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Active High Dynamic Range Mapping for Dense Visual SLAM

Christian Barat1 and Andrew I. Comport2

Abstract— Acquiring High Dynamic Range (HDR) photos
from several images, with an active shutter providing differ-
ent exposures (sensor integration periods), has been widely
commercialised in photography for static camera positions. In
the case of a mobile video sensor (as is the case in robotics),
this problem is more difficult due to real-time motion of the
sensor which transforms the perspective between the acquired
images. HDR approaches for a set of images from different
perspectives have therefore been significantly overlooked since
this would require sophisticated dense mapping approaches to
eliminate the motion component. Recent dense visual SLAM
(Simultaneous Localization And Mapping) approaches provide
this framework, however, few works have attempted to perform
HDR visual SLAM. Current approaches are thus highly depen-
dant on illumination conditions and camera shutter settings. In
this paper a new approach is proposed that enables 3D HDR
environment maps to be acquired actively from a dynamic set of
images in real-time. The 6 DOF pose, the dense scene structure
and the HDR texture map will be estimated simultaneously with
the objective of maximising the dynamic range. This will allow
to obtain a radiance map of the scene by fusing a real-time
stream of low dynamic range images (LDR) into a graph of
HDR key-frame images. In particular, a method is proposed
to actively control the shutter based on information theory to
optimise the information content of the 3D HDR environment
map for RGB-D sensors. As will be shown in the results, a 3D
HDR environment map allows robot localisation and mapping
(visual SLAM) to take actively advantage of varying luminosity
in different parts of the scene.

I. INTRODUCTION

In robotics, a fundamental problem is to localize the robot
within its environment with precision and robustness. One
of the most prominent solutions is to use a visual SLAM
approach. Much computer vision research has been carried
out to remain invariant to lighting conditions, but, inevitably
these approaches rely on the intensity (brightness) of the
acquired images. Few approaches have investigated actively
controlling the camera exposure to obtain better quality high
dynamic range maps. Generally, the chosen solution is to fix
the shutter (exposure time) of the camera. Fixing the shutter
can especially be a problem in an environment with a high
dynamic radiance containing under illuminated zones where
high sensitivity is required alongside high illumination where
the sensor can saturate. In this work an active approach is
proposed to control the variation of the shutter to obtain an
optimal map of the dynamic radiance of the environment.
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As a first approach, a simple method for extending the
dynamic range of a camera is to combine multiple images of
a scene taken with different exposures [1]. Often, the shutter
is automatically controlled by the camera with proprietary
methods developed by each manufacturer (and generally
unknown). In the authors previous work, dense real-time
localisation and mapping was performed simultaneously
whilst reconstructing 3D High Dynamic Range environment
maps [2]. In that initial work the shutter was not actively
controlled and the black-box automatic camera shutter of the
camera was used. Subsequently it was initially necessary to
estimate the shutter value during the process since it was
not provided by the driver. Following this first approach,
[3] modified the approach slightly to perform tracking using
the normalised radiance since it depends on luminance. This
approach, however, also uses the default auto shutter.

To improve 3D HDR mapping, this paper proposes to op-
timise the dynamic range by actively controlling the shutter.
To attain this objective it is necessary identify two models.
The first model maps pixel intensities to irradiance values
(the inverse model) [4] and the second maps pixel intensities
between different ranges based on shutter values (the direct
model). This second model provides a function to predict the
value of the intensities when the shutter is varied.

In comparison to other works, this paper proposes to
improve the dynamic of the radiance and not the dynamic of
the pixel intensity. In [5], authors use a simple method based
on the Mean Brightness Level(Blmean) and the Median
Brightness Level(Blmed). They use the difference between
the (Blmean) and (Blmed) to control the shutter, the objective
is to obtain an image with a Blmean ∈ [100, 130]. In [6]
they propose to fuse two images obtained with two different
exposures. The system first runs an auto exposure algorithm
to determine the initial guess X of the exposure setting. Then
it takes two frames whose exposure are set as two times (2X)
and half (1/2X) of the initial exposure. [7] proposes an AE
(Auto-Exposure) control method for stereo cameras using
Gaussian sampling, with more sampling in the center region
such that the sensitivity to light from exterior areas decreases
and the resource efficiency improves. The work presented in
[8] proposes a computational method for compositing Low
Dynamic Range (LDR) images into a High Dynamic Range
by the use of Comparametric Camera Response Function.
This approach uses a Look Up Table (LUT) to perform in
real time, but, they use a fixed ratio of shutter values. [1]
presents a method to select the exposure value to obtain
an effective camera response. The camera response and the
desired dynamic range is selected offline by the user.

