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Abstract

Automatic image-based-modeling usually has two steps:
Structure from Motion (SfM) and the estimation of a trian-
gulated surface. The former provides camera poses and a
sparse point cloud. The latter usually involves dense stereo.
From the computational standpoint, it would be nice to
avoid dense stereo and estimate the surface from the sparse
cloud directly. Furthermore, it would be useful for online
applications to update the surface while the camera is mov-
ing in the scene. This paper deals with both requirements:
it introduces an incremental method which reconstructs a
surface from a sparse cloud estimated by incremental SfM.
The context is new and difficult since we ensure the resulting
surface to be manifold at all times. The manifold property
is important since it is needed by differential operators in-
volved in surface refinements. We have experimented with a
hand-held omnidirectional camera moving in a city.

1. Introduction

The estimation of the scene surface viewed by a camera
is an important requirement for applications such as aug-
mented reality, collision detection while moving along a
planned path, environment modeling etc. However, the ma-
jority of methods which produce a 2-manifold (e.g. dense
multi-view stereo [19] or methods based on [10]) are batch
methods. They are not easy to adapt to the incremental con-
text where a surface is computed at all times from the pro-
gressive availability of images or 3d points.

In a 2-manifold (i.e. 2d topological manifold surface),
each point of the surface has a surface neighborhood which
is homeomorphic to a disk. Thus, a triangulated 2-manifold
is not a simple soup of badly connected triangles. Each
triangle is exactly connected by its 3 edges to 3 other tri-
angles, the surface has neither holes nor self-intersections,
and it cutsR3 into free-spaceandmatterregions. Here we
assume that the 2-manifold is triangulated.

The manifold property provides the possibility of esti-
mating safely the differential operators [14] (e.g. curvature)
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Figure 1. (A) is a denoised non-manifold, (B) is a non-denoised
2-manifold, (C) is a denoised 2-manifold, (D) is the textureof (C).
In (A,B,C), the triangle normals are encoded by colors.

used by surface refinements like surface fairing and dense
stereo. In this paper, we use a surface denoising based on
discrete Laplacian [20], whose performances are degraded
if we apply it on a non-manifold surface. Fig. 1 shows an
example for car and street (during winter) reconstructed by
our methods from a sparse SfM point cloud. More gener-
ally, a lot of Computer Graphic algorithms do not apply if
the triangle list is not a 2-manifold [4].

Note that a 2-manifold directly estimated from the sparse
cloud produced by SfM would be ideal for both time and
space complexities. This surface would also be useful for
initializing a more accurate (but more costly) surface recon-
struction method such as surface deformation minimizing
photo-consistency [8, 17]. The dense-stereo/deformation
step is outside the scope of this paper.

To our knowledge, this paper presents the firstincremen-
tal method which provides a2-manifoldfrom asparsecloud
of reconstructed interest points provided bySfM. Here “in-
cremental” means that a 2-manifold obtained before time
t is locally updated using 3d points provided by SfM at
t to obtain the 2-manifold att. SfM is also incremental:
the geometry att (camera poses and sparse point cloud of
the sequence up tot) is a local update of a geometry be-
fore t. We focus on the mapping scenario such as a cam-
era mounted on vehicle/robot/human exploring an unknown
and large scene. In our experiments, a hand-held omnidirec-
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Figure 2. In the 2d case, surfaces, tetrahedra and trianglesare re-
placed by curves, triangles and edges, respectively. (A) curves to
be reconstructed and points which sample the curves. (B) theDe-
launay triangulation of the points (the bold-faced Delaunay edges
approximate the curves). (C) points (circle) and camera locations
(squares) linked by rays (segments). (D) the Delaunay triangles in-
tersected by rays arefree-spaceand are denoted by “F”. The other
triangles arematter. The Delaunay edges separatingfree-space
andmatterare bold-faced.

tional (calibrated) video camera is moving in a city. This is
different to the scenario of a camera moving in a limited
workspace such as desk-like/indoor environments [17].

