Luis Rodríguez

Fernando Cuartero

Vicente Pascual

A new approach to the Maximum Clique problem for large random graphs

The search for the maximum clique in a graph is one of the most widely studied problems in graph theory and combinatorial optimization. In the last decades, numerous algorithms and methods to address this problem have been proposed. Most of these algorithms are based on a backtracking scheme to find the maximum clique. In this paper we propose a novel method where the main problem is decomposed in smaller sub-problems which involve finding maximum cliques for certain subgraphs of the given graph. Although these sub-problems are finally solved by using state-of-the-art methods, this decomposition can reduce the complexity of the main problem leading to faster algorithms. Besides, by solving all these sub-problems we obtain additional information about the cliques in the input graph.

Introduction

Given an undirected graph G = (N, E) where N = {1, . . . , n} is the set of nodes and E ⊆ N × N is the set of edges, we can define a clique as a subset U ∈ N where ∀i, j ∈ U : i = j ⇒ (i, j) ∈ E. That is, for any two nodes in U , there is an edge connecting those nodes in E. A clique is also called a complete subgraph.

If U is a clique of G we can say that U is a maximal clique if we can not obtain a larger clique U by adding new nodes from G to U . Similarly, we say that U is a maximum clique of G if U is the largest of all the maximal cliques in G.

The applications of the maximum clique problem are many, ranging from Chemistry to Telecommunications or Artificial Intelligence.

State of The Art

The maximum clique problem is a hard problem since the associated decision problem, which involves determining the existence or not of a k-size clique in a graph has proven to be N P -complete [START_REF] Karp | Reducibility among Combinatorial Problems[END_REF]. As a result of this, we know that, unless P = N P , any algorithm able to solve this problem has, in the worst case, a time complexity which is exponential with the size of the graph.

Several approaches have been proposed to deal with the maximum clique problem. A nice description of the main ones can be found in [START_REF] Bomze | The Maximum Clique Problem[END_REF], and in [START_REF] Wu | A review on algorithms for maximum clique problems[END_REF] we can find an updated and comprehensive review on the algorithms existing in the literature coping with this problem.

Although most of the proposals are quite interesting from a theoretical point of view, the most successful methods in practice are based on a particular algorithm, developed in 1973 by Dutch scientists Joep Kerbosch and Coenraad Bron, [START_REF] Bron | Algorithm 457: Finding all cliques of an undirected graph[END_REF], which relies on a backtracking scheme to explore all the maximal ISSN subm. to DMTCS c by the authors by the author(s) Distributed under a Creative Commons Attribution 4.0 International License cliques in a graph. From this, the maximum clique can be obtained just by returning the largest of these maximal cliques. In [START_REF] Bron | Algorithm 457: Finding all cliques of an undirected graph[END_REF], the algorithmic complexity for the worst case is determined to be in O(3 n/3), where n is the number of nodes in the graph. For random graphs, however, no theoretical characterization is so far available, although experimental results show, in general, a performance significantly better than this worst case.

The backtrack Bron-Kerbosch algorithm has been the base of a wide range of methods by using different branch and bound techniques to improve it. In [START_REF] Johnston | Cliques of a graph-variations on the bron-kerbosch algorithm[END_REF], [START_REF] Balas | Finding a maximum clique in an arbitrary graph[END_REF], [START_REF] Carraghan | An exact algorithm for the maximum clique problem[END_REF], [START_REF] Babel | A branch and bound algorithm for the maximum clique problem[END_REF] and [START_REF] David R Wood | An algorithm for finding a maximum clique in a graph[END_REF] among others, we can found a wide set of different algorithms.

In [START_REF] Tomita | An efficient branch-and-bound algorithm for finding a maximum clique[END_REF], an approximated vertex coloring method is used as prune method within this scheme. This coloring algorithm is used to prune those branches that do not improve the largest clique found so far. Furthermore, the coloring algorithm defines a vertex order that is used to first explore those branches (nodes) that seem to be more promising for finding the largest clique. An improved coloring method along with the use of dynamic bounds was proposed in [START_REF] Konc | An improved branch and bound algorithm for the maximum clique problem[END_REF]. In addition, in [START_REF] Tomita | An efficient branch-and-bound algorithm for finding a maximum clique with computational experiments[END_REF] and [START_REF] Tomita | A simple and faster branch-and-bound algorithm for finding a maximum clique[END_REF] several improvements to the proposal in [START_REF] Tomita | An efficient branch-and-bound algorithm for finding a maximum clique[END_REF] can be found. These are based on performing an initial sorting of the graph according to the degree of its nodes along with an enhanced coloring method that tries to reduce the number of colors assigned to the graph nodes.

Recently, in [START_REF] San | An improved bit parallel exact maximum clique algorithm[END_REF] a different graph encoding based on bit string was proposed, which result in a significant speed improvement with respect to the MCS Tomita's algorithm presented in [START_REF] Tomita | A simple and faster branch-and-bound algorithm for finding a maximum clique[END_REF].

