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Incremental Reconstruction of Manifold Surface from Sparse Visual Mapping

Automatic image-based-modeling usually has two steps: Structure from Motion (SfM) and the estimation of a triangulated surface. The former provides camera poses and a sparse point cloud. The latter usually involves dense stereo. From the computational standpoint, it would be nice to avoid dense stereo and estimate the surface from the sparse cloud directly. Furthermore, it would be useful for online applications to update the surface while the camera is moving in the scene. This paper deals with both requirements: it introduces an incremental method which reconstructs a surface from a sparse cloud estimated by incremental SfM. The context is new and difficult since we ensure the resulting surface to be manifold at all times. The manifold property is important since it is needed by differential operators involved in surface refinements. We have experimented with a hand-held omnidirectional camera moving in a city.

Introduction

The estimation of the scene surface viewed by a camera is an important requirement for applications such as augmented reality, collision detection while moving along a planned path, environment modeling etc. However, the majority of methods which produce a 2-manifold (e.g. dense multi-view stereo [START_REF] Seitz | A comparison and evaluation of multi-view stereo reconstruction algorithms[END_REF] or methods based on [START_REF] Kazhdan | Poisson surface reconstruction[END_REF]) are batch methods. They are not easy to adapt to the incremental context where a surface is computed at all times from the progressive availability of images or 3d points.

In a 2-manifold (i.e. 2d topological manifold surface), each point of the surface has a surface neighborhood which is homeomorphic to a disk. Thus, a triangulated 2-manifold is not a simple soup of badly connected triangles. Each triangle is exactly connected by its 3 edges to 3 other triangles, the surface has neither holes nor self-intersections, and it cuts R 3 into free-space and matter regions. Here we assume that the 2-manifold is triangulated.

The manifold property provides the possibility of estimating safely the differential operators [START_REF] Meyer | Discrete differential-geometry operators for triangulated 2-manifolds[END_REF] used by surface refinements like surface fairing and dense stereo. In this paper, we use a surface denoising based on discrete Laplacian [START_REF] Taubin | A signal processing approach to fair surface design[END_REF], whose performances are degraded if we apply it on a non-manifold surface. Fig. 1 shows an example for car and street (during winter) reconstructed by our methods from a sparse SfM point cloud. More generally, a lot of Computer Graphic algorithms do not apply if the triangle list is not a 2-manifold [START_REF] Botsch | Polygon Mesh Processing[END_REF]. Note that a 2-manifold directly estimated from the sparse cloud produced by SfM would be ideal for both time and space complexities. This surface would also be useful for initializing a more accurate (but more costly) surface reconstruction method such as surface deformation minimizing photo-consistency [START_REF] Hiep | Towards high-resolution large-scale multi-view stereo[END_REF][START_REF] Newcombe | Live Dense Reconstruction with a Single Moving Camera[END_REF]. The dense-stereo/deformation step is outside the scope of this paper.

To our knowledge, this paper presents the first incremental method which provides a 2-manifold from a sparse cloud of reconstructed interest points provided by SfM. Here "incremental" means that a 2-manifold obtained before time t is locally updated using 3d points provided by SfM at t to obtain the 2-manifold at t. SfM is also incremental: the geometry at t (camera poses and sparse point cloud of the sequence up to t) is a local update of a geometry before t. We focus on the mapping scenario such as a camera mounted on vehicle/robot/human exploring an unknown and large scene. In our experiments, a hand-held omnidirec- tional (calibrated) video camera is moving in a city. This is different to the scenario of a camera moving in a limited workspace such as desk-like/indoor environments [START_REF] Newcombe | Live Dense Reconstruction with a Single Moving Camera[END_REF].
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Section 2 compares our work against others. Sections 3 and 4 describe a batch method [START_REF] Yu | Surface reconstruction of scenes using a catadiopric camera[END_REF] and our incremental method, respectively. The former is useful to describe the latter. Lastly, the experiments and conclusion are given in Sections 5 and 6.

Previous Work

We discuss the previous works which reconstruct a surface from sparse (not dense) cloud of features reconstructed by SfM. Since most of these methods use a 3d Delaunay triangulation, we start with a reminder of what this is.