Section 2 compares our work against others. Sections 3
and 4 describe a batch method [22] and our incremental
method, respectively. The former is useful to describe the
latter. Lastly, the experiments and conclusion are given in
Sections 5 and 6.

2. Previous Work

We discuss the previous works which reconstruct a sur-
face from sparse (not dense) cloud of features reconstructed
by SfM. Since most of these methods use a 3d Delaunay
triangulation, we start with a reminder of what this is.

A lot of surface reconstruction methods [5] are based on
the following property [2]: ifP is a sufficiently dense sam-
ple of points on the (smooth) scene surface, a good approx-
imation of this surface is given by a list of triangles of the
3d Delaunay triangulationT of P . T is a list of tetrahedra
which partitions the convex hull ofP such that (1) the ver-
tices of all tetrahedra areP and (2) the tetrahedra circum-
spheres do not contain a vertex within them. The triangles
are the facets of the tetrahedra. Fig. 2 (A and B) illustrates
this property in the 2d case.

In our case, the points are reconstructed from images and
we know the listVi of indices of images which reconstruct
the 3d pointpi ∈ P . We refer to aray as a line segment
linking pi to thej-th camera locationcj such thatj ∈ Vi.

The free-space carving methods [6, 11, 18, 13, 22] use
rays as visibility constraints to label the tetrahedra of a 3d
Delaunay: a tetrahedron isfree-spaceif it is intersected by
at least one ray, otherwise it ismatter. These methods deal

with sparse cloud of points (or edges [6]), and only [13] is
incremental. They (except [6] and [22]) directly consider
the surface as the list of triangles separating thefree-space
andmattertetrahedra (see Fig. 2). Unfortunately, the result-
ing surface may be non-manifold. For example, the surface
has a singularity at vertexv if all tetrahedra which have ver-
tex v arematter, except twofree-spacetetrahedra∆1 and
∆2 such that the intersection of∆1 and∆2 is exactlyv.
In [6] ([22], respectively), a region growing procedure in the
list of matter(free-space, respectively) tetrahedra removes
all singularities and provides a 2-manifold.

Methods [15, 21, 9] use 2d Delaunay triangulations and
deal with a sparse cloud of features. Only [9] is incremental,
but the surface is not manifold (it may have holes) and the
approach is applied to a small sequence of real images.

3. Batch Surface Reconstruction

The batch method is useful to describe our incremental
method. Its steps are 3d Delaunay, Ray tracing, 2-Manifold
Extraction, Topology Extension, and Surface Denoising.

3d Delaunay Triangulation T Assume that SfM esti-
mates the geometry of the whole image sequence. The ge-
ometry includes the sparse cloud of points{pi}, camera
locations{cj} and rays defined by visibility lists{Vi} (no-
tations in Section 2). Pointpi has poor accuracy if it is
reconstructed in degenerate configuration [7]: ifpi and all
cj , j ∈ Vi are nearly collinear. This case occurs in part of
the camera trajectory which is a straight line and if points
reconstructed from this part are close to the straight line.
Thus,pi is added inT if and only if there is an anglêcjpick

(j, k ∈ Vi) larger than thresholdǫ.
We also add extra points inT . For the clarity of our cur-

rent paper, we only mention that (1) these extra points act
reconstructed points with empty visibility lists and (2) they
are randomly added in the neighborhood of the camera tra-
jectory. The reason (removal of spurious arks/handles) and
technical details are in Section 4 of our previous paper [22].

Ray Tracing As all tetrahedra are initializedmatter, ray-
tracing is applied to each ray to force intofree-spaceall
tetrahedra intersected by the ray.T is defined by a graph:
a graph vertex is a tetrahedron, a graph edge is a triangle
between two tetrahedra. Tracing a raycjpi is a walk in
the graph, starting from the tetrahedron which containscj ,
moving to another tetrahedron through the triangle inter-
sected by the line segmentcjpi, stopping in tetrahedron
which has vertexpi. Now we know the label (matteror
free-space) of all tetrahedra which partition the convex hull
C of the points, but the label ofR3 \ C is unknown. In our
case, the points are reconstructed in almost all directions
around view points (we reconstruct an environment). Thus,
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Figure 3. v is regular since the edges opposite tov define
a simple polygonabcdefga on the surface. v

′ and v
′′ are

not regular since polygonsa′b′c′d′e′f ′g′a′
− p′q′r′t′p′ and

a′′b′′c′′d′′e′′f ′′g′′p′′q′′g′′a′′ are not simple (the former is not con-
nected, the latter has multiple vertexg′′).

view points and rays are in the convex hull of the points.
Since the rays do not intersectR3 \ C, R3 \ C is matter.

