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Abstract

In this letter we report a thorough analysis of the exciton dispersion in bulk hexagonal boron

nitride. We solve the ab initio GW Bethe-Salpeter equation at finite q ‖ ΓK, and we compare our

results with recent high-accuracy electron energy loss data. Simulations reproduce the measured

dispersion and the variation of the peak intensity. We focus on the evolution of the intensity, and we

demonstrate that the excitonic peak is formed by the superposition of two groups of transitions that

we call KM and MK ′ from the k-points involved in the transitions. These two groups contribute

to the peak intensity with opposite signs, each damping the contributions of the other. The

variations in number and amplitude of these transitions determine the changes in intensity of the

peak. Our results contribute to the understanding of electronic excitations in this systems along the

ΓK direction, which is the relevant direction for spectroscopic measurements. They also unveil the

non-trivial relation between valley physics and excitonic dispersion in h–BN, opening the possibility

to tune excitonic effects by playing with the interference between transitions. Furthermore, this

study introduces analysis tools and a methodology that are completely general. They suggest

a way to regroup independent-particle transitions which could permit a deeper understanding of

excitonic properties in any system.
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Hexagonal boron nitride (h–BN) is a layered crystal whose planes are homostructural to

graphene, with B and N atoms occupying alternately the vertices of a honeycomb lattice.

It displays peculiar optoelectronic properties, measured notably with luminescence [1–4],

X-rays [5, 6] or electron energy loss spectroscopy (EELS) [7, 8]. Though it is established

that this material hosts strong excitonic effects, their character (direct or indirect) is still

controversial. For instance, theoretical calculations predict h–BN to be an indirect gap in-

sulator [6, 9], but this result contrasts with the experimental finding of strong luminescence

in h–BN crystals [1]. Diverse explanations have been proposed to dispell this contradic-

tion [2, 10, 11]. This controversy calls for thorough theoretical investigations and accurate

experiments aiming at electronic excitations at finite momentum q ‖ ΓK. This indeed is

the relevant direction to observe electronic excitations across the indirect gap. Recent very

high-quality EELS measurements [7] make a step forward in this direction.

Finite-momentum measurements performed by electron energy loss spectroscopy or X-

rays scattering, make possible the observation of excitonic features and of their evolution as

functions of frequency ω and exchanged momentum q. These techniques give access to the

loss function

L(q, ω) = −Im[1/ε(q, ω)] = Im[ε(q, ω)]/|ε(q, ω)|2 . (1)

Where the dielectric function ε(q, ω) is not vanishing, peaks of L(q, ω) are related to intra-

band transitions. So far, measures have been reproduced, interpreted and even anticipated

by ab initio simulations based on the Bethe-Salpeter equation (BSE) formalism [12], which

includes explicitly the electron-hole interaction (the exciton).

An intriguing behaviour observed in all cases is a sizeable variation of the peak intensity of

L(q, ω) as a function the exchanged momentum q, notably the heneancement or attenuation

of excitonic peaks along their dispersion [6, 13, 14]. This is actually the case also for the

data reported in [7]. The authors give account of a peak dispersing approximately 0.2 eV

for 0.1 Å−1 ≤ q ≤ 1.1 Å−1 parallel to the ΓK direction of the first Brillouin zone. It

detaches neatly from the background, reaches the highest intensity at about 0.7 Å−1 and

almost disappears at 1.1 Å−1. The authors attribute it to an excitonic nature owing to its

sharpness. Also, they accompany their experimental data with a tentative analysis based

on Kohn-Sham density of states, while calling for the utilization of more advanced methods.

In this letter we solve the ab initio BSE in the same energy and momentum conditions as

in [7], confirming the excitonic nature of the peak. Also we devise some accurate numerical
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tools and carry out a thorough analysis of the peak intensity as a function of the exchanged

momentum q, clarifying the origin of the enhanced intensity at 0.7 Å−1 and its dramatic

attenuation at higher momentum. Our study offers a deeper insight into the electronic

excitations of h–BN and it unveils a non-trivial valley physics, indicating possible ways to

exploit it and to tune the exciton intensity. Furthermore, the framework and the procedures

introduced here are of general applicability. We believe that the outcome of our analysis

can qualitatively explain similar effects in other materials and that the methods introduced

constitute helpful tools to describe and analyse excitonic properties in any system.