A lot of surface reconstruction methods [START_REF] Cazals | Delaunay triangulation based surface reconstruction: ideas and algorithms[END_REF] are based on the following property [START_REF] Amenta | Surface reconstruction by voronoi filtering[END_REF]: if P is a sufficiently dense sample of points on the (smooth) scene surface, a good approximation of this surface is given by a list of triangles of the 3d Delaunay triangulation T of P . T is a list of tetrahedra which partitions the convex hull of P such that (1) the vertices of all tetrahedra are P and (2) the tetrahedra circumspheres do not contain a vertex within them. The triangles are the facets of the tetrahedra. Fig. 2 (A andB) illustrates this property in the 2d case.

In our case, the points are reconstructed from images and we know the list V i of indices of images which reconstruct the 3d point p i ∈ P . We refer to a ray as a line segment linking p i to the j-th camera location c j such that j ∈ V i .

The free-space carving methods [START_REF] Faugeras | Representing stereo data with the delaunay triangulation[END_REF][START_REF] Labatut | Efficient multi-view reconstruction of large-scale scenes using interest points, Delaunay triangulation and Graph-Cuts[END_REF][START_REF] Pan | ProFORMA: probabilistic feature-based on-line rapid model acquisition[END_REF][START_REF] Lovi | Incremental free-space carving for real-time 3d reconstruction[END_REF][START_REF] Yu | Surface reconstruction of scenes using a catadiopric camera[END_REF] use rays as visibility constraints to label the tetrahedra of a 3d Delaunay: a tetrahedron is free-space if it is intersected by at least one ray, otherwise it is matter. These methods deal with sparse cloud of points (or edges [START_REF] Faugeras | Representing stereo data with the delaunay triangulation[END_REF]), and only [START_REF] Lovi | Incremental free-space carving for real-time 3d reconstruction[END_REF] is incremental. They (except [START_REF] Faugeras | Representing stereo data with the delaunay triangulation[END_REF] and [START_REF] Yu | Surface reconstruction of scenes using a catadiopric camera[END_REF]) directly consider the surface as the list of triangles separating the free-space and matter tetrahedra (see Fig. 2). Unfortunately, the resulting surface may be non-manifold. For example, the surface has a singularity at vertex v if all tetrahedra which have vertex v are matter, except two free-space tetrahedra ∆ 1 and ∆ 2 such that the intersection of ∆ 1 and ∆ 2 is exactly v. In [START_REF] Faugeras | Representing stereo data with the delaunay triangulation[END_REF] ( [START_REF] Yu | Surface reconstruction of scenes using a catadiopric camera[END_REF], respectively), a region growing procedure in the list of matter (free-space, respectively) tetrahedra removes all singularities and provides a 2-manifold.

Methods [START_REF] Morris | Image-consistent surface triangulation[END_REF][START_REF] Taylor | Surface reconstruction from feature based stereo[END_REF][START_REF] Hilton | Scene modelling from sparse 3d data[END_REF] use 2d Delaunay triangulations and deal with a sparse cloud of features. Only [START_REF] Hilton | Scene modelling from sparse 3d data[END_REF] is incremental, but the surface is not manifold (it may have holes) and the approach is applied to a small sequence of real images.

Batch Surface Reconstruction

The batch method is useful to describe our incremental method. Its steps are 3d Delaunay, Ray tracing, 2-Manifold Extraction, Topology Extension, and Surface Denoising.

3d Delaunay Triangulation T Assume that SfM estimates the geometry of the whole image sequence. The geometry includes the sparse cloud of points {p i }, camera locations {c j } and rays defined by visibility lists {V i } (notations in Section 2). Point p i has poor accuracy if it is reconstructed in degenerate configuration [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF]: if p i and all c j , j ∈ V i are nearly collinear. This case occurs in part of the camera trajectory which is a straight line and if points reconstructed from this part are close to the straight line. Thus, p i is added in T if and only if there is an angle c j p i c k (j, k ∈ V i ) larger than threshold ǫ.

We also add extra points in T . For the clarity of our current paper, we only mention that (1) these extra points act reconstructed points with empty visibility lists and (2) they are randomly added in the neighborhood of the camera trajectory. The reason (removal of spurious arks/handles) and technical details are in Section 4 of our previous paper [START_REF] Yu | Surface reconstruction of scenes using a catadiopric camera[END_REF].

