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An Average Study of the Signalized Cell
Transmission Model

Carlos Canudas-de-Wit*

Abstract—In this paper we present an average study between
the continuous-time signalizedT -periodic Link Transmission
Model (LTM), and its averaged version. Those are macroscopic
models capturing the time-evolution of the vehicles densities
in urban traffic networks controlled by periodic traffic ligh t
of period T . In this paper, we formalize the mathematic sense
in which the solutions of the periodic signalized LTM model
are approximated by the solutions of its averaged version. In
particular, we shown that the error norm between the solutions
of the signalized and the averaged models is bounded, in both
a finite and infinite time-intervals, by constant proportional
to the the ratio, T/L, between the traffic light time-cycle T ,
and the considered road segment (link) length,L. This result
confirm the intuition that the precision of the averaged models
improves with the increase of traffic light frequencies and link
road lengths.

I. I NTRODUCTION

One of the most popular flow traffic model is the LWR-
model, proposed by Lighthill and Whitham [13] and Richards
[15] in the middle of the 50’s. The model originally derives
from the conservation law of vehicles. It is described by an
scalar hyperbolic Partial Differential Equation (PDE) in term
of macroscopic distributed variables such as the density, flow
and average speed of the vehicles.

For convenience of their use for simulations and for
control design, the LWR model can be approximated by
finite-dimensional ordinary differential/difference equations.
A popular method to do that is the Godunov scheme [11]. The
discrete version of LWR model with triangular fundamental
diagram, is then formulated as an iterated coupled map with
time and space discretized into time and space (cells) steps,
and supplemented by a special “supply-demand” update rule
to describe interactions between adjacent freeway cells as
well as shock and advection waves. This discretized version
of the LWR model, is known as the Cell Transmission Model
(CTM) [3], and has become one of the most popular macro-
scopic traffic models used for control design. A complete
treatment of stability analysis, control properties and the use
of the CTM for ramp metering can be found in [10].

The CTM naturally addresses models of highways, but
it can be also used to modeling traffic in urban networks
by including diverging and merging cell, but also signalized
intersections [4]. In case of a single cell between intersection
the CTM is then named ”Link Transmission Model (LTM)”
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Fig. 1. Density time-evolution per row of a planar square network of 40
roads connected by standard 4-ways intersections. Left Figure show the real
system (̇x = f(x, u(t))), and the right figure the average one (ẏ = f(y, ū)).
Figure from [8].

in relation to the node-link structure of urban networks
where a single link is used to describe the road between
two intersections (nodes). In these models, the traffic signal
(named hereu) could be constant (describing the turning
”average” priority of the flow), time-dependent (alternating
between 0 and 1 after a suitable number of clock ticks),
or depending on the traffic load when used as a feedback
control. In many cases, traffic signal profiles are computed
in advance and deployed based in some optimized periodic
schedule.

When u is time-dependent and periodic, this model is
named as thesignalized-LTM(S-LTM), and leads to a set
of nonlinear periodic ODEs1 of the form ẋ = f(x, u(t)),
whereu(t) = u(t+T ) ∈ {0, 1} describes the integer (binary)
control variable indicating the stop (red= 0) or the release
(green= 1) of flows at the traffic light. It is possible to use
this model for control design at expenses of an increase in
the design complexity due to the mixed integer/real nature
of the control/state variables. To simplify the complexityof
the control design, it is convenient to replace the periodic
input u(t) by its average over a period,ū ∈ [0, 1], and to use
this averaged input as the newcontinuouscontrol variable.
The control design can now be performed on the basis of the
resulting “averaged” model̇y = f(y, ū).

