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An Average Study of the Signalized Cell
Transmission Model

Carlos Canudas-de-Wit*

Abstract—In this paper we present an average study between density density b
the continuous-time signalizedT-periodic Link Transmission ,T'_

Model (LTM), and its averaged version. Those are macroscopi
models capturing the time-evolution of the vehicles densis T —

in urban traffic networks controlled by periodic traffic ligh t g iy 1 re———
of period T'. In this paper, we formalize the mathematic sense = = ::::::::::::.__..:::
in which the solutions of the periodic signalized LTM model g . | pp—

are approximated by the solutions of its averaged version.n ) :=___
particular, we shown that the error norm between the solutims

of the signalized and the averaged models is bounded, in both
a finite and infinite time-intervals, by constant proportional e e s
to the the ratio, T'/L, between the traffic light time-cycle T,

and _the Con_Sid?r_ed road Segmer_]t_("nk) lengthL. This result Fig. 1. Density time-evolution per row of a planar squaremoek of 40

confirm the intuition that the precision of the averaged modés  oads connected by standard 4-ways intersections. Lefr&ighow the real
improves with the increase of traffic light frequencies and ink  system ¢ = f(x, u(t))), and the right figure the average one= f(y, @)).

road lengths. Figure from [8].
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I. INTRODUCTION

. . in relation to the node-link structure of urban networks
One of the most popular flow traffic model is the LWR-

. . . . where a single link is used to describe the road between
model, proposed by Lighthill and Whitham [13] and RIChardR/vo intersections (nodes). In these models, the trafficadign

[15] in the middle of the 50’s. The model originally derive named hereu) could be constant (describing the turning
from the conservation law of vehicles. It is described by a verage” priority of the flow), time-dependent (altermati
scalar hyperb_olic_Pa_rtiaI Differ_ential Equation (PDE) dn_rm between 0 and 1 after a suitable number of clock ticks),
of macroscopic distributed variables such as the densaty, fl |- depending on the traffic load when used as a feedback

and average speed of the vehicles. control. In many cases, traffic signal profiles are computed

For conv_enience of their use for simulations_ and f% advance and deployed based in some optimized periodic
control design, the LWR model can be approximated hy.,oqle

finite-dimensional ordinary differential/difference edions. When u is time-dependent and periodic, this model is

A popular method to do that is the Godunov scheme [11]. T'ﬁ%med as theignalized-LTM(S-LTM), and leads to a set
discrete version of LWR model with triangular fundamentals o iinear periodic ODEsof the form & = f(x, u(t))

diagram, is then formulated as an iterated coupled map W{m]ereu(t) — u(t+T) € {0, 1} describes the integer (binary)

time and space discretized into time and space (cells) Step$q| variable indicating the stop (red 0) or the release
and supplemented by a special “supply-demand” update ryleeon_ 1) of flows at the traffic light. It is possible to use

to describe interactions between adjacent freeway ceIIst & model for control design at expenses of an increase in

well as shock and advection waves. This discretized versigy, design complexity due to the mixed integer/real nature
of the LWR model, is known as the Cell Transmission Mod%f the control/state variables. To simplify the complexity
(CTM) [3], and has become one of the most popular macrye onirol design, it is convenient to replace the periodic

scopic traffic mo_d.els used.for control desigp. A Compleﬁ?\putu(t) by its average over a period,e [0, 1], and to use
treatment of stability analysis, control properties anel tise s ayeraged input as the nasentinuouscontrol variable.

of the CTM for ramp metering can be found in.[10]. The control design can now be performed on the basis of the
The CTM naturally addresses models of highways, bPésuIting “averaged” mode) = f(y, u).

it can be also used to modeling traffic in urban networks 5, averaged version of thsignalized-LTM has been

by including diverging and merging cell, but also signalize,ecently used for designing one-step ahead optimal control

intersectiqns [4]. In case of_a single ce_II b_etween intefsac policies for the traffic lights [8], where time-dependesiic
the CTM is then named "Link Transmission Model (LTM)”