2-Manifold Test The target surfaceS is a list of triangles
of T which should be 2-manifold. Letv be a point inS.
We say thatv is regular if it has a neighborhood inS which
is topologically a disk. Otherwisev is singular. By defi-
nition, S is 2-manifold if all its points are regular. In our
context whereS is a list of triangles ofT , it is sufficient to
check that each vertexv of S is regular using the following
neighborhood ofv: the list of theS triangles which have
vertexv [3]. Then,v is regular if and only if the edges op-
posite tov in the triangles ofS havingv as vertex form a
simple polygon (Fig. 3). A simple polygon is topologically
a circle, i.e. a list of segments which forms a closed path
without self-intersection.

2-Manifold Extraction The target surfaceS should also
separatefree-spaceandmatteras far as possible, under the
constraint that it is 2-manifold. A 2-manifold cutsR3 in re-
gions labeledoutside(outside the matter) andinside. Here
the outsideregion O contains a maximum offree-space
tetrahedra and does not containmatter tetrahedron. A re-
gion growing process is used:O grows from∅ by adding
free-spacetetrahedra one by one, such that the borderδO
of O remains 2-manifold. The finalδO is S. We know that
δO is 2-manifold if and only if allδO vertices are regular.
Since tetrahedra are added one by one, the neighborhoods
of at most four vertices ofδO (those of the added tetrahe-
dron) are modified. So we only need to check that these
vertices are regular after the tetrahedron is added. If thisis
not the case, this tetrahedron is removed fromO and we try
another one. The finalO depends on the addition order of
the tetrahedra inO. We choose the addedfree-spacetetra-
hedron such that it has a facet included inδO, i.e. it is in
the neighborhood ofO. A priority is also defined for each
free-spacetetrahedron: the number of rays which intersect
the tetrahedron. The tetrahedra in the neighborhood ofO
are stored in a heap (priority queue) for fast selection of the
tetrahedron with the largest priority.

The inputs of the region growing are the initialO, the set
F0 of tetrahedra where the growing is possible, the setQ0 of

tetrahedra which includes the initial value of the heap, and
function r which maps a tetrahedron∆ to the number of
rays which intersect∆. In the batch case,O = ∅, Q0 = T
andF0 is the list offree-spacetetrahedra ofT . The output
is O. Here is the algorithm in C style.

// **** initialization of priority queue (heap)Q ****
Q = ∅;
if (O==∅) { // used by batch algo.

let ∆ ∈ F0 be such thatr(∆) is maximum;
Q← Q ∪ {∆};
} else // used by topology extension and incremental algo.

for each tetrahedron∆ in Q0 ∩ F0

if (∆ /∈ O and one of its 4 neighbors is inO)
Q← Q ∪ {∆};

// **** region growing of O ****
while (Q!=∅) {

pick fromQ the∆ which has the largestr(∆);
if (∆ ∈ O) continue;
O← O ∪ {∆};
if (all vertices of∆ are regular){ // read the Appendix

for each∆′ in the list of the four∆ neighbors
if (∆′ ∈ F0 and∆′ /∈ O) Q← Q ∪ {∆′};