Ray Tracing As all tetrahedra are initialized matter, raytracing is applied to each ray to force into free-space all tetrahedra intersected by the ray. T is defined by a graph: a graph vertex is a tetrahedron, a graph edge is a triangle between two tetrahedra. Tracing a ray c j p i is a walk in the graph, starting from the tetrahedron which contains c j , moving to another tetrahedron through the triangle intersected by the line segment c j p i , stopping in tetrahedron which has vertex p i . Now we know the label (matter or free-space) of all tetrahedra which partition the convex hull C of the points, but the label of R 3 \ C is unknown. In our case, the points are reconstructed in almost all directions around view points (we reconstruct an environment). Thus, Figure 3. v is regular since the edges opposite to v define a simple polygon abcdef ga on the surface. v ′ and v ′′ are not regular since polygons a
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view points and rays are in the convex hull of the points. Since the rays do not intersect R 3 \ C, R 3 \ C is matter.

2-Manifold Test

The target surface S is a list of triangles of T which should be 2-manifold. Let v be a point in S. We say that v is regular if it has a neighborhood in S which is topologically a disk. Otherwise v is singular. By definition, S is 2-manifold if all its points are regular. In our context where S is a list of triangles of T , it is sufficient to check that each vertex v of S is regular using the following neighborhood of v: the list of the S triangles which have vertex v [START_REF] Boissonnat | Geometric structures for three-dimensional shape representation[END_REF]. Then, v is regular if and only if the edges opposite to v in the triangles of S having v as vertex form a simple polygon (Fig. 3). A simple polygon is topologically a circle, i.e. a list of segments which forms a closed path without self-intersection.

2-Manifold Extraction

The target surface S should also separate free-space and matter as far as possible, under the constraint that it is 2-manifold. A 2-manifold cuts R 3 in regions labeled outside (outside the matter) and inside. Here the outside region O contains a maximum of free-space tetrahedra and does not contain matter tetrahedron. A region growing process is used: O grows from ∅ by adding free-space tetrahedra one by one, such that the border δO of O remains 2-manifold. The final δO is S. We know that δO is 2-manifold if and only if all δO vertices are regular. Since tetrahedra are added one by one, the neighborhoods of at most four vertices of δO (those of the added tetrahedron) are modified. So we only need to check that these vertices are regular after the tetrahedron is added. If this is not the case, this tetrahedron is removed from O and we try another one. The final O depends on the addition order of the tetrahedra in O. We choose the added free-space tetrahedron such that it has a facet included in δO, i.e. it is in the neighborhood of O. A priority is also defined for each free-space tetrahedron: the number of rays which intersect the tetrahedron. The tetrahedra in the neighborhood of O are stored in a heap (priority queue) for fast selection of the tetrahedron with largest priority.

The inputs of the region growing are the initial O, the set F 0 of tetrahedra where the growing is possible, the set Q 0 of tetrahedra which includes the initial value of the heap, and function r which maps a tetrahedron ∆ to the number of rays which intersect ∆. In the batch case, O = ∅, Q 0 = T and F 0 is the list of free-space tetrahedra of T . The output is O. Here is the algorithm in C style. 

if (∆ ′ ∈ F 0 and ∆ ′ / ∈ O) Q ← Q ∪ {∆ ′ }; } else O ← O \ {∆}; }
Topology Extension The δO genus can not be changed if the tetrahedra are added one by one by the algorithm above: O always has the ball topology. This is problematic if the true outside does not have the ball topology, e.g. if the camera trajectory contains closed loop(s) around building(s). In the simplest case of one loop, the true outside has the toroid topology and the computed outside O can not close the loop. This problem is corrected as follows. First, we find a vertex in δO such that all inside tetrahedra incident to this vertex are free-space. Second, we force all these tetrahedra to outside (O is increased). Third, we check that all vertices of these tetrahedra are regular. In case of failure(s), these tetrahedra are restored to inside (O is decreased). Finally, we alternate this scheme and the previous algorithm until no more tetrahedron can be added in O. Here, Q 0 is the list of tetrahedra neighbors of the forced tetrahedra above, and F 0 is unchanged.