1For simplicity in the presentation and for convenience @ #veraged
This work has been partly funded by the EU FP7 project SPEED&nalysis, in this note we will use the the continuous-timesiem of the
(619435). LTM rather than the discrete-time version. We will referritte differential
*Director of research at the CNRS, GIPSA-Lab. NeCS teamn@rke, equation, rather thadifferenceequations as originally stated in the LTM
France. carlos.canudas-de-wit(at)gipsa-lab.fr model.



signals are then replaced by it time-average (or duty-g3ycle
over a traffic light cycle. The problem has been efficiently
solved via linear programming, because the optimization
time-horizon has been limited to one step (one traffic-light
cycle), but also because the optimization variat(e) was
replaced by his average over the considered optimiza-
tion cycle. The paper present some numerical comparison
between the signalized time-dependent model versus the
averaged one, as shown in Fig.l. The Comparison repdji% 2. Schematic _representatioq of the triangglar pieisxgvfundamen‘tal
. . . . iagram, wherep is the the maximum flowp,, is the maximum density,

average differences af0%, with maximum picks 0f20%, ,* is the critical densityy is the free-flow velocity, andv is the congested
see [8] for detalils. velocity.

This kind of averaged representation has also been used
in other models to describe the network traffic flow process
in a simplified way, so as to circumvent the inclusion of
discrete variables. An example is the "store-and-forward” The LWR macroscopic model is based on the vehicle
discrete-time model [6] proposed by Gazis and Potts (1968pnservation’s principle, and on the assumption that the
and more recently used for designing LQ-optimal contrsllefraffic can be described by the empiric relation between the
[1]. Other studies formulate the "store-and-forward” dete-  flow, ¢, and densityp, as:¢ = @(p), where the functiom(-)
time model in a stochastic setting, where vehicle inflows ar@l called Fundamental Diagram. The constitutive assumptio
outflows are assumed to be random [18]. The model is usefdthis model, motivated by experimental data, is that the
as a basis for the design of the Max-pressure control th4ghicles tend to travel at an equilibrium speed and that
maximizes throughput. © = V(p)p, whereV (p) is the flow speed depending on

It is worth to notice that the “averaged” models allowine density.V(p) varies in the rangg0, v], wherev is the
for highly efficient control methods to be deployed in largghaximum velocity at free-flow. As shown in Fig. 2, the
scale networks by mitigating complexity of the associatfgndamental diagram can be defined, in its simplest form,
optimization problems. At the other hand, these modeli§ @ triangle with its maximum aty; = ®(p*) describing
simplifications allows only for split optimization, whilg/cle  the maximum capacity of the road. The critical density
time and offsets must be delivered by other control algorith defines the boundary between the free-flow and the congested
[7]. A main reason being that averaging is invariant witfnodes, whilep,, is the maximum density that the road
respect to offsets (delays). can withstand. The slopeay, defines the speed at which

In spite of their popularity and its widely spread use fofOngestion travels upstream. _ o
control design, the theoretical foundations and the aitalyt 1he evolution of the number of vehicles], within any
properties of these averaged models have been disregar§@@tial section(0, L) is given by the following vehicles
In particular, and to the best of the the author knowledggonservation law
theoretical questions concerning how and in which sense the d L
solutions of the “averaged” systep(t), approximated the &N = Pin — Pout, N :/O p(z,t)de 1)
solutions of the true system1(t), remain unanswered to date.

This contribution provides a formal answer to this questiowhere‘pi" and o, are the |.nput (at: = L) and putput (at
for the continuous-time version of the LTM. x = 0) flows at the boundaries of the road section of length

For simplicity of exposition, we assume constant demar%j Eq_uatl_on (1). can be rewntten_ (see [13]) as a hyperbolic
uation involving only the density

and supply at the boundaries, and we first shown that {Hid
open-loop system is globally bounded, and continuously Lip Orp+ 0:P(p) = Op+ 0,® - Opp =0 2

schitz. Those properties are used to shown that the differen . . . o .
TW macroscopic continuous density dynamics is then given

between the true and the averaged systems is bounded b ) g
¢(T)e, in some finite time-interval depending efi.e. by th.e. LWR Cauchy problem described by (2) with the initial
condition p(x,0) = p°(x). The model has been shown to
l|x(t) —y@)]| < e(T)e, 0<t<Tr/e be consistent with hydrodynamic theory [3]. Validationtses
with real data have been reported in [14].

