynomial of the order of mn−1

2n!
[13].

So, the best known lower and upper bounds are extremely far apart. Furthermore, for a

fixed m, the lower bound is exact for n = 2, then it decreases with n, whereas N(m,n)

is expected to increase with n as long as n ≤ bm
2
c. We will now show how to find a lower

bound that remedies to both of these discrepancies for n > 2.

Let us assumed that K = C, so that the field is algebrically closed. The length of any

Ψ ∈ ∧nH0 being less than or equal to N(C,m, n), (by definition of N(C,m, n),) we can

write, ∀Ψ ∈ ∧nH0,∃(φ1
i1
, . . . , φ1

in , . . . , φ
N(C,m,n)
i1

, . . . , φ
N(C,m,n)
in

) ∈ Hn·N(C,m,n)
0 , such that,

Ψ =

N(C,m,n)∑
j=1

φj
i1
∧ · · · ∧ φj

in
. (1)

This expresses that N(C,m, n) is the smallest integer, k, such that the union for l < k

of the l-secant varieties, Sl(G(n,m)), of the Grassmannian, G(n,m), contains the whole

of ∧nH0.

Recall that the l-secant variety, of a non-degenerate projective variety X, Sl(X),

is usually defined to be the closure of the union of linear spans of all (l + 1)-uples

of independent points lying on X [15, 16]. Note however, that in a recent reference

concerned with secants of Grassmannian [17], the l-secant is defined to be the closure

of the union of linear spans of all (l)-uples of independent points, so that it is actually

what we would denote Sl−1(X).

The projective dimension of the Grassmannian G(n,m) is known to be n(m−n) and
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the projective dimension of ∧nH0 in which the G(n,m) is embedded is
(
m
n

)
− 1. The

dimension of the (l − 1)-secant variety is bounded by [16],

DimSl−1(G(n,m)) ≤Min{l · (n · (m− n) + 1)− 1,

(
m

n

)
− 1}. (2)

The (l − 1)-secant variety is said “to have the expected dimension” when the equality

holds, otherwise it is said “defective”, its defect being the difference between the upper

bound in Ineq. (2) and its actual dimension. For l = N(C,m, n), Eq. (1) implies that

this dimension cannot be less than the projective dimension of ∧nH0, so,
(
m
n

)
− 1 ≤

N(C,m, n) · (n · (m− n) + 1)− 1, hence(
m
n

)
n · (m− n) + 1

≤ N(C,m, n). (3)

Note that this new lower bound is a fortiori a lower bound for N(R,m, n). Not

surprisingly, it is not very tight for n = 2, because in this case Sl−1(G(n,m)) is almost

always defective [17]. However, it is much tighter than bm−n+2
2
c for n > 2 (see Fig. 1)

and increases with n as long as n ≤ bm
2
c, as expected. It is manifestly invariant by

duality between ∧nH0 and ∧m−nH0. For m very large compared to n, it is in the order

mn−1

n·n! so within a ratio 2
n

with respect to the order of the known upper bound mentionned

above.
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Figure 1: Comparison of the new lower bounds (empty triangles) with respect to the old ones (filled

triangles) for different values of m and n. Known exact values of N(C,m, n) are also plotted with empty

(n = 3) or filled (n < 3) circles. Different colors correspond to different n-values.

3. Conclusion

The lower bound to the length of an n-vector obtained in this work is much higher

than was anticipated [13]. It turns out that the few known values of N(C,m, n) were

deceptively low. In fact, the known upper bound for large m, was much better than

previously thought [13], as it is quite close to our new lower bound. A priori, this is not

a good news for length-based approximations in quantum chemistry, because there is no

reason why the best approximate wave function in ∧nH0 for a molecular system should

have a length less than N(C,m, n). Based on the known values of N(C,m, n), one could

have hoped that the computational cost of a length-based hierarchy of approximations

would scale linearly with m, we deduce from our new lower bound that it should rather

scale as mn−1. However, it can still be hoped that for physical reasons, only a few

terms in its expansion, Eq. (1), would contribute significantly to wave function, once

normalized by its L2-norm.
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The problem of the length of an n-vector does not seem to have attracted much

attention in the mathematical community since the 1970’s. We hope that the present

paper will revive interest in this topics and in similar mathematical problems related

to the depth of an n-vector. Progress in this field are potentially important for quan-

tum physics, in particular for quantum chemistry approximation methods, or quantum

entanglement related technologies.
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