In the approach proposed here, the optimal shutters values



are determined based on an information theory framework.
The aim is to maximise the entropy of combined radiance
images. Alternatively to [1] and [8], the objective is to de-
termine optimal shutter values automatically by maximising
information content in real-time.

The main contributions can be summarized as follows:
• Active control of the camera shutter in real-time to

perform visual SLAM.
• Optimal 3D HDR environment mapping by maximising

the information content in high dynamic range image
based on entropy.

• Performing visual SLAM with a varying shutter and
HDR maps allows to handle varying luminosity in
different parts of the scene as a robot explores different
parts of the scene (i.e. shaded areas to brightly lit
environments, etc.).

In Section II our classic dense RGB-D visual tracking
method for LDR images is first presented. Section III in-
troduces the adaptation of the dense visual tracking to HDR
images. Finally, Section V presents the results for a static
camera and a moving cameras in a real application.

II. DENSE VISUAL TRACKING

For completeness, our classic real-time dense visual odom-
etry algorithm [9] will be presented for Low Dynamic Range
Images (LDRI). Whilst many more recent dense approaches
have followed and been celebrated extensively, the dense
approach remains essentially the same as in this seminal
work.

Consider a calibrated RGB-D sensor (stereo, projective
light, etc - see section V) with a color brightness function
I : Ω × R+ → L; (p, t) 7→ I(p, t) and a depth function
D : Ω × R+ → R+; (p, t) 7→ D(p, t) where Ω = [1, n] ×
[1,m] ⊂ R2,P = (p1, p2, .., pnm)T ∈ Rmn×2 ⊂ Ω are pixel
locations within the image acquired at time t, and n × m
is the dimension of the sensor’s images and L = [0, 1]
is the normalised luminance range. Consider the set of
measurements in vector form such that I(P, t) ∈ Lnm×1

and D(P, t) ∈ Rnm×1. In the following t and P can be
omitted for clarity. V = (v1, ...,vnm)T ∈ Rnm×3 is defined
as the matrix of 3D vertices corresponding to the following
point-depth back-projection:

vi = K−1piD(pi) (1)

where K ∈ R3×3 is the intrinsic matrix of the camera. pi

are the homogeneous pixels coordinates.
With abuse of notation, V will also be considered as a

3D vertex function such that V : Ω × R+ → R3; (p, t) 7→
V(p, t). The set I = {I,V} is therefore defined to be an
augmented image containing both intensities and vertices for
each pixel.

A. Image-based 3D model

The 3D representation is based here on a graph of N
augmented images J = {I1, ..,IN} where each link of the
graph is the 6 DOF twist x = (ν,ω) ∈ R6 that connects
two images in the graph. The twist is related to a 3D pose

T = (R, t) ∈ SE(3) via the exponential map as T = e[x]∧

with the operator [.]∧ as:

[x]∧ =

[
[ω]× ν

0 0

]
(2)

where [.]× is the skew symmetric matrix operator, R ∈
SO(3) is a rotation matrix and t ∈ R(3) a translation vector.

This 3D model is built incrementally in a SLAM ap-
proach [10], and is used to predict a dense virtual image by
rasterising and blending the k closest key-frames at a desired
camera pose within the 3D model. The predicted augmented
reference frame denoted I∗ = {I∗,V∗} can then be used
to perform a dense registration with a current live frame I .
The superscript ∗ will be used to designate the predicted
reference view variables.

B. Low dynamic range registration

In the classic case for image-based registration it is
assumed that the exposure of the camera remains fixed.
The objective here is to register a current image I with an
augmented reference image I∗ predicted from the 3D model,
where I is undergoing a full 3D transformation T̃. The aim
is to estimate the incremental twist transformation x that
satisfies:

T̃ = T̂T(x) (3)

where T̂ is an initial pose estimate of T̃ (i.e. initialised
from the previous frame). Assuming brightness consistency
(Lambertian material) and that both I and I∗ have the
same exposure, the 6 DOF unknown x can be estimated by
minimising the following non-linear intensity error:

e(x)LDR =
[
I
(
w
(
T̂ T (x),V ∗

))
− I∗(P )∗

]
(4)

where the warping function w
(
T̂ T (x),V ∗

)
warps the ver-

tices V ∗ associated with the back-projected pixels P ∗ from
Eq. 1, with the transformation T̂ T (x) onto the normalised
image plane:

pw = KΠT̃v∗ (5)

Note that for clarity, in this paper, only the photometric
error term in Eq. (4) is presented. It is also possible to
simultaneously minimise a geometric error based on a depth
image to improve this estimate [11].