Il. PRELIMINARIES

wheree = 1/L > 0 is the inverse of the cell length, ardl") . ) ) o

depends on the physical parameters of the model, includiflg Signalized Link-Transmission Model

in particular the traffic light time-period’. The paper also The analysis presented in this note, can be extended to
analyze other properties (equilibria, stability of the #ijtia, multi-road networks and to CTM models with arbitrarily
contractivity), which are useful to extend the result toth# numbers of cells. For the sake of clarity in the exposition
positive time-axis. In particular, this extension is mgidue of the technical results, we limited this analysis to a s@ngl
to the contractivity property of the averaged model arourithk road, described by a signalized one-cell CTM, named
its equilibria. before as the Link Transmission Model (LTM).



IIl. PROBLEM DEFINITION AND MODEL PROPERTIES

u(t)
m Let's write original model(3) in a general form by letting
e x = p be the state, and = 1/L > 0 be the "small’

~
~

=

o0

parameter:
Dy | | ’ 5 #(1) = cult)g(a) = ef(w.u(®) = ef(x,1)  (7)
< I > with g(2) = gin(z) — gout(x), Whereg;,(z) is the inflow,
and go.:(z) is the outflow:
Fig. 3. Schematic description of the considered scenaridhie study. .
gin(x) = min{Dy, S(z)} (8)
Jout(z) = min{D(x),So} ©)

Consider the scenario shown in Fig. 3 of a single link road ) )
of length L with T-periodic traffic lightu(t) = u(t + T), Letaverage modelwith y = p, be described as
and densityp(t). Let Dy and .S, be the boundary (external) 9(t) = efan(y) (10)
demand and supply, respectively. For the sake of simplicity '
assume they are constant although the presented anabwis with

holds if they are considered time, or state-dependent.,Also 1 [T
we do not consider the light phases as they have no effect fa(y) = T/ f(y, t)dt
in the average approximation. Under those assumptions, 0 -
thg continuous-time version of the Signalized LTM, can be = g(y)%/ w(t)dt
written as: 0
1 = ug(y)
)(t) = —wu(t) [min{Dy, S —min{D(p), So}] (3
p(t) Lu( ) [min{Do, S(p)} — min{D(p), So}] (3) The problem is to study in which sense the averaged system
with, (10) approximates the original system (7). Or, in other sord
how the normjz(¢t)—y(¢)| can be upperbounded by a function
D(p) = min{vp;, on}, (4) depending or, with z(0) = y(0).
S(p) = min{pnr, wlpy —p)} ®) A Model properties

Note that, the standard discrete-time S-LTM form can be The following properties holds for every possible value of
recovered by replacing the time-derivatiyét), by its Euler the boundary demand and supply below its maximal capacity;
approximation, i.ep(t) = (p(k + 1) — p(k))/At, whereAt | Do(t)| < oun, |So(t)] < wnr, and for anyu(t), w € [0, 1].

is the time-discretization step. It is worth to recall thas,

the conservation laws like (2) generate irregular flowsy thé. emma 1 (Boundednees)Let 2 = [0, pys] be the compact
cannot be integrated numerically using standard methegs (¢closed and bounded) set defining the solution space for
[4], [12]), but efficient methods that reproduces corretily  system(7). The sef) is indeed an positive invariant set for
propagation of the shock waves, like the Godunov schemak the solutions of(7),

[9].

B. Averaged Link-Transmission Model

z(0) € Q,= x(t) € Q,Vt > 0.