An averaged version of thesignalized-LTM has been
recently used for designing one-step ahead optimal control
policies for the traffic lights [8], where time-dependent traffic

1For simplicity in the presentation and for convenience of the averaged
analysis, in this note we will use the the continuous-time version of the
LTM rather than the discrete-time version. We will refer then to differential
equation, rather thandifferenceequations as originally stated in the LTM
model.



signals are then replaced by it time-average (or duty-cycle)
over a traffic light cycle. The problem has been efficiently
solved via linear programming, because the optimization
time-horizon has been limited to one step (one traffic-light
cycle), but also because the optimization variableu(t) was
replaced by his averagēu over the considered optimiza-
tion cycle. The paper present some numerical comparison
between the signalized time-dependent model versus the
averaged one, as shown in Fig.1. The comparison reports
average differences of10%, with maximum picks of20%,
see [8] for details.

This kind of averaged representation has also been used
in other models to describe the network traffic flow process
in a simplified way, so as to circumvent the inclusion of
discrete variables. An example is the ”store-and-forward”
discrete-time model [6] proposed by Gazis and Potts (1963),
and more recently used for designing LQ-optimal controllers
[1]. Other studies formulate the ”store-and-forward” discrete-
time model in a stochastic setting, where vehicle inflows and
outflows are assumed to be random [18]. The model is used
as a basis for the design of the Max-pressure control that
maximizes throughput.

It is worth to notice that the ”averaged” models allow
for highly efficient control methods to be deployed in large
scale networks by mitigating complexity of the associated
optimization problems. At the other hand, these modeling
simplifications allows only for split optimization, while cycle
time and offsets must be delivered by other control algorithms
[7]. A main reason being that averaging is invariant with
respect to offsets (delays).

In spite of their popularity and its widely spread use for
control design, the theoretical foundations and the analytic
properties of these averaged models have been disregarded.
In particular, and to the best of the the author knowledge,
theoretical questions concerning how and in which sense the
solutions of the “averaged” systemy(t), approximated the
solutions of the true systemx(t), remain unanswered to date.
This contribution provides a formal answer to this question
for the continuous-time version of the LTM.

For simplicity of exposition, we assume constant demand
and supply at the boundaries, and we first shown that the
open-loop system is globally bounded, and continuously Lip-
schitz. Those properties are used to shown that the difference
between the true and the averaged systems is bounded by
c(T )ǫ, in some finite time-interval depending ofǫ, i.e.

||x(t)− y(t)|| ≤ c(T )ǫ, 0 ≤ t ≤ TF /ǫ

whereǫ = 1/L > 0 is the inverse of the cell length, andc(T )
depends on the physical parameters of the model, including
in particular the traffic light time-periodT . The paper also
analyze other properties (equilibria, stability of the equilibria,
contractivity), which are useful to extend the result to allthe
positive time-axis. In particular, this extension is mainly due
to the contractivity property of the averaged model around
its equilibria.

ϕM

ρ
∗

ρ

Φ(ρ)

ρM

−w

v

Fig. 2. Schematic representation of the triangular piece-wise fundamental
diagram, whereϕM is the the maximum flow,ρM is the maximum density,
ρ∗ is the critical density,v is the free-flow velocity, andw is the congested
velocity.

II. PRELIMINARIES

The LWR macroscopic model is based on the vehicle
conservation’s principle, and on the assumption that the
traffic can be described by the empiric relation between the
flow, ϕ, and density,ρ, as:ϕ = Φ(ρ), where the functionΦ(·)
is called Fundamental Diagram. The constitutive assumption
of this model, motivated by experimental data, is that the
vehicles tend to travel at an equilibrium speed and that
ϕ = V (ρ)ρ, whereV (ρ) is the flow speed depending on
the density.V (ρ) varies in the range[0, v], wherev is the
maximum velocity at free-flow. As shown in Fig. 2, the
fundamental diagram can be defined, in its simplest form,
as a triangle with its maximum atϕM = Φ(ρ∗) describing
the maximum capacity of the road. The critical densityρ∗

defines the boundary between the free-flow and the congested
modes, whileρM is the maximum density that the road
can withstand. The slope,w, defines the speed at which
congestion travels upstream.