Surface Denoising

The S reconstruction noise is reduced thanks to a smoothing filter p ′ = p + ∆p where p is a vertex of S and ∆p is a discrete Laplacian defined on S vertices [START_REF] Taubin | A signal processing approach to fair surface design[END_REF]. The smoothed p ′ is stored in a distinct array of p. We don't apply p ← p ′ to avoid the computation overhead due to vertex update in T .

Incremental Surface Reconstruction

Our method is defined by a main loop which alternates the incremental versions of the steps in Section 3. Integer t specifies the current time and the keyframe index.

Incremental SfM First, a new keyframe is selected from the input video and interest points are matched with the previous keyframe using correlation. The new keyframe is such that the number of its matches with the two previous keyframes is larger than a threshold. Then, the new pose is robustly estimated (using Grunert's method and RANSAC) and new 3d points are reconstructed from the new matches. Lastly, local bundle adjustment refines the geometry of the l-most recent keyframes. Using l = 3, the l most recent keyframes are t -2, t -1 and t. No more details are given on this SfM step since it is similar to [START_REF] Mouragnon | Generic and real-time structure from motion using local bundle adjustment[END_REF].

3d Delaunay Triangulation T We add point p to T once p reaches its final value by SfM. From the computational standpoint, this is efficient since we don't need to update T every time SfM updates p. More precisely, we add in T at time t (after the SfM step at t) every 3d point p such that its last track is in keyframe t -2. As in the batch case, we check that p is not in a degenerate configuration and we add extra points. A fixed number of extra points is added in the neighborhood of c t .

Dating Our incremental method needs a creation date for all tetrahedra and vertices. Furthermore, we use the Delaunay implementation of CGAL [1] which adds the points one by one to T . The adding of p destroys list L d (p) of tetrahedra and creates list L c (p) of other tetrahedra. So we assign date t to p and to the tetrahedra of L c (p) if p is added to T at time t. We also need the smallest date d t of all outside tetrahedra in L d (p) destroyed at time t (for all p added at t). Each tetrahedron was labeled outside or inside by the 2manifold step below. Both lists L c (p) and L d (p) are easy to compute thanks to CGAL functions.

Ray Tracing Tracing all rays available at date t is too time consuming. Here we do the following approximation: the label (free-space or matter) of a tetrahedron is defined by the rays which have creation dates similar to or greater than that of the tetrahedron. A ray has the creation date of its 3d point, defined in the "Dating" step. According to this approximation, we only need to ray-trace the most recent rays. At date t, we apply ray-tracing to the small list of rays which have creation dates in {tk, • • • , t -1, t}, where k is a threshold.

2-Manifold Extraction

Starting the region growing from O = ∅ as in the batch case is too time consuming. In the incremental case, we propose a method which starts the region growing from a list O obtained at a recent date. We regroup the free-space tetrahedra into different layers L t ′ by creation date t ′ and the idea of growing the outside O by layer of creation date comes naturally to mind. We grow O layer by layer, and for each layer, only free-space tetrahedra created before or at this layer can be added into O. As a result, for each layer, we could extract a 2-manifold as the border of the tetrahedra list O. Then the 2-manifold of the next layer can be easily computed by starting from that of the current layer. In practice, we prefer to grow by pack of n layers for efficiency. At each time t, the method holds several lists of outside tetrahedra which correspond to particular creation dates (multiples of n): O n , O 2n , ... O itn where i t is the largest integer such that i t n ≤ t. These lists and another list O t of outside tetrahedra meet

O n ⊆ O 2n ⊆ • • • ⊆ O (it-1)n ⊆ O itn ⊆ O t ∀t ′ ∈ {n, 2n, • • • , i t n, t}, O t ′ ⊆ L 1 ∪ L 2 ∪ • • • ∪ L t ′ and the border of O t ′ is 2-manifold.
(1)

The border of O t is the target 2-manifold S at time t. Furthermore, the region growing at time t + 1 is started from one of the O t ′ lists above.