Proof. This property comes from the vehicle conservation

In the context of this study, the averaged model is noptoperty of the CTM, and can be easily verified by noting
defined using the "averaged” density and the averaged that: if z(0) = 0, theni(t) > 0, while if 2(0) = pas, then
input u over the traffic light cycleT-period, where the ;(¢) < 0. This property also shown the system “open-loop”
dynamics ofp is defined by: boundedness for any(0) € Q.

-~ 1 — . — . —
pt) = T [min{ Do, S(p)} — min{D(p), So}]  (6) Lemma 2 The functiong);,(z), andg,..(z) are continuous

) . o . Lipschitz in(2, i.e. There exist two Lipschitz constamtg, =
Sinceu(t) is assumed to be periodic, and being of the form; " | . = v, such that:

ult) = 1 if nT <t<u(n+1)T i) |gin(21) = gin(22)| < Nin|21 — 22|, V1,20 € Q
10 if an+)T<t<(n+1)T 1) |gout (1) — out(z2)| < Aout|r1 — 22|, V1,22 €Q
for all n € ZT, andVt > 0. Then the duty cycle: is indeed Proof. The proof of this statement can be easily veri-
the average of the control input, i.e. fied by observing that the slope of the secant line joining
. (1, gin(z1)) and (z2, gin(x2)) is always bounded above by
B 1 B . L
0= _/ u(t)dt, welo,1] w, and byv for the secant line joinindx1, gou:(z1)) and
T Jy (2, gout(x2)). Note that Lemma 2 holds for every possible



value of the boundary demand and supply below the maximal ¢3) |g(t)] =0,vt >0, y* =y(0), y(0) € Q..
capacity. with yi = ®ps /v, y3 = pu — Pps/w.

Lemma 3 (Lipschitz continuity) As a consequence of Proof. Note first that the analysis is conducted around the
Lemma 2 the functiorf(z,t) is continuous Lipschitz if2, —equilibrium points as specified by Lemma 4, which is also
with the Lipschitz constant = w + v, i.e. valid for the averaged system (10). The three stability €ase
and the position of the corresponding equilibria are skexich
|f($1,t)—f($2,t)| S)\l,@l —l'2|, Vl‘l,xg EQ,VtZO. in Flg 4.

Proof. The proof follows from the property that a linear C@sea). From Fig. 4 and equations (10), we can see that,

combination of arbitrary Lipschitz continuous functiorss i i _ [ Do — D(y) if ye
Lipschitz continuous: y= 6“{ Do— Sy <0 if ye
[f(z1,t) — fza,t)| = |u(t)g(z1) — u(t)g(z2)] from which we get
< Ju(®)llg(@z) — g(z2)] P 3y if ye
< lga1) — g(a2)| Y7 Do= S0 <0 if ye
< |gin(@1) = gin(z2)] + If initial conditions are taking ag/(0) € Qi, thenj(t) =
|9out (1) = Gout (2)] §(0)e O with iy = eaw. If y(0) € Qq, then§(Ty) =

Ainl®1 — 22| + Aowt|z1 — T2 7(0) + (Do — So) T} decreases linearly in timéDg — Sp) <

. 0), enters in the the regidn; in finite-time 77, and thereafter

- (Azn + )\out)|x1 - :E2| . . ceL . .
converges exponentially to its equilibrium with a rate give

= Az — a2 by p¢. These two cases can be combined to get the upper

where we have used the fact thatt)| < 1, and the previous bound,

bounds from Lemma 2. 5(1)] < |5(T1) et Tre=Hrt = cpe=tst Wt > 0.

Lemma 4 (Equilibria) Let z(0) € Q, then systen{7) has Caseb). Following similar steps we get

the following equilibria: . - o i Do—So>0 if ye
. g*DB EOSO' there exists an unique free-flow equilibrium: y= —wj if ye
f = o ;
o If Dy > Sy, there exists an unique congested equilip¥hich leads to
rium given by:z} = py — 50, SOV < (T eleT2 et — ¢ g=het gt > ()
e If Dy =Sy = ®pg, there exist an equilibrium manifold O] < [5(T2)le ¢ cef e
Q. CQ, with p. = euw, and T, being the time to reackl, from
P P 4(0)
Qe = {w* : :S <zt <pym— %S} . In the case), the error system dynamics writes as:
Proof. By direct inspection of the values far* satisfying: N _ —“?{ Z:f ye
g=cu{ —wy if ye€ o
g(z™) = min{ Dy, S(z*)} — min{D(x*), So} =0 0 if yeQ.
for all considered cases. For casescl) and ¢2), it is easy to see that the error