} elseO← O \ {∆};
}

Topology Extension TheδO genus can not be changed if
the tetrahedra are added one by one by the algorithm above:
O always has the ball topology. This is problematic if the
trueoutsidedoes not have the ball topology, e.g. if the cam-
era trajectory contains closed loop(s) around building(s).
In the simplest case of one loop, the trueoutsidehas the
toroid topology and the computedoutsideO can not close
the loop. This problem is corrected as follows. First, we
find a vertex inδO such that allinsidetetrahedra incident to
this vertex arefree-space. Second, we force all these tetra-
hedra tooutside(O is increased). Third, we check that all
vertices of these tetrahedra are regular. In case of failure(s),
these tetrahedra are restored toinside(O is decreased). Fi-
nally, we alternate this scheme and the previous algorithm
until no more tetrahedron can be added inO. Here,Q0 is the
list of tetrahedra neighbors of the forced tetrahedra above,
andF0 is unchanged.

Surface Denoising TheS reconstruction noise is reduced
thanks to a smoothing filterp′ = p + ∆p wherep is a
vertex ofS and∆p is a discrete Laplacian defined onS
vertices [20]. The smoothedp′ is stored in a distinct array
of p. We don’t applyp ← p

′ to avoid the computation
overhead due to vertex update inT .
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4. Incremental Surface Reconstruction

Our method is defined by a main loop which alternates
the incremental versions of the steps in Section 3. Integert
specifies the current time and the keyframe index.

Incremental SfM First, a new keyframe is selected from
the input video and interest points are matched with the
previous keyframe using correlation. The new keyframe is
such that the number of its matches with the two previous
keyframes is larger than a threshold. Then, the new pose is
robustly estimated (using Grunert’s method and RANSAC)
and new 3d points are reconstructed from the new matches.
Lastly, local bundle adjustment refines the geometry of the
l-most recent keyframes. Usingl = 3, the l most recent
keyframes aret− 2, t− 1 andt. No more details are given
on this SfM step since it is similar to [16].

3d Delaunay Triangulation T We add pointp to T once
p reaches its final value by SfM. From the computational
standpoint, this is efficient since we don’t need to updateT
every time SfM updatesp. More precisely, we add inT at
time t (after the SfM step att) every 3d pointp such that
its last track is in keyframet − 2. As in the batch case, we
check thatp is not in a degenerate configuration and we add
extra points. A fixed number of extra points is added in the
neighborhood ofct.

Dating Our incremental method needs a creation date for
all tetrahedra and vertices. Furthermore, we use the Delau-
nay implementation of CGAL [1] which adds the points one
by one toT . The adding ofp destroys listLd(p) of tetrahe-
dra and creates listLc(p) of other tetrahedra. So we assign
datet to p and to the tetrahedra ofLc(p) if p is added to
T at timet. We also need the smallest datedt of all outside
tetrahedra inLd(p) destroyed at timet (for all p added at
t). Each tetrahedron was labeledoutsideor insideby the 2-
manifold step below. Both listsLc(p) andLd(p) are easy
to compute thanks to CGAL functions.

Ray Tracing Tracing all rays available at datet is too
time consuming. Here we do the following approximation:
the label (free-spaceor matter) of a tetrahedron is defined
by the rays which have creation dates similar to or greater
than that of the tetrahedron. A ray has the creation date of
its 3d point, defined in the “Dating” step. According to this
approximation, we only need to ray-trace the most recent
rays. At datet, we apply ray-tracing to the small list of rays
which have creation dates in{t− k, · · · , t− 1, t}, wherek
is a threshold.

2-Manifold Extraction Starting the region growing from
O = ∅ as in the batch case is too time consuming. In the

Figure 4. Region growing for imaget = 98. The number of tetra-
hedra layers contained in a pack isn = 20. Left: before region
growing for image 98, the 2-manifolds of layers 20, 40, 60, 80and
97 are already computed. Left-middle: point insertion destroys
tetrahedra. The earliest creation date of tetrahedra whichare de-
stroyed due to point additions inT is dt = 51. Right-middle:
the 2-manifolds of layers 60, 80, and 97 are invalid and destroyed.
Right: region growing from layerni0 to layer 98 by pack ofn.