The matrix Π = [I3×3,0] ∈ R3×4 is a projection matrix
from dimension 4 onto dimension 3. An overline (v) will be
used to indicate homogeneous coordinates normalised wrt.
the last component. One difference with respect to classic
approaches is that each LDR image is normalised within the
range of values [0, 1] instead of the discrete [0, 255] for an
8 bit image.

III. HIGH DYNAMIC RANGE REGISTRATION

This section now introduces the HDR registration ap-
proach by replacing the 3D key-frames with high dynamic
ranges images. Now the reference image intensities are no
longer clamped: I∗HDR ∈ [0, inf]. The light-exposure is
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Fig. 1. Image Acquisition Pipeline. The scene radiance L traverses the
optics to illuminate the sensor with irradiance E. The electronic shutter
accumulates the irradiance during the time ∆t before being sampled into
discrete intensity values I.

defined as the product of the irradiance E at the sensor
and exposure time ∆t, see Eq. 6. The pixel intensity I
is obtained after transformation by the non-linear function
f (representing the camera response function - CRF). The
radiance L is proportional to E for any particular pixel, but
the proportional factor can be different at different places on
the sensor. In the following the irradiance E will be used,
considering that it is always possible to obtain L after a CRF
calibration step [12]. To obtain HDR Images it is necessary
to estimate the inverse of the camera response to obtain the
irradiance.

In [13], multiple photographs of the scene are taken with
different amounts of exposure. The algorithm then uses these
differently exposed photographs to calibrate the CRF of the
imaging process, up to a scale factor, by using the assumption
of reciprocity.

Iij = f (Ei∆tj) (6)

If f is monotonic, then it is invertible, (6) becomes:

f−1 (Iij) = Ei∆tj (7)

Using the logarithm gives:

lnf−1 (Iij) = lnEi + ln∆tj (8)

Finally with g = lnf−1:

g (Iij) = lnEi + ln∆tj (9)

where i ranges over pixels and j ranges over exposure
durations.

In the basic case with static images of the same scene
(without sensor motion), but with a shutter varying from 1ms
to 30ms, the model presented in Fig. 2 is obtained by using
the optimisation method presented in [13]. It can be seen that
the responses g of the channels are similar. In the following
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Fig. 2. Inverse Model for the three colors R-G-B. It can be noted that this
function is non-linear and therefore the HDR fusion is equally non-linear.

an inverse model will be used for the intensity of the pixel.
This is defined by the mean response of the three channels:
gintensity = (gred + ggreen + gblue) /3

IV. DYNAMIC IRRADIANCE OPTIMIZATION

During SLAM the 3D model (key-frame graph) is updated
with new log irradiance key-frame images: ln(E). When the
3D model is updated, the log irradiance images are blended.
Each key-frame image I∗HDR and its cumulative weights
C∗HDR (defined by Eq. 10) are subsequently updated, for
each point p, incrementally between time t − 1 and time t
as:

C∗HDR(t)← C∗HDR(t− 1) + h(Iw(t))

I∗HDR(t)← h(Iw(t))IwHDR(t) +C∗HDR(t− 1)I∗HDR(t− 1)

C∗HDR(t)

where Iw and IwHDR are respectively the current LDR and
HDR images warped onto the reference frame. Compared to
our previous work [2], this paper introduces a new weighting
function inspired from [14] which is based on the slope
of the camera response function. The slope indicates how
quickly the pixel intensity value varies from the given input.
Consequently the most reliable weight is given to the most
sensitive part of the sensor:

h(Iij) =
dIij
dg(Iij)

(10)

where g is defined in Eq.9.
The main objective (and contribution of this paper) is to

optimize the range of the log irradiance during real-time
acquisition. This equivalent to maximising the log irradiance
entropy (11) as:

H (p) =
∑

p (E) ln(p (E)) (11)

The idea is to select the next best shutter that will
maximise the entropy of the blended images (see Fig. 3).
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If it is possible to predict the response of the sensor for
different shutter values based on an image, it is also possible
to predict the best shutter which maximises the entropy of the
irradiance. It remains to identify a direct model to estimate
images for different shutter values based on the current
image. The following section will describe this model.