system converges exponentially to the respective left and
Remark 1 Properties from Lemma 1 to Lemma 4 of theight boundaries of2. with rates:us and p.. In the case
original system(7), also hold for the average systeg(h0). c2), both the signalized and the averaged model have the
same trivial solutionsa(t) = y(¢t) = «(0) = y(0)), and
Lemma 5 Consider the average systgt0) with y(0) € 2, needs not be analyzed.
and g(t) = y(t) — y*, then: Aggregating all the cases in Lemma 5, we get the following
a) If Dy < Sy, 3 positive constantsy, 1.f, such that: result.

~ — t x ok
[gO)| < cpe™ N V=0, y" =yp = Do/v, Lemma 6 (Exponential stability) The average syste(i0)
b) If Dy > So, 3 positive constants,, /.., such that: with (0) € Q, (Do, So) < ¢m, and g(t) = y(t) — y*, is
globally exponentially stable, i.e.
[9(t)] < cce™E Wt >0, y* =yl = pa — So/w,
C) If Dy =S8y =®pg, then:
ety [5(0)] < [B(O)e ", > 0,y =y, y(0) €y, Wheree = max{|G(O)], s, cch, andu = min{py, ic} = e
2) [g()] < [g(0)]e™#<", vt > 0,y* = y3, y(0) € o,

|G(t)] < ce™
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Fig. 4. Equilibria points and stability profiles fo&) So > Do, b) Do > Sp, andc) Do = Sp = Pps.

Lemma 7 (Contractivity) Consider two solutionsy;(¢), but thene and ) are chosen in response. Here the system
andy.(t) of the average systefd0) with (y1(t0),y1(t0)) € solutions are bounded in the $etindependently to the value
Q, then there exists a large enough ting, (independent of of ¢, andTr.
€), and a constan® < k < 1, such that Proof. The proof follows general ideas for analyzing first-
order averaging systems from [16] by establishing suitable
() — 12 (D)] < Klyi(to) — 1a(to)l, ¥t >T5 > 0. bounds on tr?e grroyr system (11)[in t]he)tlime interval ?)f irgere
with T3 = Inax{Tl, TQ} 0<t< TF/E.

Let first rewrite the error system (11) as:
Proof. Introducey = y1(t) — y2(t) = §1(¢) — g2(¢), from

Lemma 5 we can see thgtdecreases first linearly in time  ¢é(t) = e[f(z,t) — f(y,t)] +€[f(y,t) — fau(¥)]
up tot = T3; and then it follows an: exponential decay, i.e:

with e(0) = 0. From this equation we have that
y(t) = (c(Do, So)Ts + glto)) e =) Wt > Ty

t
where ¢(Do,S,) is a constant with sign such that e(t) = 6/ [f(z,7) = fy,7)]dT +
¢(Dy, So)t + 5(to) < 7(to). Then the following upperbound Ot
applies: e [ U~ fatw))dr (12)
5(t)] < |5(to)|e =) 0

Therefore,e*(t=73) < 1,¥¢t > Tj, and the contractivity _The next step is to finq upperbpunds for each of the two
integral terms. For the first term in the RHS of (12), we can