To simplify notations in this Section, time t starts from 1 (not 0) and we define O 0 = ∅. If t ≤ n, we apply the batch region growing in all free-space tetrahedra from O 0 to obtain O t . Now assume that t > n. The algorithm works from Eq. 1 at t -1 to Eq. 1 at t. Fig. 4 illustrates this if t = 98, n = 20, d t = 51. Remember that the point additions at time t destroy tetrahedra and we know the smallest date d t of the destroyed outside tetrahedra. Let i 0 be the largest integer such that i 0 n < d t . If i ≤ i 0 , O in is unchanged and its border is still manifold. If i 0 < i, tetrahedra may be destroyed in O in , its border may be non manifold and O in should be recomputed. Time starts from 1, thus 1 ≤ d t , 0 ≤ i 0 and O i0n exists. Then we apply region growing (2-manifold extraction in Section 3) from O i0n to obtain O (i0+1)n . We also apply region growing from O (i0+1)n to obtain O (i0+2)n and so on, until we obtain O itn . Lastly, we apply region growing from O itn to obtain O t . Remember that F 0 and Q 0 should also be defined for region growing from O in to obtain O (i+1)n (or O t ), as mentioned in Sec-tion 3. For time complexity reason, we don't use

Q 0 = T but the most recent layers Q 0 = L in-b0 ∪ • • • ∪ L (i+1)n
where b 0 ∈ N is constant. We also define F 0 by the freespace tetrahedra of

L (i0-1)n ∪ • • • ∪ L (i+1)n (not those of L 0 ∪ • • • ∪ L (i+1)n ).

Topology Extension

The O in (including O t ) obtained at the previous step are improved by an incremental version of "Topology Extension" (Section 3) after the region growing from O (i-1)n to O in . The improved O in still meet Eq. 1. "Topology Extension" is only applied to the most recent vertices of S which have creation dates inb 1 , • • • , in -1, in where b 1 ∈ N is a threshold. These vertices are only tried once (there is only one "2-Manifold Extraction" and one "Topology Extension" for a given i). Here we use Q 0 of Section 3 and F 0 is the list of free-space tetrahedra of

L (i0-1)n ∪ • • • ∪ L in .
Surface Denoising Denoising all vertices of S is too time consuming. In the incremental case, we only need to smooth vertex p of S if its smoothing p ′ at time t is different to that at t -1 due to the steps above. As in Section 3, the smoothing is p ′ = p + ∆p where ∆p only depends on p and N (p). Neighborhood N (p) is the list of vertices which are connected to p by an edge of S. Thus p ′ is (re)calculated if p is a new vertex of S or if N (p) changes at t. The tetrahedra list O t \O i0n is the outside volume grown by steps "2-Manifold Extraction" and "Topology Extension" at t. Furthermore, all S changes at t are on the border of O t \ O i0n . So we (re)-calculate p ′ if N (p) ∪ {p} contains at least one vertex of the border of O t \ O i0n .

Experiments

Synthetic Sequence

Here we compare the performances of the batch (Section 3) and the incremental (Section 4) surface reconstruction methods on the same sparse cloud of 3d points estimated from images of a synthetic scene. The synthetic scene is manually generated from real images taken in a city. The trajectory is a 230 m long closed loop around a building including several shops. The images are generated by ray-tracing and taking into account the ray reflection on the mirror. The catadioptric camera has axial symmetry. The large circle, which contains the scene projection in the image, has a 600 pixel radius. Fig. 5 (top-left corner) shows two images of the synthetic sequence.

SfM [START_REF] Lhuillier | Automatic scene structure and camera motion using a catadioptric camera[END_REF] reconstructs 600 camera poses and a sparse cloud of 257336 3d points from the sequence. We approximate the true calibration by a central model and refine the radial distortion parameters using bundle adjustment. We estimate the similarity transformation R which minimizes

E(R) = 599 i=0 ||R(c i ) -c g i || 2
, where c i and c g i are the es- Qualitative Comparison Before using the ground truth, it is interesting to compare batch and incremental results. The 3d Delaunay triangulation has 123196 vertices and 750219 tetrahedra. The numbers of free-space tetrahedra are 494562 for batch and 490174 for incremental (the difference is 0.9%). The batch and incremental (final) surfaces have 233273 and 231826 triangles, respectively.