incremental case, we propose a method which starts the re-
gion growing from a listO obtained at a recent date. We
regroup thefree-spacetetrahedra into different layersLt′

by creation datet′ and the idea of growing the outsideO
by layer of creation date comes naturally to mind. We grow
O layer by layer, and for each layer, onlyfree-spacetetra-
hedra created before or at this layer can be added intoO.
As a result, for each layer, we could extract a 2-manifold
as the border of the tetrahedra listO. Then the 2-manifold
of the next layer can be easily computed by starting from
that of the current layer. In practice, we prefer to grow by
pack ofn layers for efficiency. At each timet, the method
holds several lists ofoutsidetetrahedra which correspond to
particular creation dates (multiples ofn): On, O2n, ... Oitn

whereit is the largest integer such thatitn ≤ t. These lists
and another listOt of outsidetetrahedra meet

On ⊆ O2n ⊆ · · · ⊆ O(it−1)n ⊆ Oitn ⊆ Ot

∀t′ ∈ {n, 2n, · · · , itn, t}, Ot′ ⊆ L1 ∪ L2 ∪ · · · ∪ Lt′

and the border ofOt′ is 2-manifold. (1)

The border ofOt is the target 2-manifoldS at timet. Fur-
thermore, the region growing at timet + 1 is started from
one of theOt′ lists above.

To simplify notations in this Section, timet starts from
1 (not 0) and we defineO0 = ∅. If t ≤ n, we apply the
batch region growing in allfree-spacetetrahedra fromO0

to obtainOt. Now assume thatt > n. The algorithm works
from Eq. 1 att − 1 to Eq. 1 att. Fig. 4 illustrates this if
t = 98, n = 20, dt = 51. Remember that the point addi-
tions at timet destroy tetrahedra and we know the smallest
datedt of the destroyedoutsidetetrahedra. Leti0 be the
largest integer such thati0n < dt. If i ≤ i0, Oin is un-
changed and its border is still manifold. Ifi0 < i, tetrahedra
may be destroyed inOin, its border may be non manifold
andOin should be recomputed. Time starts from1, thus
1 ≤ dt, 0 ≤ i0 andOi0n exists. Then we apply region grow-
ing (2-manifold extraction in Section 3) fromOi0n to obtain
O(i0+1)n. We also apply region growing fromO(i0+1)n to
obtainO(i0+2)n and so on, until we obtainOitn. Lastly, we
apply region growing fromOitn to obtainOt. Remember
thatF0 andQ0 should also be defined for region growing
from Oin to obtainO(i+1)n (or Ot), as mentioned in Sec-
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tion 3. For time complexity reason, we don’t useQ0 = T
but the most recent layersQ0 = Lin−b0 ∪ · · · ∪ L(i+1)n

whereb0 ∈ N is constant. We also defineF0 by the free-
spacetetrahedra ofL(i0−1)n ∪ · · · ∪ L(i+1)n (not those of
L0 ∪ · · · ∪ L(i+1)n).

Topology Extension TheOin (includingOt) obtained at
the previous step are improved by an incremental version of
“Topology Extension” (Section 3) after the region growing
from O(i−1)n to Oin. The improvedOin still meet Eq. 1.
“Topology Extension” is only applied to the most recent
vertices ofS which have creation datesin − b1, · · · , in −
1, in whereb1 ∈ N is a threshold. These vertices are only
tried once (there is only one “2-Manifold Extraction” and
one “Topology Extension” for a giveni). Here we useQ0

of Section 3 andF0 is the list of free-spacetetrahedra of
L(i0−1)n ∪ · · · ∪ Lin.

Surface Denoising Denoising all vertices ofS is too
time consuming. In the incremental case, we only need to
smooth vertexp of S if its smoothingp′ at timet is differ-
ent to that att − 1 due to the steps above. As in Section 3,
the smoothing isp′ = p + ∆p where∆p only depends
onp andN (p). NeighborhoodN (p) is the list of vertices
which are connected top by an edge ofS. Thusp′ is (re)-
calculated ifp is a new vertex ofS or if N (p) changes att.
The tetrahedra listOt\Oi0n is theoutsidevolume grown by
steps “2-Manifold Extraction” and “Topology Extension”
at t. Furthermore, allS changes att are on the border of
Ot \Oi0n. So we (re)-calculatep′ if N (p) ∪ {p} contains
at least one vertex of the border ofOt \Oi0n.