property holds. o . )
use the Lipsichtz property in Lemma 3 to get the following

Remark 2 The contractivity property of the averaged modéfPPerbound:
is an essential property to show the time-horizon validity o t t
the error upperbound can be extended to the infinite. 6/ |f(z,7) = f(y, 7)|dr < 6/\/ le(r)|dr (13)
0 0
IV. " MAIN RESULT Derivation of an upperbound for the second term in the RHS
Let introduce the error system dynamiest) = x(t) — of (12) is a bit more involved, but it can be obtained with the
y(t), given by: help of the Besjes’s Lemma [2], as indicated in [16]. Before
) roceed, let introduce some useful properties on the iategr
ét) = e (f(,t) = fauly)), e =0. @1 S o, Prop ?
The main results below states that given some time-interval
0 <t < Tr/e, the error variable is bounded by the produqtemma 1 Let fy,7) = f(y,7) = fau(y), the f(y,7) has
of e and a constant depending on the period the following properties:
Theorem 1 (Finite-time horizon) For all ¢ > 0, and any #) f(y,7) Is periodic in7, with & periodT,

. . ii) f(y,7) has zero mean for fixeg,
arbitrarily Tr > 0, there exist a constantT") such that iii) f(y.) is bounded for alt, and for all y € ©,
) fly

f(y,7) is continuous Lipschitz if2, and has the Lips-
chitz constan\.

lz(t) —y(t)| < e(T)e iv

for0 <t <Tp/e.

Before proceeding the the proof, note that due to tﬁé follows dllrectly f“’”.‘ Fhe periodicity off (y, 7). i) is also
e?/sy to derive by noticing that

boundedness property of Lemma 1, Theorem 1 holds for an
¢, and anyTr. This is in opposition to the standard first- T _ T -
order averaging results whetg- may be chosen arbitrarily, /0 fly.7) = g(y)/o (u(r) —u)dr =0



1i1) follows from Lemma 1, andv) follows from Lemma 3, For the[mT,t] interval, and from the boundedness property

ie. in Lemma 1 (i.e,|f(y)| < 2¢u), we have
~ ~ t
Fnm) = )l < 1fwm) = Flye, )] + ‘ fyr)dr| < 20mT (16)
|fa'u(y1) _fav(y2)| mT
< Ayt — o] + Ay1 — el Using (15) and (16), we have that,
J— _ t ~
= 2y — e € fly,nydr| < 2XEmT?op + 2o T (17)
. . 0
Now for the secqqd term gnd folloyvmg Be_SJess Lemma < 2eNTeTons + 2eonT (18)
[2], we can partition the integral in the intervdd, ], < T ) — ) (19
in m intervals of duration T, and one fractional; < elea(T) +ex(T)) = ecs(T) (19)
[07 T]a [Ta 2T]7 R [(m - 1)T7 mT]v [mTa t]! with C1 (T) g 2)\TFT(p1\,{, CQ(T) g 2(pMT, and Cg(T) g
. m | T c1(T)+c2(T). The second inequality comes from the fact that
¢ 7 T)dr| < e g 7)dr| + the analysis is performed in the time inter@eK ¢ < Tr /e,
/o fw.7) ; /(i_l)cp fw.7) and hencemT <t < Tr/e.

Finally using (13) and (19) in (12), we get:
+ €

/T: ) fly,m)dr

For the[0, mT]-time interval, we have

/( N fly,m)dr

i—1)T

t
le(t)] < e)\/ le(7)|dT + ecs3(T)
0
and by the use of the Gronwall-Bellman lemma, we get

/ ) fly,m)dr — le(t)] < ecs(T)e™ < ecs(T)eM™ = ec(T)
Gi—1)T

which conclude the proof, with(T") = c3(T)e F.

Theorem 1 holds for a finite-time horizon. Extension of
such a result to infinite time horizon will typically require
that the average system (10) be contractive as already demon

T
= /( ‘(f(va) — fly((i— 1)T)77)‘ dr  strated in Lemma 5.

T B
/( (i — )T), 7)dr

i—1)T

i—1)T
T
< 92) ly(r) — y((i — 1)T)|dr Theorem 2 (Infinite-time horizon) For all ¢ > 0, there
B (i—1)T exist a constanC(T') such that
where the equality holds becaus&y((i — 1)T),7) has lz(t) —y()] < C(T)e, VYt =>0.

zero mean for fixedy (Propertyii in Lemma 1), and the
upperbound results from the continuous Liptchitz propert
of f (propertyiv in Lemma 1).