The evolution of the number of vehicles,N , within any
spatial section(0, L) is given by the following vehicles
conservation law

d
dt
N = ϕin − ϕout, N =

∫ L

0

ρ(x, t)dx (1)

whereϕin andϕout are the input (atx = L) and output (at
x = 0) flows at the boundaries of the road section of length
L. Equation (1) can be rewritten (see [13]) as a hyperbolic
equation involving only the density

∂tρ+ ∂xΦ(ρ) = ∂tρ+ ∂ρΦ · ∂xρ = 0 (2)

The macroscopic continuous density dynamics is then given
by the LWR Cauchy problem described by (2) with the initial
condition ρ(x, 0) = ρ0(x). The model has been shown to
be consistent with hydrodynamic theory [3]. Validation tests
with real data have been reported in [14].

A. Signalized Link-Transmission Model

The analysis presented in this note, can be extended to
multi-road networks and to CTM models with arbitrarily
numbers of cells. For the sake of clarity in the exposition
of the technical results, we limited this analysis to a single
link road, described by a signalized one-cell CTM, named
before as the Link Transmission Model (LTM).
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Fig. 3. Schematic description of the considered scenario for this study.

Consider the scenario shown in Fig. 3 of a single link road
of lengthL with T -periodic traffic lightu(t) = u(t + T ),
and densityρ(t). Let D0 andS0 be the boundary (external)
demand and supply, respectively. For the sake of simplicity,
assume they are constant although the presented analysis also
holds if they are considered time, or state-dependent. Also,
we do not consider the light phases as they have no effect
in the average approximation. Under those assumptions,
the continuous-time version of the Signalized LTM, can be
written as:

ρ̇(t) =
1

L
u(t) [min{D0, S(ρ)} −min{D(ρ), S0}] (3)

with,

D(ρ) = min{vρi, ϕM}, (4)

S(ρ) = min{ϕM , w(ρM − ρ)} (5)

Note that, the standard discrete-time S-LTM form can be
recovered by replacing the time-derivative,ρ̇(t), by its Euler
approximation, i.e.̇ρ(t) ≈ (ρ(k + 1)− ρ(k))/∆t, where∆t
is the time-discretization step. It is worth to recall that,as
the conservation laws like (2) generate irregular flows, they
cannot be integrated numerically using standard methods (see
[4], [12]), but efficient methods that reproduces correctlythe
propagation of the shock waves, like the Godunov scheme
[9].

B. Averaged Link-Transmission Model

In the context of this study, the averaged model is now
defined using the ”averaged” densitȳρ, and the averaged
input ū over the traffic light cycleT -period, where the
dynamics ofρ̄ is defined by:

˙̄ρ(t) =
1

L
ū [min{D0, S(ρ̄)} −min{D(ρ̄), S0}] (6)

Sinceu(t) is assumed to be periodic, and being of the form:

u(t) =

{

1 if nT < t ≤ ū(n+ 1)T
0 if ū(n+ 1)T < t ≤ (n+ 1)T

for all n ∈ Z+, and∀t ≥ 0. Then the duty cyclēu is indeed
the average of the control input, i.e.

ū =
1

T

∫ T

0

u(t)dt, ū ∈ [0, 1]

III. PROBLEM DEFINITION AND MODEL PROPERTIES

Let’s write original model(3) in a general form by letting
x = ρ be the state, andǫ = 1/L > 0 be the ”small”
parameter:

ẋ(t) = ǫu(t)g(x) = ǫf(x, u(t)) = ǫf(x, t) (7)

with g(x) = gin(x) − gout(x), wheregin(x) is the inflow,
andgout(x) is the outflow:

gin(x) = min{D0, S(x)} (8)

gout(x) = min{D(x), S0} (9)

Let average model, with y = ρ̄, be described as

ẏ(t) = ǫfav(y) (10)

with

fav(y) =
1

T

∫ T

0

f(y, t)dt

= g(y)
1

T

∫ T

0

u(t)dt

= ūg(y)

The problem is to study in which sense the averaged system
(10) approximates the original system (7). Or, in other words,
how the norm|x(t)−y(t)| can be upperbounded by a function
depending onǫ, with x(0) = y(0).