Computational details

The simulated h–BN has lattice parameters a = 2.5 Å and c/a = 2.6 [15]. The Kohn-

Sham system and the GW corrections have been computed with the ABINIT simulation

package (a plane-wave code [16]). Norm-conserving Troullier-Martins pseudopotentials have

been used for the two atomic species. The DFT energies and wave functions have been

obtained within the local density approximation to the exchange-correlation potential, using

a plane-wave cutoff energy of 30 Ha and sampling the Brillouin zone with a 8×8×4 Γ-centred

k-point grid. The GW quasiparticle corrections have been obtained on a 6× 6× 4 Γ-centred

grid, a cutoff energy of 30 Ha defines the matrix dimension and the wave function basis

for the exchange part of the self-energy. The correlation part has been computed including

600 bands and the same cutoff energy. To model the dielectric function, the Godby-Needs

plasmon-pole approximation [17] has been used, summing over 600 bands and with a matrix

dimension of 6.8 Ha. The quasiparticle corrections have been subsequently interpolated on

a denser 36× 36× 4 k-point grid.

The macroscopic dielectric function ε(q, ω) has been calculated at the GW-BSE level in

the Tamm-Dancoff approximation using the code EXC [18]. We included six valence bands

and three conduction bands; 80 eV and 110 eV respectively are the cutoff energies for the

matrix dimension and the wave function basis. The static dielectric matrix entering in the

BSE has been computed within the random phase approximation with local fields, including

350 bands and with a cutoff energy of 120 eV and 200 eV for the matrix dimension and the

matrix elements respectively. With these parameters, the energy of the first peaks of ε(q, ω)

are converged within 0.01 eV and their intensity are converged within 5%. All reported
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spectra have been convoluted with a Gaussian of σ = 0.05 eV in order to reduce the noise

due to the discrete k-point sampling and to simulate the experimental broadening.

Theoretical analysis tools

EELS and X-ray inelastic scattering give access to the loss function L(q, ω) with com-

plementary degrees of accuracy in the q range [8].

Theory-wise, L(q, ω) can be calculated accurately as in (1) from the dielectric function

ε(q, ω), obtained as a solution of the BSE. This can be cast in the form of an eigenvalue

problem whose Hamiltonian is most often written in a basis of independent-particle (IP)

transitions t = (v,k) → (c,k + q) between occupied and empty states of an underlying

IP model, e.g. the Kohn-Sham system. Within this framework and accounting only for

resonant transitions, the dielectric function reads:

ε(q, ω) = 1− 8π

|q|2Ω
∑
λ

Iλ(q)

Eλ(q)− ω + iη
, (2)

where q lies inside the first Brillouin zone, Eλ(q) is the energy of the λth exciton and Ω is

the unit cell volume [19]. The spectral intensity

Iλ(q) =

∣∣∣∣∣∑
t

ρ̃t(q)Aλt (q)

∣∣∣∣∣
2

=

∣∣∣∣∣∑
t

Mλ
t (q)

∣∣∣∣∣
2

(3)

is the modulus squared of a linear combination of IP-transition matrix elements ρ̃t(q) =

〈vk|e−iq·r|ck + q〉 weighted by the exciton wave function components Aλt (q). The exciton

λ is called “bright” when Iλ(q) is sizeably high, and conversely it is called “dark” when

Iλ(q) ≈ 0. This can happen if either ρ̃t(q) or Aλt (q) or both are negligible for all t, or when

IP-transitions interfere destructively leading to a vanishing sum in expression (3). Thus it

is sensible to introduce the normalised cumulant weight [13, 20]:

Jλ(q, E) =
1

Iλ(q)

∣∣∣∣∣ ∑
t:Et≤E

Mλ
t (q)

∣∣∣∣∣
2

(4)

which allows for a visualization of the building-up of the exciton spectral weight as a function

of the IP-transition energy E. This function is positively defined and tends asymptotically

to 1, but note that it is not necessarily monotonic.

The normalized cumulant weight gives some sort of global information. One can extract

further details from Mλ
t (q), but still it is not an easy quantity to visualise because at given

4



Γ

q0=0.14 (Å)−1

5q0

8q0

K

5.2 5.4 5.6 5.8 6.0 6.2 6.4

Loss
Function

(a)

Excitation energy (eV)

5.9

6.0

6.1

6.2

6.3

6.4

6.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

5q0

8q0

(b)E
xc

ita
tio

n 
en

er
gy

 (
eV

)

Exchanged momentum (Å−1)

GW−BSE (+0.4 eV)

Schuster et al.