Remember that the list O of outside tetrahedra grows in the list of free-space tetrahedra. Thus the ratio between the numbers of outside and free-space tetrahedra can be used to compare the performances of the growing steps (2-Manifold Extraction and Topology Extension). Batch surface has 89.1% and incremental (final) surface has 85.8%. We explain this results as follows: the incremental growing is more constrained than the batch growing. In the incremental case, both dating and manifold constraints are used. The batch method only uses manifold constraints. In prac-Table 1. Errors of batch and incremental (final) surfaces using ground truth surface. The numbers between parentheses are obtained for twice smaller images. method inliers (%) median (cm) 90% quantile (cm) batch 75.7 (73.9) 8.0 (64.3) 55 (103) increm. 72.4 (69.7) 8.6 (71.0) 50 ( 106) tice, the ratio can not reach 100% since ray-tracing alone does not enforce the manifold constraint between free-space and matter tetrahedra.

Quantitative Comparison Now we define an error function to compare the estimated surface (batch or incremental) against the ground truth surface. At first glance, we could use distance e(p) between the ground truth surface and vertex p of the estimated surface [START_REF] Seitz | A comparison and evaluation of multi-view stereo reconstruction algorithms[END_REF]. Unfortunately, this error is biased in favor of reconstructed areas which have the largest densities of reconstructed points (ground parts have low textures and densities, walls have high densities). A second idea is the use of the same error such that p samples uniformly the estimated surface. However, this method has drawback since the closest point in the ground truth surface does not necessarily correspond to the same point p.

Our solution does not have the problems above. Let q be a pixel in an image of the sequence. Let p e be the intersection of the estimated surface and the back-projected ray of q by the estimated camera pose. Let p g be the intersection of the ground truth surface and the back-projected ray of q by the ground truth camera pose. In both cases, if there are several intersections, we take the intersection which is the closest to the camera pose. Then we use e(q) = ||p e -p g ||. If p g does not exist or e(q) > µ 0 (where µ 0 = 2 m), we assume that the point matching (p e , p g ) is outlier (e.g. for the pixels of the sky) and we ignore the error for q. In practice, we estimate the statistic of e(q) by uniform sampling of q in all images of the sequence. We sample 6000000 pixels in the sequence. Tab. 1 provides the results for both batch and incremental methods. We see that the batch method has slightly better results than the incremental method.

Lastly, the same experiment (both SfM and surface calculations) is re-done for the same images down-sampled by 2. We found E(R)/600 = 56 cm, which implies that the SfM drift is larger than in the previous case. According to Tab. 1, the batch surface is still the best and the surface accuracies are degraded. Fig. 5 shows the sparse point cloud by SfM and the surfaces.

Real Sequence

Our (equiangular) calibrated catadioptric camera is the 0-360 mirror mounted on the Canon Legria HSF10. We take a 1920*1080 AVCHD (MP4) video walking in a city during 505 seconds and pointing the mirror toward the sky by hand. Ground truth is not available, but we know that the trajectory length is about 800 m. The view field is 360 degrees in the horizontal plane and 51-58 degrees above and below. Fig. 6 shows our camera and several images of the sequence. The horizontal and vertical radii of the large ellipse, which contains the scene projection in the images, are 700 and 693 pixels, respectively.

The method in Section 4 is applied to the (down-sampled by 2) images with the same parameters as in Section 5.1. 1033 keyframes are selected from 25278 images. About 600 Harris points are matched by correlation in three consecutive keyframes. Fig. 6 shows the 187588 reconstructed points by incremental SfM for the complete sequence. The SfM drift is also visible thanks to an aerial photography (unused by our method). Fig. 7 shows the surface obtained at five different times t. The observer moves in the scene such that he/she is observing the most recent part of the surface at a (roughly) constant distance. This part is mainly within a ball whose center is c t-2 at t. At time t, the observer is located at c t-20 and is looking towards c t-2 . The observer and the surface end come forward simultaneously. These images are extracted from the joint video at http://maxime.lhuillier.free.fr.