Using (10), the integrant of the last inequality can b
rewritten as

(r) - (=11 = |

(i—1)T

Proof. The proof is based on the time-partition trick
roposed by [17] to extend the error grown to the interval
g), o0). For other similar analysis see Theorem 5.5.1 in, [16].

Let split the positive time axig, in time intervals equally
spaced by large enough lengffy /e, such that both the
T J(s)ds = €@ /T contractivity property (Lemma 7) and the finite time bound-

(

9(y(s))ds edness (Theorem 1) hold for each considered time interval
I = [m—TI (m+1)TI]

V7 in the interval(i — 1)T" < 7 < 4T Now, sincelg(y)| < In addition to the exact solution(t), and the averaged
¢m,Vy, and|T — (i — 1)T'| < T the following bound holds; solutiony(t), let consider the solutior;(t), of the "reset-
averaged”(or switched) system, with initial conditions reset

i—1)T

ly(r) —y((i — )T)| < Eg/ lg(y(s))|ds at the beginning of each interval,, such that they coincide
(i-1)T with the real solution, see Fig. 5,
< eulr — (i — )T| - max{|g(y)|}
. mT) mT)
< ailou A1) = efanl2), 2(—7) =a(—),Ym eN
= Ty (14) In virtue of Theorem 1, we have
from which we get lz(t) — 2(t)| < c(T)e =68(e), Vtel,
/iT ~ iT From the triangle inequality, we g&t € I,,,
Fonar < 2 o) -yl - nDlar
(i-D)T (i-D)T l2(t) —y()] < |2@) — =)+ [y(t) — 2(2)]
< TPy (15) < 6(e) + ly(t) — 2(1)] (20)



assumptions may be relaxed at the price of a more involved
analysis. For instance, it may be possible to extend the
result to: different control inputs at each intersectiomet
varying boundary demands and supply, and networks with
multiple cells. However, we feel that the main formal featur
confirming the natural intuition that the precision of the
averaged models improves with small traffic light periods
and large link road lengths, are captured by the proposed

Time
T
€

(m—i‘-l)

Fig. 5. Schematization of the 3 solutions: the reél), the averaged(t),

1
and the reset-averagedt) under:z(0) = y(0), andz(mTTI) = m(mTTI). g

From Lemma 7, and considering large enough interygls [2]
the term|y(t) — z(t)| can easily be shown to be contractives
at the boundaries of,,, i.e.

(4
(5]
(6]

|ym+1 - Zm+1| < k|ym - Zm|v 0<k<l1

where for simplicity of notation we usg,, = z(mTTf), Ym
y(=).

Evaluating inequality (20) at = ("7t

, We get
[7]

[Tt = Ymy1] < 6(€) + [YUmt1 — Zmr]
< 0(€) + Klym — zm| "
< 0(€) + klym — Tl

The second line is obtained using the contractivity propert
and the last line comes from the fact that = z,,,.
By recursion, and using the limit of a power law, we get

El

m [10]

|[Zmt1 — Ymta| < 0(e) Z kK + k™ |yo — o
=0 [11]
§5(€)1_k+km|yo—$o| [12]
[13]

Finally, by taking the limitm — oo,

|Tm41 = Ymy1] < 5(6)1 7

the result is proved, witlC'(T") = ¢(T")

[14]
1
T—%
V. CONCLUSIONS 5]
In this paper we have presented an average study betwE&h
the signalizedl’-periodic Link Transmission Model (LTM),
and its averaged version. We have formalized the mathemdtid
sense in which the solutions of the periodic signalized LTM
model approximate the solutions of its averaged version. \\dg;
have shown that the error norm between the solutions of the
signalized and the averaged models can be bounded, in both
finite and infinite time-intervals, by a constant proporéibn
to the ratio between the light cyclE and the road segment
length L.
For the sake of simplicity, and the clarity of the anal-
ysis and exposition of the main results, the analysis has
been carried out under some simplified hypothesis. Those

analysis even under some simplified hypothesis.
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