0.00

0.01

0.02

0.03

0.04

0.0

0.1

0.2

0.3

0.4

Im[ε]

Loss f.

q=8q0

(c)

0.00

0.01

0.02

0.03

0.04

5.2 5.4 5.6 5.8 6.0 6.2 6.4
0.0

0.1

0.2

0.3

0.4
Im[ε]

Loss f.

q=5q0

(d)

Lo
ss

 fu
nc

tio
n

D
ie

le
ct

ric
 fu

nc
tio

n

Excitation energy (eV)

FIG. 1: (a) GW-BSE simulations of the Loss function; thicker lines correspond to

q = 5q0 = 0.7Å−1 and q = 8q0 = 1.1Å−1. (b) Computed dispersion compared to

experimental data extracted from [7]. GW-BSE data have been shifted by 0.4 eV. (c,d)

Spectra of the loss function (black line) and of Im[ε] (red line) at q = 8q0 and q = 5q0

respectively. Red bullets mark the position of the first five excitons.

q and λ it depends on three indexes: t ≡ (v,k)(c,k+q). Let us define the band-contracted

amplitude map:

Mλ(k,q) :=
∑
v,c

Mλ
(v,k)→(c,k+q)(q) . (5)

This quantity corresponds to the total amplitude of all the transitions from (or to) the k-

point k (or k + q). In fact the modulus permits to visualise easily a k-point cartography of

the transitions participating in the exciton formation.
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FIG. 2: Simulated dispersion of Eλ(q) for λ = 1, 2, 3, 4, 5. The size of the circles is

proportional to log Iλ(q) (see text). GW-BSE data have been shifted up by 0.4 eV. Arrows

highlight q = 5q0 and q = 8q0.

Results

In Figure 1(a) we report the simulated loss function L(q, ω) for exchanged momenta

q ‖ ΓK at intervals of q0 = K/12 ≈ 0.14 Å−1 The dispersion is reported in Figure 1(b) where

it is compared to experimental data extracted from [7]. Beside a blue-shift of about 0.4 eV

that comes from a well-known underestimation of the G0W0 gap [21] in this material, the

calculated spectra and their dispersion are in very good agreement with the measurements.

In particular our simulations reproduce the fact that the lowest energy excitation is at

q = 5q0 ≈ 0.7 Å−1 and that approximately at q = 8q0 ≈ 1.1 Å−1 the peak intensity is

strongly suppressed (cfr. Figure 1 in [7]). At higher q, the loss function increases again with

abrupt intensity, reproducing the strong exciton expected at q = K and already analysed

elsewhere in literature [5, 6, 8]. Along the ΓK line, the total dispersion of the loss peak is

of about 0.45 eV, which is the energy difference between the peak position at K and at 5q0.

As |ε(q, ω)| is not vanishing in the case studied, the peaks of L(q, ω) can be directly related
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to those of Im[ε(q, ω)], in agreement with equation (1). This is evident from Figures 1(c)

and 1(d) where we report the spectra of L(q, ω) and Im[ε(q, ω)] at q = 8q0 and q = 5q0

respectively. In order to better understanding the variations of the intensity, we then rely

on Im[ε(q, ω)]. In Figure 2 we report the calculated dispersion of the excitation energies

Eλ(q) of the first five lowest-energy excitons as a function of q (λ = 1, 2, 3, 4, 5). The size

of the circles is proportional to log[Iλ(q)]. Their positions are also reported as red bullets

in Figures 1(c) and 1(d). From the comparison of Figures ?? and 1(b), it is clear that the

dispersion of the first peak of L(q, ω) follows closely that of the first bright peak of Im[ε(q, ω)

(6.41 eV and 5.98 eV at K and q = 5q0 respectively). Note that these numbers refer to the

first intense peak (large circles) which is not always the lowest-energy exciton, i.e. it is not

always λ = 1. In fact, as expected [9, 22, 23], at q = Γ the first two excitons are degenerate

and basically dark, whereas all the peak intensity is concentrated on the degenerate excitons

with λ = 3 and 4. As soon as one moves away from Γ, the degeneracy is lifted [23] and

the first bright peak coincides with the first exciton. This is valid up to q ≈ 6q0 (halfway

in the ΓK line) where the peak intensity is moved to λ = 2 as a consequence of a band

crossing. The intensity of the excitations is successively reduced at 8q0 and 9q0 where one

observes an almost superposition of the λ = 2, 3, 4, 5 excitons. Finally, as q approaches K,

the exciton λ = 2 steps-up again concentrating most of the intensity.

In the following we will focus on the excitations at q = 5q0 and q = 8q0, marked with

black arrows in Figures 1(b) and 2.

Analysis of the dielectric function ε(q, ω)

Exciton analysis at q = 5q0 ≈ 0.7 Å−1

The excitonic peak at q = 5q0 has a binding energy of 0.25 eV, that is the energy differ-

ence with respect to the lowest IP-transition with the same q (including G0W0 corrections).