A. Model properties

The following properties holds for every possible value of
the boundary demand and supply below its maximal capacity;
|D0(t)| ≤ ϕM , |S0(t)| ≤ ϕM , and for anyu(t), ū ∈ [0, 1].

Lemma 1 (Boundednees)Let Ω = [0, ρM ] be the compact
(closed and bounded) set defining the solution space for
system(7). The setΩ is indeed an positive invariant set for
all the solutions of(7),

x(0) ∈ Ω,⇒ x(t) ∈ Ω, ∀t ≥ 0.

Proof. This property comes from the vehicle conservation
property of the CTM, and can be easily verified by noting
that: if x(0) = 0, then ẋ(t) ≥ 0, while if x(0) = ρM , then
ẋ(t) ≤ 0. This property also shown the system “open-loop”
boundedness for anyx(0) ∈ Ω.

Lemma 2 The functionsgin(x), andgout(x) are continuous
Lipschitz inΩ, i.e. There exist two Lipschitz constants,λin =
w, andλout = v, such that:

i) |gin(x1)− gin(x2)| ≤ λin|x1 − x2|, ∀x1, x2 ∈ Ω
ii) |gout(x1)− gout(x2)| ≤ λout|x1 − x2|, ∀x1, x2 ∈ Ω

Proof. The proof of this statement can be easily veri-
fied by observing that the slope of the secant line joining
(x1, gin(x1)) and(x2, gin(x2)) is always bounded above by
w, and byv for the secant line joining(x1, gout(x1)) and
(x2, gout(x2)). Note that Lemma 2 holds for every possible



value of the boundary demand and supply below the maximal
capacity.

Lemma 3 (Lipschitz continuity) As a consequence of
Lemma 2 the functionf(x, t) is continuous Lipschitz inΩ,
with the Lipschitz constantλ = w + v, i.e.

|f(x1, t)− f(x2, t)| ≤ λ|x1 − x2|, ∀x1, x2 ∈ Ω, ∀t ≥ 0.

Proof. The proof follows from the property that a linear
combination of arbitrary Lipschitz continuous functions is
Lipschitz continuous:

|f(x1, t)− f(x2, t)| = |u(t)g(x1)− u(t)g(x2)|

≤ |u(t)||g(x2)− g(x2)|

≤ |g(x1)− g(x2)|

≤ |gin(x1)− gin(x2)|+

|gout(x1)− gout(x2)|

≤ λin|x1 − x2|+ λout|x1 − x2|

= (λin + λout)|x1 − x2|

= λ|x1 − x2|

where we have used the fact that|u(t)| ≤ 1, and the previous
bounds from Lemma 2.

Lemma 4 (Equilibria) Let x(0) ∈ Ω, then system(7) has
the following equilibria:

• If D0 < S0, there exists an unique free-flow equilibrium:
x∗

f = D0

v
,

• If D0 > S0, there exists an unique congested equilib-
rium given by:x∗

c = ρM − S0

w
,

• If D0 = S0 = ΦDS , there exist an equilibrium manifold
Ωe ⊆ Ω,

Ωe =

{

x∗ :
ΦDS

v
≤ x∗ ≤ ρM −

ΦDS

w

}

.

Proof. By direct inspection of the values forx∗ satisfying:

g(x∗) = min{D0, S(x
∗)} −min{D(x∗), S0} = 0

for all considered cases.

Remark 1 Properties from Lemma 1 to Lemma 4 of the
original system(7), also hold for the average system(10).