5. Experiments

5.1. Synthetic Sequence

Here we compare the performances of the batch (Sec-
tion 3) and the incremental (Section 4) surface reconstruc-
tion methods on the same sparse cloud of 3d points esti-
mated from images of a synthetic scene. The synthetic
scene is manually generated from real images taken in a
city. The trajectory is a 230 m long closed loop around a
building including several shops. The images are generated
by ray-tracing and taking into account the ray reflection on
the mirror. The catadioptric camera has axial symmetry.
The large circle, which contains the scene projection in the
image, has a 600 pixel radius. Fig. 5 (top-left corner) shows
two images of the synthetic sequence.

SfM [12] reconstructs600 camera poses and a sparse
cloud of257336 3d points from the sequence. We approx-
imate the true calibration by a central model and refine the
radial distortion parameters using bundle adjustment. We
estimate the similarity transformationR which minimizes
E(R) =

∑599
i=0 ||R(ci)− c

g
i ||

2, whereci andc
g
i are the es-

Figure 5. Two omnidirectional images, the sparse point cloud (and
camera trajectory) by SfM, the batch surface, the final incremental
surface. We remove the triangles on the sky to make viewing in
the figure easier.

timated locations and the ground truth locations of the cam-
era, respectively (ci is at the camera center andcg

i is at the
mirror apex). We found

√

E(R)/600 = 5.1 cm and useR
to map the estimated geometry (poses and point cloud) in
the ground truth coordinate system.

Both batch and incremental methods select points using
ǫ = 10 degrees and add 2 extra points in the neighborhood
of everyct (3d Delaunay Triangulation step). The incre-
mental method has parametersk = 40 (Ray-Tracing step),
n = 60 andb0 = 10 (2-Manifold Extraction step),b1 = 10
(Topology Extension step).

Qualitative Comparison Before using the ground truth,
it is interesting to compare batch and incremental results.
The 3d Delaunay triangulation has 123196 vertices and
750219 tetrahedra. The numbers offree-spacetetrahedra
are 494562 for batch and 490174 for incremental (the dif-
ference is 0.9%). The batch and incremental (final) surfaces
have 233273 and 231826 triangles, respectively.

Remember that the listO of outsidetetrahedra grows in
the list of free-spacetetrahedra. Thus the ratio between
the numbers ofoutsideand free-spacetetrahedra can be
used to compare the performances of the growing steps (2-
Manifold Extraction and Topology Extension). Batch sur-
face has 89.1% and incremental (final) surface has 85.8%.
We explain this results as follows: the incremental growing
is more constrained than the batch growing. In the incre-
mental case, both dating and manifold constraints are used.
The batch method only uses manifold constraints. In prac-
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Table 1. Errors of batch and incremental (final) surfaces using
ground truth surface. The numbers between parentheses are ob-
tained for twice smaller images.

method inliers (%) median (cm) 90% quantile (cm)
batch 75.7 (73.9) 8.0 (64.3) 55 (103)

increm. 72.4 (69.7) 8.6 (71.0) 50 (106)

tice, the ratio can not reach 100% since ray-tracing alone
does not enforce the manifold constraint betweenfree-space
andmattertetrahedra.

Quantitative Comparison Now we define an error func-
tion to compare the estimated surface (batch or incremental)
against the ground truth surface. At first glance, we could
use distancee(p) between the ground truth surface and ver-
tex p of the estimated surface [19]. Unfortunately, this er-
ror is biased in favor of reconstructed areas which have the
largest densities of reconstructed points (ground parts have
low textures and densities, walls have high densities). A
second idea is the use of the same error such thatp samples
uniformly the estimated surface. However, this method has
drawback since the closest point in the ground truth surface
does not necessarily correspond to the same pointp.