Fig. 8 shows one global view and two local views of the last surface, which has 234354 triangles and 117145 vertices. 89.3% of free-space tetrahedra are outside tetrahedra. Remember that the surface is closed, so it also models the sky. In the figure, we remove the triangles on the sky to make viewing easier. Also we note that enforcing the man- ifold constraint is not an option. If we simply define the final surface S by the list of triangles between free-space and matter tetrahedra, we find that 25.5% of the S vertices are not regular. Fig. 1 shows that this degrades the quality. In the other cases, "Manifold" is between 50 and 600 ms. Thanks to Fig. 9 (on the right), we see that the computation times of "Manifold" and "Post-Processing"globally increase if td t increases and td t > 50. . Furthermore, td t < 280 in the whole sequence. Remember that d t is the smallest date of all outside tetrahedra destroyed at time t by "Delaunay". These results are consistent with those of a theoretical time complexity study: Delaunay and Carving are O(1), Manifold is O((td t ) log(td t )), Post-Processing is O(td t ). Actually, these tight bounds should be considered as conjectures since the proofs use strong assumptions and will be submitted in another paper.

We now explain the large values of "Manifold" if t ∈ [925, 1032]. In a complete trajectory loop, vertices added at the loop end (at time t) destroy outside tetrahedra created at the loop beginning (at time d t ) since these vertices and tetrahedra have similar 3d locations. The larger the loop, the larger td t , and the larger the "Manifold" (and "Post-Processing") computation time. Fig. 6 shows that the reconstructed trajectory has two incomplete (about 75%) loops: a large one on the top and a small one on the bottom. Here the loops are incomplete but the same principle applies for the small loop which is 75% closed if t ∈ [925, 1032]: there are times in [925, 1032] such that added vertices destroy outside tetrahedra created at the loop beginning. This does not apply in the large loop case since (1) the added vertices and outside tetrahedra are in a tubular neighborhood of the camera trajectory and (2) the neighborhood radius is less than the (divided by 2) distance between both ends of the loop. Fig. 8 shows the neighborhood and its size; the small loop is on the top and the large loop on the bottom.

Conclusion

To our knowledge, this paper presents the first system with four features: incremental reconstruction for triangulated manifold surface from sparse point cloud generated by SfM. In experiments, we use a synthetic image sequence to compare and discuss the performance of our incremental method and the related batch method. Although the batch method has slightly better results than our incremental method, the latter is interesting for online applications that the former can not solve. We also reconstruct parts of a city using a hand-held omnidirectional camera and provide Several steps of the method can be improved and are subjects for future work. Image edges could be reconstructed and integrated in the Delaunay to improve the surface. The region-growing step should be accelerated in the case of a closed loop in the camera trajectory. Currently, the surface is denoised assuming that the point cloud is dense enough to estimate a discrete Laplacian. This improves the surface but it would be better to design a dedicated denoising method for sparse SfM point clouds. Lastly, we plan to use our method for online applications, larger data sets, and to initialize surface reconstruction methods which are more time expensive and more accurate.

Appendix: Region Growing Acceleration

Here is a note to accelerate the "2-Manifold Extraction" step. In the algorithm of Section 3, we first insert tetrahedron ∆ in O and then check if δO is 2-manifold. However, we can do this faster (as in [START_REF] Boissonnat | Geometric structures for three-dimensional shape representation[END_REF]) if we first check a condition on the neighborhood of ∆ and then add ∆ to O (if the condition is meet). Let f be the number of ∆ facets which are in δO. If f = 1, ∆ is added to O if and only if the vertex of ∆, which is not in the δO facet, does not have adjacent tetrahedron in O. If f = 0, ∆ is added to O if and only if the four vertices meet this same condition. If f = 2, ∆ is added to O if and only if the edge of ∆, which is not an edge of the two δO facets, does not have adjacent tetrahedron in O. If f = 3 or f = 4, ∆ is added to O. In our implementation, we greatly accelerate these computations by precalculating for each vertex the list of its adjacent tetrahedra.

Figure 1

 1 Figure 1. (A) is a denoised non-manifold, (B) is a non-denoised 2-manifold, (C) is a denoised 2-manifold, (D) is the texture of (C). In (A,B,C), the triangle normals are encoded by colors.

Figure 2 .