Lemma 5 Consider the average system(10) with y(0) ∈ Ω,
and ỹ(t) = y(t)− y∗, then:

a) If D0 < S0, ∃ positive constantscf , µf , such that:

|ỹ(t)| ≤ cfe
−µf t, ∀t ≥ 0, y∗ = y∗f = D0/v,

b) If D0 > S0, ∃ positive constantscc, µc, such that:

|ỹ(t)| ≤ cce
−µct, ∀t ≥ 0, y∗ = y∗c = ρM − S0/w,

c) If D0 = S0 = ΦDS , then:

c1) |ỹ(t)| ≤ |ỹ(0)|e−µf t, ∀t ≥ 0, y∗ = y∗1 , y(0) ∈ Ω1,
c2) |ỹ(t)| ≤ |ỹ(0)|e−µct, ∀t ≥ 0, y∗ = y∗2 , y(0) ∈ Ω2,

c3) |ỹ(t)| = 0, ∀t ≥ 0, y∗ = y(0), y(0) ∈ Ωe.

with y∗1 = ΦDS/v, y∗2 = ρM − ΦDS/w.

Proof. Note first that the analysis is conducted around the
equilibrium points as specified by Lemma 4, which is also
valid for the averaged system (10). The three stability cases
and the position of the corresponding equilibria are sketched
in Fig. 4.

Casea). From Fig. 4 and equations (10), we can see that,

ẏ = ǫū

{

D0 −D(y) if y ∈ Ω1

D0 − S0 < 0 if y ∈ Ω2

from which we get

˙̃y = ǫū

{

−vỹ if y ∈ Ω1

D0 − S0 < 0 if y ∈ Ω2

If initial conditions are taking asy(0) ∈ Ω1, then ỹ(t) =
ỹ(0)e−µf (t), with µf = ǫūv. If y(0) ∈ Ω2, then ỹ(T1) =
ỹ(0)+ (D0−S0)T1 decreases linearly in time ((D0−S0) <
0), enters in the the regionΩ1 in finite-timeT1, and thereafter
converges exponentially to its equilibrium with a rate given
by µf . These two cases can be combined to get the upper
bound,

|ỹ(t)| ≤ |ỹ(T1)|e
µfT1e−µf t = cfe

−µf t, ∀t ≥ 0.

Caseb). Following similar steps we get

˙̃y = ǫū

{

D0 − S0 > 0 if y ∈ Ω1

−wỹ if y ∈ Ω2

which leads to

|ỹ(t)| ≤ |ỹ(T2)|e
µcT2e−µct = cce

−µct, ∀t ≥ 0.

with µc = ǫūw, and T2 being the time to reachΩ2 from
ỹ(0).

In the casec), the error system dynamics writes as:

˙̃y = ǫū







−vỹ if y ∈ Ω1

−wỹ if y ∈ Ω2

0 if y ∈ Ωe

For casesc1) and c2), it is easy to see that the error
system converges exponentially to the respective left and
right boundaries ofΩe with rates:µf and µc. In the case
c2), both the signalized and the averaged model have the
same trivial solutions (x(t) = y(t) = x(0) = y(0)), and
needs not be analyzed.

Aggregating all the cases in Lemma 5, we get the following
result.

Lemma 6 (Exponential stability) The average system(10)
with y(0) ∈ Ω, (D0, S0) ≤ ϕM , and ỹ(t) = y(t) − y∗, is
globally exponentially stable, i.e.

|ỹ(t)| ≤ ce−µt

wherec = max{|ỹ(0)|, cf , cc}, andµ = min{µf , µc} = µc.
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Lemma 7 (Contractivity) Consider two solutionsy1(t),
and y2(t) of the average system(10) with (y1(t0), y1(t0)) ∈
Ω, then there exists a large enough time,T3 (independent of
ǫ), and a constant0 < k < 1, such that

|y1(t)− y2(t)| ≤ k|y1(t0)− y2(t0)|, ∀t > T3 > 0.

with T3 = max{T1, T2}.