In Figure 3 the normalised cumulant spectral function defined in (4) is reported versus the

energy E of the IP-transitions. We observe that Jλ=1(q, E) is a monotonic function of E;

it rises steeply up to E ≈ 6.8 eV from where its derivative decreases mildly. Finally it

reaches its asymptotic value of 1 at about E ≈ 12 eV (not shown). What this tells us is

that IP-transitions sum up constructively at all energies, with most important contributions
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FIG. 3: Cumulant spectral weight (black curve), GW-BSE spectrum (green curve) at

q = 5q0. A blue arrow marks the lowest IP-transition. Inset: Skectch of the KM and MK ′

groups of IP-transitions.

coming from transitions of energy E < 6.8 eV. Indeed these few transitions (0.4% of the

total) account for almost the 44% of the spectral weight, as J1(5q0, 6.8) = 0.44 attests. Still,

to get closer to the full spectral weight, one has to include higher-energy transitions. At

E = 9.5 eV, 84% of the spectral weight is accounted for by still a relatively small number

of transitions (9% of the total).

We can now gain a deeper insight into the way IP-transitions combine in forming the

exciton. To do this, let us divide the latter group of transitions (E ≤ 9.5 eV) in three

categories: those for which both real and imaginary parts of Mλ(q) are positive, those

for which both are negative and transitions where they have opposite sign. The latter

group turns out to be composed by transitions with amplitude Mλ
t (q) ≈ 0, so they do not

contribute significantly to the exciton intensity and we can safely neglect them. The other

two groups enter the sum of Eq. (3) with different signs. Almost 39% of the considered

transitions fall in the first group, with positive amplitude Mλ
t (q). They are mostly low-

energy transitions. The corresponding cartographies of |Mλ=1(k,q)| and |Mλ=1(k + q,q)|

for k-points in the ΓKM -plane are reported in panels (a) and (b) of Figure 4. On the other
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FIG. 4: (Color online) Panels (a) and (b): |M1(k, 5q0)| and |M1(k + q, 5q0)| plotted for

k-points in the ΓKM -plane for transitions of the KM group. Panels (c) and (d): the same

for the MK ′ group.

hand, almost 27% of the considered transitions fall in the negative amplitude group and

they have higher energy. Their maps are reported in panels (c) and (d) of Figure 4.

The analysis suggests the following interpretation. Two groups of transitions participate

to the formation of the bright exciton (λ = 1), observed in Ref. [7]. One group (let us

call it KM -group) is composed mostly by low-energy transitions going from points close

to K to points close to M (and similarly H → L in the AHL-plane, not shown). The

lowest-energy transitions of this group have also the larger amplitude Mλ
t (q), and they sum

constructively in the steep part of the cumulant (E < 6.8 eV). At higher energy, a second

group of IP-transitions (call it MK ′-group), from points in the vicinity of M to points in the

vicinity of K ′ (and L → H ′) start entering into the game with a negative amplitude hence

eroding partially the contribution of the KM group. This explains why the derivative of
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the cumulant reduces starting from 6.8 eV, but is still positive because of the larger number

and higher amplitude of the dominating KM group.

Once the origin of the peak has been established, we can now draw the connection with

the single-particle band structure. In the inset of Figure 3 we report the GW band structure

along the relevant line KMK ′, in good agreement with previous calculations [5, 6, 9, 22]

and experiments [24]. The KM and the MK ′ groups of transitions have been sketched

with coloured arrows, respectively red and blue. At this q, the KM group of transitions

are basically the indirect transitions between the top valence and the bottom of conduction.

The fact that the top valence is close, but does not coincide, with K is consistent with the

fact that the lowest excitation is found at q < 6q0. The peak is strong here because at this

q the KM transitions take place between van-Hove singularities. The convex curvature of

the band structure also explains well why the MK ′ transitions enter into the game at higher

energy and with a lower intensity.
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FIG. 6: (Color online) Panels (a) and (b): |M3(k, 8q0)| and |M3(k + q, 8q0)| plotted for

k-points in the ΓKM -plane for transitions of the KM group. Panels (c) and (d): the same

for the MK ′ group.