Our solution does not have the problems above. Letq be
a pixel in an image of the sequence. Letpe be the intersec-
tion of the estimated surface and the back-projected ray of
q by the estimated camera pose. Letpg be the intersection
of the ground truth surface and the back-projected ray ofq

by the ground truth camera pose. In both cases, if there are
several intersections, we take the intersection which is the
closest to the camera pose. Then we usee(q) = ||pe−pg||.
If pg does not exist ore(q) > µ0 (whereµ0 = 2 m), we as-
sume that the point matching(pe,pg) is outlier (e.g. for the
pixels of the sky) and we ignore the error forq. In practice,
we estimate the statistic ofe(q) by uniform sampling ofq
in all images of the sequence. We sample 6000000 pixels
in the sequence. Tab. 1 provides the results for both batch
and incremental methods. We see that the batch method has
slightly better results than the incremental method.

Lastly, the same experiment (both SfM and surface cal-
culations) is re-done for the same images down-sampled by
2. We found

√

E(R)/600 = 56 cm, which implies that the
SfM drift is larger than in the previous case. According to
Tab. 1, the batch surface is still the best and the surface ac-
curacies are degraded. Fig. 5 shows the sparse point cloud
by SfM and the surfaces.

5.2. Real Sequence

Our (equiangular) calibrated catadioptric camera is the
0-360 mirror mounted on the Canon Legria HSF10. We
take a 1920*1080 AVCHD (MP4) video walking in a city

Figure 6. From left to right: our hand-held camera, two images of
the sequence, aerial view of the trajectory, the sparse point cloud
reconstructed by incremental SfM.

Figure 7. Images of the incremental surface reconstruction(also
in the joint video). Top: gray levels encode the triangle normals.
Bottom: one omnidirectional image is used for texture mapping.
The black areas are due to triangles without texture in this image.

during 505 seconds and pointing the mirror toward the sky
by hand. Ground truth is not available, but we know that the
trajectory length is about 800 m. The view field is 360 de-
grees in the horizontal plane and 51-58 degrees above and
below. Fig. 6 shows our camera and several images of the
sequence. The horizontal and vertical radii of the large el-
lipse, which contains the scene projection in the images, are
700 and 693 pixels, respectively.

The method in Section 4 is applied to the (down-sampled
by 2) images with the same parameters as in Section 5.1.
1033 keyframes are selected from 25278 images. About
600 Harris points are matched by correlation in three con-
secutive keyframes. Fig. 6 shows the 187588 reconstructed
points by incremental SfM for the complete sequence. The
SfM drift is also visible thanks to an aerial photography (un-
used by our method).

Fig. 7 shows the surface obtained at five different timest.
The observer moves in the scene such that he/she is observ-
ing the most recent part of the surface at a (roughly) con-
stant distance. This part is mainly within a ball whose center
is ct−2 at t. At time t, the observer is located atct−20 and
is looking towardsct−2. The observer and the surface end
come forward simultaneously. These images are extracted
from the joint video at http://maxime.lhuillier.free.fr.

Fig. 8 shows one global view and two local views of the
last surface, which has 234354 triangles and 117145 ver-
tices. 89.3% offree-spacetetrahedra areoutsidetetrahedra.
Remember that the surface is closed, so it also models the
sky. In the figure, we remove the triangles on the sky to
make viewing easier. Also we note that enforcing the man-
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Figure 8. Views of the incremental (final) surface.

ifold constraint is not an option. If we simply define the
final surfaceS by the list of triangles betweenfree-space
andmattertetrahedra, we find that 25.5% of theS vertices
are not regular. Fig. 1 shows that this degrades the quality.

Fig. 9 (on the left) shows the computation times of

the different steps at each timet: “Delaunay” in yel-
low (3d Delaunay Triangulation+Dating), “Carving” in
blue (Ray Tracing), “Manifold” in red (2-Manifold Ex-
traction+Topology Extension), “Post-processing” in green
(Surface Denoising) and “Total” in black. We use a Core
2 Duo E8500 at 3.16 GHz. About121 points per time
are added to the 3d Delaunay triangulation. “Delaunay”
and “Post-processing” have almost negligible computation
times in comparison to the other steps. “Carving” is less
than 190 ms. Ift ∈ [0, 925], “Manifold” is less than 200 ms.
In the other cases, “Manifold” is between 50 and 600 ms.