Proof. Introduceȳ = y1(t)− y2(t) = ỹ1(t) − ỹ2(t), from
Lemma 5 we can see that̄y decreases first linearly in time
up to t = T3; and then it follows anµ exponential decay, i.e:

ȳ(t) = (c(D0, S0)T3 + ȳ(t0)) e
−µ(t−T3), ∀t ≥ T3

where c(D0, S0) is a constant with sign such that
c(D0, S0)t+ ȳ(t0) ≤ ȳ(t0). Then the following upperbound
applies:

|ȳ(t)| ≤ |ȳ(t0)|e
−µ(t−T3)

Therefore,eµ(t−T3) < 1, ∀t > T3, and the contractivity
property holds.

Remark 2 The contractivity property of the averaged model
is an essential property to show the time-horizon validity of
the error upperbound can be extended to the infinite.

IV. M AIN RESULT

Let introduce the error system dynamics,e(t) = x(t) −
y(t), given by:

ė(t) = ǫ (f(x, t)− fav(y)) , e(0) = 0. (11)

The main results below states that given some time-interval
0 ≤ t ≤ TF /ǫ, the error variable is bounded by the product
of ǫ and a constant depending on the periodT .

Theorem 1 (Finite-time horizon) For all ǫ > 0, and any
arbitrarily TF > 0, there exist a constantc(T ) such that

|x(t)− y(t)| ≤ c(T )ǫ

for 0 ≤ t ≤ TF /ǫ.

Before proceeding the the proof, note that due to the
boundedness property of Lemma 1, Theorem 1 holds for any
ǫ, and anyTF . This is in opposition to the standard first-
order averaging results whereTF may be chosen arbitrarily,

but thenǫ andΩ are chosen in response. Here the system
solutions are bounded in the setΩ independently to the value
of ǫ, andTF .

Proof. The proof follows general ideas for analyzing first-
order averaging systems from [16] by establishing suitable
bounds on the error system (11) in the time interval of interest
0 ≤ t ≤ TF/ǫ.

Let first rewrite the error system (11) as:

ė(t) = ǫ [f(x, t)− f(y, t)] + ǫ [f(y, t)− fav(y)]

with e(0) = 0. From this equation we have that

e(t) = ǫ

∫ t

0

[f(x, τ) − f(y, τ)] dτ +

ǫ

∫ t

0

[f(y, τ)− fav(y)] dτ (12)

The next step is to find upperbounds for each of the two
integral terms. For the first term in the RHS of (12), we can
use the Lipsichtz property in Lemma 3 to get the following
upperbound:

ǫ

∫ t

0

|f(x, τ) − f(y, τ)| dτ ≤ ǫλ

∫ t

0

|e(τ)|dτ (13)

Derivation of an upperbound for the second term in the RHS
of (12) is a bit more involved, but it can be obtained with the
help of the Besjes’s Lemma [2], as indicated in [16]. Before
proceed, let introduce some useful properties on the integrant
of the second term,

Lemma 1 Let f̃(y, τ) = f(y, τ) − fav(y), the f̃(y, τ) has
the following properties:

i) f̃(y, τ) is periodic inτ , with a periodT ,
ii) f̃(y, τ) has zero mean for fixedy,
iii) f̃(y, τ) is bounded for allt, and for all y ∈ Ω,
iv) f̃(y, τ) is continuous Lipschitz inΩ, and has the Lips-

chitz constant2λ.

i) follows directly from the periodicity off(y, τ). ii) is also
easy to derive by noticing that

∫ T

0

f̃(y, τ) = g(y)

∫ T

0

(u(τ)− ū)dτ = 0



iii) follows from Lemma 1, andiv) follows from Lemma 3,
i.e.

|f̃(y1, τ)− f̃(y2, τ)| ≤ |f(y1, τ)− f(y2, τ)| +

|fav(y1)− fav(y2)|

≤ λ|y1 − y2|+ λ|y1 − y2|

= 2λ|y1 − y2|

Now for the second term and following Besjes’s Lemma
[2], we can partition the integral in the interval[0, t],
in m intervals of duration T , and one fractional;
[0, T ], [T, 2T ], . . . [(m− 1)T,mT ], [mT, t],