Exciton analysis at q = 8q0 ≈ 1.1 Å−1

Let us switch now to q = 8q0. At this momentum, the spectral weight is dramatically

reduced and it is moved from λ = 1 to a group of four excitons among which λ = 3 and λ = 5

have the highest (although still very weak) intensity. As one can appreciate immediately from

the cumulant weight reported in Figure 5, the building-up of the exciton differs significantly

from the previous case. In fact, the cumulant function does not grow monotonically, but

has instead a concave shape. It increases steeply up to E ≈6.8 eV, it attains its maximum

of 1.8 between 7 and 7.8 eV and then decreases to match the asymptotic limit at about

10 eV. This can be rationalized by assuming that most of the IP-transitions entering in

Iλ(q) sum constructively up to 6.8 eV. But from this energy on, transitions contributing
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with opposite sign start having comparable weight. This induces a halt in the increasing

trend (6.8 < E < 7.8 eV) and eventually they dominate bending down the cumulant back

to its asymptotic limit.

Again we focus on the transitions in the energy window E ≤ 9.5 eV. As before, approxi-

mately 9% of the total number of transitions are included. We can again divide the lot into

positive and negative amplitudes as before and, not surprisingly indeed, we find that this

separation corresponds again to the KM and MK ′ groups. The band-contracted cartogra-

phies are reported in panels (a) and (b) of Figure 6 for the KM group, and (c) and (d)

for the MK ′ group. At variance with the case before, here the number of the transitions

is similar (actually slightly larger for MK ′) and the intensities are closer. The resulting

effect is that the two groups of transitions almost cancel each other, leading to a very weak

intensity.

It is worth recalling here that this exciton (λ = 3) is almost degenerate with another

non-negligible exciton (λ = 5). Not surprisingly, carrying out the same analysis on the

latter leads to basically the same result, but intriguingly the two groups of transitions have

inverted sign: The KM transitions have negative real and imaginary parts of Mλ
t (q), while

MK ′ transitions have positive amplitude (not shown).

Conclusions

We solved the ab initio GW-Bethe-Salpeter equation at finite q on bulk h–BN. We report

the exciton dispersion of the dielectric function along the direction ΓK of the first Brillouin

zone and the corresponding dispersion of the loss function. Its dispersion and intensity agree

very closely with recent electron energy loss experiments [7]. In particular, we observe a peak

dispersing of about 0.45 eV. It attains its highest intensity at q ≈ 0.7 Å−1, corresponding

also to the lowest excitation energy. Here it can be associated to the lowest-energy exciton

of the dielectric function. At larger momentum q ≈ 1.1 Å−1 the peak almost disappears,

where it can be associated to two almost degenerate excitons (λ = 3 and λ = 5).

With the intent of understanding the origin of this intensity variations, we devised some

numerical tools and described them, namely the normalised cumulant weight (4) and the

band-contracted amplitude (5). We used these tools to extract different pieces of information

about the exciton formation and we successively combined them providing a consistent

12



interpretation in terms of single-particle transitions.

We showed that two families of transitions participate to the formation of both excitons.

One group of transitions (KM) goes from the vicinity of point K to the vicinity of point M ,

and similarly H → L on the AHL-plane. These are low-energy transitions related to the

elementary indirect transition of h–BN. The other group of transitions (MK ′) goes from the

vicinity of point M to the vicinity of point K ′ (and L→ H ′ in the AHL-plane). We showed

that these transitions contribute with opposite sign and this is at the origin of the damping

of the peak at q ≈ 1.1 Å−1. Indeed at this momentum, the number of the KM and MK ′

transitions and their amplitude are comparable, leading to a destructive interference which

efficiently damps the peak. Instead at q ≈ 0.7 Å−1 the KM transitions are larger in both

number and amplitude, thus their contributions dominate leading to a (relatively) strong

intensity.

This study adds an important piece of information about the lowest energy excitations

in h–BN, especially along the direction ΓK which is the relevant one for spectroscopic

measures. The connection between the recently measured excitonic dispersion and the single-

particle band structure has been clarified and thoroughly discussed with a particular focus

on the variations of intensity. Our investigation has hence allowed us to unveil a non-

trivial connection between the exciton dispersion, its intensity and the electronic structure

in the vicinity of K(H) and K ′(H ′) points, which may have interesting consequences in

the emerging field of valleytronics. This study may inspire specific modifications aiming at

controlling the intensity and the dispersion of the lowest-energy excitons in this material by

playing with the interference between transitions.

Finally, the methodology presented in this work is of general applicability and could be

extended to other systems. In particular, the attenuation of excitons at finite q has been

observed also in other systems and we believe that the explanation given here can be adapted

also to all other cases. The criterion adopted to identify constructive and destructive groups

of transitions is general, and can be employed in any study of excitons. We believe that this

way of classifying the IP-transitions can be very helpful in the analysis and description of

excitonic effects in any system.
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