Thanks to Fig. 9 (on the right), we see that the compu-
tation times of “Manifold” and “Post-Processing”globally
increase ift − dt increases andt − dt > 50. . Further-
more,t− dt < 280 in the whole sequence. Remember that
dt is the smallest date of alloutsidetetrahedra destroyed
at timet by “Delaunay”. These results are consistent with
those of a theoretical time complexity study: Delaunay and
Carving are O(1), Manifold is O((t− dt) log(t− dt)), Post-
Processing is O(t−dt). Actually, these tight bounds should
be considered as conjectures since the proofs use strong as-
sumptions and will be submitted in another paper.

We now explain the large values of “Manifold” ift ∈
[925, 1032]. In a complete trajectory loop, vertices added at
the loop end (at timet) destroyoutsidetetrahedra created
at the loop beginning (at timedt) since these vertices and
tetrahedra have similar 3d locations. The larger the loop,
the largert− dt, and the larger the “Manifold” (and “Post-
Processing”) computation time. Fig. 6 shows that the recon-
structed trajectory has two incomplete (about 75%) loops: a
large one on the top and a small one on the bottom. Here the
loops are incomplete but the same principle applies for the
small loop which is 75% closed ift ∈ [925, 1032]: there are
times in [925, 1032] such that added vertices destroyout-
sidetetrahedra created at the loop beginning. This does not
apply in the large loop case since (1) the added vertices and
outsidetetrahedra are in a tubular neighborhood of the cam-
era trajectory and (2) the neighborhood radius is less than
the (divided by 2) distance between both ends of the loop.
Fig. 8 shows the neighborhood and its size; the small loop
is on the top and the large loop on the bottom.

6. Conclusion

To our knowledge, this paper presents the first system
with four features:incrementalreconstruction for triangu-
lated manifold surface fromsparsepoint cloud generated
by SfM. In experiments, we use a synthetic image sequence
to compare and discuss the performance of our incremen-
tal method and the related batch method. Although the
batch method has slightly better results than our incremen-
tal method, the latter is interesting for online applications
that the former can not solve. We also reconstruct parts of a
city using a hand-held omnidirectional camera and provide
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Figure 9. Calculation times of the incremental surface reconstruction as a function oft (left) or a function oft − dt (right).

a detailed explanation of the computation times.
Several steps of the method can be improved and are sub-

jects for future work. Image edges could be reconstructed
and integrated in the Delaunay to improve the surface. The
region-growing step should be accelerated in the case of a
closed loop in the camera trajectory. Currently, the surface
is denoised assuming that the point cloud is dense enough to
estimate a discrete Laplacian. This improves the surface but
it would be better to design a dedicated denoising method
for sparse SfM point clouds. Lastly, we plan to use our
method for online applications, larger data sets, and to ini-
tialize surface reconstruction methods which are more time
expensive and more accurate.

Appendix: Region Growing Acceleration

Here is a note to accelerate the “2-Manifold Extraction”
step. In the algorithm of Section 3, we first insert tetrahe-
dron∆ in O and then check ifδO is 2-manifold. However,
we can do this faster (as in [3]) if we first check a condition
on the neighborhood of∆ and then add∆ to O (if the con-
dition is meet). Letf be the number of∆ facets which are
in δO. If f = 1, ∆ is added toO if and only if the vertex
of ∆, which is not in theδO facet, does not have adjacent
tetrahedron inO. If f = 0, ∆ is added toO if and only if the
four vertices meet this same condition. Iff = 2, ∆ is added
to O if and only if the edge of∆, which is not an edge of
the twoδO facets, does not have adjacent tetrahedron inO.
If f = 3 or f = 4, ∆ is added toO. In our implementation,
we greatly accelerate these computations by precalculating
for each vertex the list of its adjacent tetrahedra.
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