ǫ

∣

∣

∣

∣

∫ t

0

f̃(y, τ)dτ

∣

∣

∣

∣

≤ ǫ

m
∑

i=1

∣

∣

∣

∣

∣

∫ iT

(i−1)T

f̃(y, τ)dτ

∣

∣

∣

∣

∣

+

+ ǫ

∣

∣

∣

∣

∫ t

mT

f̃(y, τ)dτ

∣

∣

∣

∣

For the[0,mT ]-time interval, we have
∣

∣

∣

∣

∣

∫ iT

(i−1)T

f̃(y, τ)dτ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ iT

(i−1)T

f̃(y, τ)dτ −

∫ iT

(i−1)T

f̃(y((i − 1)T ), τ)dτ

∣

∣

∣

∣

∣

≤

∫ iT

(i−1)T

∣

∣

∣
(f̃(y, τ)− f̃(y((i− 1)T ), τ)

∣

∣

∣
dτ

≤ 2λ

∫ iT

(i−1)T

|y(τ) − y((i− 1)T )|dτ

where the equality holds becausẽf(y((i − 1)T ), τ) has
zero mean for fixedy (Property ii in Lemma 1), and the
upperbound results from the continuous Liptchitz property
of f̃ (propertyiv in Lemma 1).

Using (10), the integrant of the last inequality can be
rewritten as

y(τ)−y((i−1)T ) =

∫ τ

(i−1)T

ẏ(s)ds = ǫū

∫ τ

(i−1)T

g(y(s))ds

∀τ in the interval(i − 1)T ≤ τ ≤ iT . Now, since|g(y)| ≤
ϕM , ∀y, and|τ − (i− 1)T | ≤ T the following bound holds;

|y(τ) − y((i− 1)T )| ≤ ǫū

∫ τ

(i−1)T

|g(y(s))|ds

≤ ǫū|τ − (i − 1)T | ·max{|g(y)|}

≤ ǫūTϕM

= ǫTϕM (14)

from which we get
∣

∣

∣

∣

∣

∫ iT

(i−1)T

f̃(y, τ)dτ

∣

∣

∣

∣

∣

≤ 2λ

∫ iT

(i−1)T

|y(τ) − y((i− 1)T )|dτ

≤ 2λǫT 2ϕM (15)

For the[mT, t] interval, and from the boundedness property
in Lemma 1 (i.e,|f̃(y)| ≤ 2ϕM ), we have

∣

∣

∣

∣

∫ t

mT

f̃(y, τ)dτ

∣

∣

∣

∣

≤ 2ϕMT (16)

Using (15) and (16), we have that,

ǫ

∣

∣

∣

∣

∫ t

0

f̃(y, τ)dτ

∣

∣

∣

∣

≤ 2λǫ2mT 2ϕM + ǫ2ϕMT (17)

≤ 2ǫλTFTϕM + 2ǫϕMT (18)

≤ ǫ(c1(T ) + c2(T )) = ǫc3(T ) (19)

with c1(T ) = 2λTFTϕM , c2(T ) = 2ϕMT , and c3(T ) =
c1(T )+c2(T ). The second inequality comes from the fact that
the analysis is performed in the time interval0 ≤ t ≤ TF /ǫ,
and hence,mT ≤ t ≤ TF /ǫ.

Finally using (13) and (19) in (12), we get:

|e(t)| ≤ ǫλ

∫ t

0

|e(τ)|dτ + ǫc3(T )

and by the use of the Gronwall-Bellman lemma, we get

|e(t)| ≤ ǫc3(T )e
ǫλt ≤ ǫc3(T )e

λTF = ǫc(T )

which conclude the proof, withc(T ) = c3(T )e
λTF .

Theorem 1 holds for a finite-time horizon. Extension of
such a result to infinite time horizon will typically require
that the average system (10) be contractive as already demon-
strated in Lemma 5.