 2 Figure 2. In the 2d case, surfaces, tetrahedra and triangles are replaced by curves, triangles and edges, respectively. (A) curves to be reconstructed and points which sample the curves. (B) the Delaunay triangulation of the points (the bold-faced Delaunay edges approximate the curves). (C) points (circle) and camera locations (squares) linked by rays (segments). (D) the Delaunay triangles intersected by rays are free-space and are denoted by "F". The other triangles are matter. The Delaunay edges separating free-space and matter are bold-faced.

  // **** initialization of priority queue (heap) Q **** Q = ∅; if (O==∅) { // used by batch algo. let ∆ ∈ F 0 be such that r(∆) is maximum; Q ← Q ∪ {∆}; } else // used by topology extension and incremental algo. for each tetrahedron ∆ in Q 0 ∩ F 0 if (∆ / ∈ O and one of its 4 neighbors is in O) Q ← Q ∪ {∆}; // **** region growing of O **** while (Q!=∅) { pick from Q the ∆ which has the largest r(∆); if (∆ ∈ O) continue; O ← O ∪ {∆}; if (all vertices of ∆ are regular) { // read the Appendix for each ∆ ′ in the list of the four ∆ neighbors

Figure 4 .

 4 Figure 4. Region growing for image t = 98. The number of tetrahedra layers contained in a pack is n = 20. Left: before region growing for image 98, the 2-manifolds of layers 20, 40, 60, 80 and 97 are already computed. Left-middle: point insertion destroys tetrahedra. The earliest creation date of tetrahedra which are destroyed due to point additions in T is dt = 51. Right-middle: the 2-manifolds of layers 60, 80, and 97 are invalid and destroyed. Right: region growing from layer ni0 to layer 98 by pack of n.

Figure 5 .

 5 Figure 5. Two omnidirectional images, the sparse point cloud (and camera trajectory) by SfM, the batch surface, the final incremental surface. We remove the triangles on the sky to make viewing in the figure easier. timated locations and the ground truth locations of the camera, respectively (c i is at the camera center and c g i is at the mirror apex). We found E(R)/600 = 5.1 cm and use R to map the estimated geometry (poses and point cloud) in the ground truth coordinate system. Both batch and incremental methods select points using ǫ = 10 degrees and add 2 extra points in the neighborhood of every c t (3d Delaunay Triangulation step). The incremental method has parameters k = 40 (Ray-Tracing step), n = 60 and b 0 = 10 (2-Manifold Extraction step), b 1 = 10 (Topology Extension step).

Figure 6 .

 6 Figure 6. From left to right: our hand-held camera, two images of the sequence, aerial view of the trajectory, the sparse point cloud reconstructed by incremental SfM.

Figure 7 .

 7 Figure 7. Images of the incremental surface reconstruction (also in the joint video). Top: gray levels encode the triangle normals. Bottom: one omnidirectional image is used for texture mapping. The black areas are due to triangles without texture in this image.

Figure 8 .

 8 Figure 8. Views of the incremental (final) surface.

Fig. 9 (

 9 on the left) shows the computation times of the different steps at each time t: "Delaunay" in yellow (3d Delaunay Triangulation+Dating), "Carving" in blue (Ray Tracing), "Manifold" in red (2-Manifold Ex-traction+Topology Extension), "Post-processing" in green (Surface Denoising) and "Total" in black. We use a Core 2 Duo E8500 at 3.16 GHz. About 121 points per time are added to the 3d Delaunay triangulation. "Delaunay" and "Post-processing" have almost negligible computation times in comparison to the other steps. "Carving" is less than 190 ms. If t ∈ [0, 925], "Manifold" is less than 200 ms.

Figure 9 .

 9 Figure 9. Calculation times of the incremental surface reconstruction as a function of t (left) or a function of tdt (right). a detailed explanation of the computation times.Several steps of the method can be improved and are subjects for future work. Image edges could be reconstructed and integrated in the Delaunay to improve the surface. The region-growing step should be accelerated in the case of a closed loop in the camera trajectory. Currently, the surface is denoised assuming that the point cloud is dense enough to estimate a discrete Laplacian. This improves the surface but it would be better to design a dedicated denoising method for sparse SfM point clouds. Lastly, we plan to use our method for online applications, larger data sets, and to initialize surface reconstruction methods which are more time expensive and more accurate.