A. Direct Model

In this section an approach is proposed to estimate the
image transformation function between two successive shut-
ter values. This is necessary for active shutter control in
order to predict which new shutter value will provide more
information. The transformation function corresponds to an
amplification of the pixel intensity Iij due to a change in
shutter value. This amplification can be estimated from a
series of image pairs acquired with different exposure times
ranging from 1ms to 30ms with a step of 1ms, and for each
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Fig. 4. High level HDR tracking an mapping with active shutter control.

level of grey-scale intensity. The linear relationship between
the intensity of an image obtained with a shutter s1 versus
an image obtained with a shutter s2 is subsequently a matrix
A of size 256× 30 (intensity level×shutter values).

Is2ij = A(Is1ij , s1)Is1ij (12)

with s1 = n, s2 = n+ 1 and n ∈ [1, 30].
To estimate an image with a s2 − s1 = m > 1 it is

necessary to apply the amplification m times. Once, this
direct model has been estimated, it is possible to predict
an image of the same scene with a different shutter value.
To speed up the process for real-time performance, the
predicted histogram is directly computed. To obtain a smooth
estimate, a Kernel Density Estimator using a Gaussian kernel
is employed.

f̂h (I) =
1

Nb

N∑
i=1

K

(
I − Ii
b

)
(13)

where N is the number of kernels (256 levels of intensity), b
is a smoothing parameter (called bandwidth), K is a gaussian
kernel:

K(z) =
1√
2π
e−

1
2 z

2

(14)

B. Histogram Prediction

The direct model is applied with shutter values varying
from 1ms to 30ms to the current histogram to obtain the
predicted histograms. The predicted entropy of the combined
image can then be computed from the weighted sum of the
current image and the predicted image. The estimation is
carried out directly on the histogram. The new histogram for
a shutter value s ∈ [1..30] is expressed using the histogram
from the previous shutter s+ 1 (15) or s− 1 (16) based on
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the direct model A(I, s) with I the pixel intensity.

f̂s (I) =
1

256

255∑
I=0

1√
2π
e−

1
2 (A(I,s)f̂s+1(I)−I)

2

(15)

f̂s (I) =
1

256

255∑
I=0

1√
2π
e
− 1

2

(
f̂s−1(I)

A(I,s) −I
)2

(16)

With f̂ expressed in (13) for a shutter value s ∈ [2..29].
Once we have the luminance histogram, using Eq.9 we obtain
the log irradiance histogram. It is better to work in the
log irradiance domain because is less sparse than in the
irradiance domain and this improves the entropy estimation.

C. Results on Histogram Prediction

To evaluate the prediction of information obtained with
various shutter values, predicted histograms of pixel intensity
(I) are compared here to the real histograms obtained with
the true shutter. In Fig.5, the estimated histogram for a
shutter of 18ms, predicted from the histogram for a shutter
of 15ms is presented. The estimated and real histograms are
very similar. To obtain a quantitative value, the predicted
histogram is compared to the reference histogram by using
the divergence between the two distributions. Generally
the Kullback-Leibler Divergence is used, but as it is not
symmetric, a symmetric version is used [15]:

J (p1, p2) =
∑
z∈Z

p1 (z) log
p1 (z)

1
2p1 (z) + 1

2p2 (z)
(17)

with z a discrete random variable and p1 and p2 two
probability distributions of z. The divergence result for a
baseline shutter= 15ms and an estimated shutter ranging
from ∈ [1..30]ms is presented Fig.6. It can be seen that the
histograms have been correctly predicted for the various trial
shutter values.
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Fig. 6. Divergence between Predicted and ground truth for a reference
shutter value=15ms.

V. RESULTS

For practical purposes, the Asus Xtion [16] RGB-D sensor
is used for the experiments this paper. This sensor possesses a
640×480 RGB Camera and a 640×480 depth camera. The
driver interface allows the exposure time to be controlled,
however, it only allows a discrete set of shutter values starting
from s = 1ms, to 3000ms. To maintain the frame rate at
30Hz the possible shutter values are limited here to s ∈
[1, 30]ms.