Theorem 2 (Infinite-time horizon) For all ǫ > 0, there
exist a constantC(T ) such that

|x(t) − y(t)| ≤ C(T )ǫ, ∀t ≥ 0.

Proof. The proof is based on the time-partition trick
proposed by [17] to extend the error grown to the interval
[0,∞). For other similar analysis see Theorem 5.5.1 in, [16].

Let split the positive time axist, in time intervals equally
spaced by large enough lengthTI/ǫ, such that both the
contractivity property (Lemma 7) and the finite time bound-
edness (Theorem 1) hold for each considered time interval
Im = [mTI

ǫ
, (m+1)TI

ǫ
].

In addition to the exact solutionx(t), and the averaged
solution y(t), let consider the solution,z(t), of the ”reset-
averaged”(or switched) system, with initial conditions reset
at the beginning of each intervalIm, such that they coincide
with the real solution, see Fig. 5,

ż(t) = ǫfav(z), z(
mTI

ǫ
) = x(

mTI

ǫ
), ∀m ∈ N

In virtue of Theorem 1, we have

|x(t) − z(t)| ≤ c(T )ǫ = δ(ǫ), ∀t ∈ Im

From the triangle inequality, we get∀t ∈ Im,

|x(t) − y(t)| ≤ |x(t)− z(t)|+ |y(t)− z(t)|

≤ δ(ǫ) + |y(t)− z(t)| (20)



mTI

ǫ

Time

z(t)

(m+ 1)TI

ǫ
(m− 1)TI

ǫ

x(t)

y(t)

Fig. 5. Schematization of the 3 solutions: the realx(t), the averagedy(t),
and the reset-averagedz(t) under:x(0) = y(0), andz(mTI

ǫ
) = x(mTI

ǫ
).

From Lemma 7, and considering large enough intervalsIm,
the term|y(t)− z(t)| can easily be shown to be contractive
at the boundaries ofIm, i.e.

|ym+1 − zm+1| ≤ k|ym − zm|, 0 < k < 1

where for simplicity of notation we usezm = z(mTI

ǫ
), ym =

y(mTI

ǫ
).

Evaluating inequality (20) att = (m+1)TI

ǫ
, we get

|xm+1 − ym+1| ≤ δ(ǫ) + |ym+1 − zm+1|

≤ δ(ǫ) + k|ym − zm|

≤ δ(ǫ) + k|ym − xm|

The second line is obtained using the contractivity property,
and the last line comes from the fact thatzm = xm.

By recursion, and using the limit of a power law, we get

|xm+1 − ym+1| ≤ δ(ǫ)
m
∑

j=0

kj + km|y0 − x0|

≤ δ(ǫ)
1

1 − k
+ km|y0 − x0|

Finally, by taking the limitm → ∞,

|xm+1 − ym+1| ≤ δ(ǫ)
1

1− k

the result is proved, withC(T ) = c(T ) 1
1−k

.

V. CONCLUSIONS

In this paper we have presented an average study between
the signalizedT -periodic Link Transmission Model (LTM),
and its averaged version. We have formalized the mathematic
sense in which the solutions of the periodic signalized LTM
model approximate the solutions of its averaged version. We
have shown that the error norm between the solutions of the
signalized and the averaged models can be bounded, in both
finite and infinite time-intervals, by a constant proportional
to the ratio between the light cycleT and the road segment
lengthL.

For the sake of simplicity, and the clarity of the anal-
ysis and exposition of the main results, the analysis has
been carried out under some simplified hypothesis. Those

assumptions may be relaxed at the price of a more involved
analysis. For instance, it may be possible to extend the
result to: different control inputs at each intersection, time-
varying boundary demands and supply, and networks with
multiple cells. However, we feel that the main formal features
confirming the natural intuition that the precision of the
averaged models improves with small traffic light periods
and large link road lengths, are captured by the proposed
analysis even under some simplified hypothesis.
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