To better analyse the proposed active shutter control
method, results are firstly presented using a static camera
to better illustrate the shutter prediction before finally pre-
senting the results in a real SLAM application with a moving
camera.

A. Static camera with three images

Firstly results are presented for an optimisation with three
images. A base image is acquired with a shutter s = 15ms
and the proposed algorithm is used to estimate the next best
shutter. Fig.8 shows the entropy estimated for the mixture
of images (in the log irradiance domain), the best shutter
(providing the most information) is obtained for the value
s = 1ms. Fig.7 shows the evolution of the entropy of the
mixture (base image plus new image) in the log irradiance
domain. It is noted that the minimum is correctly positioned
at the shutter value of the reference image (s = 15ms). The
same algorithm is next applied to a third image providing
the results presented in Fig.9. The improvement is clear on
the light part which is over-exposed in the first image and is
corrected with the addition of the second and third image.
Fig.8 shows the improvement of the entropy estimated on
the mixture histogram in the log irradiance domain. Others
results are presented in Figures 10, ??.

If a static video camera with an internal auto-shutter is
compared to the proposed algorithm, it is clear that the
information content is improved because the shutter in auto
mode seeks to simply compute the best constant shutter value
for a given time instant. The proposed algorithm acts more
like a HDR photographic camera which takes several images
with different exposures and combines them. As will be seen
in the next section, this is not possible if the camera or scene
is in motion.
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B. Moving camera: HDR SLAM

After validating the method with a static camera, results
are now presented on images with a moving camera. Fig.11
shows the images chosen by the algorithm, the key-frame(
reference image) is acquired with a shutter =15ms. For the
next images we apply our method to select the best shutter.

After the acquisition of 6 images we obtain the following
HDR image in Fig.12. In this final image, we can see the
improvement, for example the whiteboard and the windows
are not saturated compare to the reference image. The next
example Fig.14 shows the improvement in the dark zone of
the reference image Fig.13 (books are now visibles).

C. Comparison LDR/HRD Tracking

To validate the method, tracking results on synthetic
images (30 images) are presented. For a LDR tracking with a
fixed shutter (15ms) and HDR tracking with varying shutter
the errors (e =

∑
(T̃T−1true − Id)2,with Id the identity

matrix) of tracking are very similar, see Fig.15. We obtain
a little improvement with the HDR approach. On Fig.16
is presented the convergence, for 2 images, in 3D for a
fixed shutter=4ms for the LDR tracking and a varying
shutter for HDR tracking. The reference image is very dark
with this shutter value. Then, the LDR tracking diverges,
when the HDR tracking converges to the true position. The

Fig. 9. Static camera : visual improvement of the HDR mixture image
obtained from three LDR source images. Since the printer (or screen)
dynamic range is not capable of displaying the extended dynamic range
the HDR image is remapped to LDR using global tone mapping.
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Fig. 10. A second example of static camera HDR mapping.

same experimentation is presented now with a reference
image acquired with a shutter=25ms on Fig.17 Both methods
converge to the true position. But, LDR tracking needs more
iterations to converge, this is true also for the whole tracking,
LDR tracking needs more iterations to converge.
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Fig. 13. HDR Mixture of 6 images mapped to the LDR domain.

VI. CONCLUSION

This paper has presented an information theory method to
actively control the shutter of a RGB camera in real-time.
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Fig. 14. HDR Mixture of 6 images mapped to the LDR domain.
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Fig. 15. Tracking error on synthetic images for LDR in blue and HDR in
magenta.
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Fig. 16. Tracking convergence on synthetic images (reference image
acquired with shutter=4ms) for LDR in blue and HDR in magenta. The
red circle represents the objective.

The proposed approach effectively acquires optimal high
dynamic range 3D texture maps from a moving sensor using
a dense visual localisation and mapping framework. The
proposed method is based on the entropy of the resulting map
and aims to maximise the information content in the dynamic
range of the texture map. The 3D photometric model is
represented via a HDR keyframe graph which facilitates
real-time operation and loop closure. This novel approach
has been shown to improve localisation and mapping in
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Fig. 17. Tracking convergence on synthetic images (reference image
acquired with shutter=25ms) for LDR in blue and HDR in magenta. HDR
tracking is faster.

complex lighting situations. The method has been validated
by comparing the estimated histogram to real histogram and
the improvement in entropy via the new fusion approach.

In the future, we aim to adapt the method to include other
constraints like the coupling between motion blur and the
exposition time.
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