The HV algorithm for the maximum clique problem

As described in section 2, the most successful methods to solve the maximum clique problem are based on a backtracking algorithm. In this work, we propose a novel approach where the problem of finding the maximum clique on an input graph is split into several, smaller sub-problems. This strategy is based on a heterodox view of the divide-and-conquer method, where the sets of sub-problems obtained by breaking down the original problem might not be disjoint. Accordingly, some sub-problems may be solved more than once, which results into a less effective reduction process. Thus, the original problem can not be reduced to a polynomial time algorithm, which is consistent with the N P -complete nature of the maximum clique problem.

Formal framework

Let G = (N, E) be the input graph where N = {1, . . . , n} is the sorted set of nodes. Let i, j ∈ N be two nodes where i < j. We can define a subgraph

G ij = {N ij , E ij } where N ij = {k ∈ N / i < k < j} and E ij = {(k 1 , k 2) : k 1 , k 2 ∈ N ij ∧ (k 1 , k 2) ∈ E}.
That is, G ij is the subgraph that includes all the nodes (with their corresponding edges) whose indices are between i and j (both excluded). The number

of subgraphs G ij in G is (n -1) (n -2) 2
, the number of possible pairs (i, j). The maximum clique problem can be then solved as a maximization problem over the maximum cliques of all G ij . Let ÛG be the maximum clique in G. We can write:

Û = max ∀i,j:i<j ÛGij (1)
This decomposition does not seem, in principle, advantageous for efficiently computing the maximum clique in G. However, as we will see later, the computation of all ÛGij can be performed incrementally in such a way that the computation of a specific ÛGij can benefit from results previously calculated in terms of search space reduction.

To describe the incremental computation of the maximum cliques for a specific subgraph G ij let's assume that all values ÛG ik : i < k < j and ÛG kj : i < k < j have been previously computed. Let's also define the value B i,j as the number of Hamiltonian paths of length 3 (triangles) containing both i and j, and other intermediate nodes. We can then define an upper bound b i,j for ÛGi,j as:

b i,j = min(max ∀k:i<k<j∧(i,k)∈Eij ÛG i,k + 1, max ∀k:i<k<j∧(k,j)∈Eij ÛG k,j + 1, B i,j) (2)
The meaning of Eq (2) can be explained as follows. The maximum clique size for G ij must be, at most, the size of the maximum clique for some G ik where i < k < j plus one, corresponding to the addition of the node j. Similarly, this size is limited by the size of the max clique in G kj and the addition of the node i. The most restrictive condition has to be satisfied and, therefore, the minimum of these two values is taken. Finally, there is a third condition given by the value B ij , which is also an upper bound for | ÛGij |. The inclusion of this third restriction will be discussed later as it constitute an initial point to compute the clique sizes for all the G ij .

From the previous discussion, we can also notice a necessary condition for a node k (such that i < k < j) to be a member of a clique ÛGi,j of size b, which is:

| ÛG i,k | + | ÛG k,j | ≥ b -1 (3)
This condition is trivial to prove because, if there is a clique ÛGi,j of size s, where k participates in that clique, then it is necessary that the sum of the sizes of the maximum clique from i to k and from k to j plus the addition of the node k itself (note that k is not included in either G i,k or Gk, j) is greater or equal to b. Hence, we can construct a subgraph of G i,j , which we call HV subgraph, composed of those nodes in G ij that fulfill the condition in Eq [START_REF] Bomze | The Maximum Clique Problem[END_REF], where b is approximated by the upper bound b i,j as it is defined in Eq [START_REF] Balas | Finding a maximum clique in an arbitrary graph[END_REF].

Thus, we can build the HV subgraph as follows:

HV i,j,b = {k : i < k < j ∧ (i, k) ∈ E ij ∧ (k, j) ∈ E ij ∧ | ÛG ik | + | ÛG k,j | ≥ b -1} (4)
Notice that the HV -subgraph for a specific G ij , given the bound b, consists of those nodes k in G ij that can form a clique of size b according to the clique sizes in previous G ik and G kj .From this, we can use this HV -subgraph to find the real value of | ÛGij | using any available algorithm for solving the maximum clique problem. The main advantage of using the HV graph here is that we can focus on those nodes that can actually contribute to a clique of size b thereby reducing the search space during the combinatorial search. In addition, we know that we have to finish the search as soon as we find a clique of size b. We can also notice that, by adopting this approach, apart from obtaining the maximum clique in G as it is stated in we get as a b product all the intermediate results ÛGij .

Example. Let G be a complete, 5-node graph where N = {1, 2, 3, 4, 5}. Then,| ÛG1,5 | = 3, because there are 3 intermediate nodes between 1 and 5.

Thus, HV 1,5,3 = {2, 3, 4}, because | ÛG 1,k | + | ÛG k,5 | ≥ 2
In the following sections, specific details about the algorithm for finding the maximum clique based on this framework along with some implementation issues are given.

An algorithm for finding the maximum clique

In this section we are going to rely on the framework presented in Section 3.1 to devise an algorithm for finding the maximum clique in a graph. We will start by giving some basic notation. Given a graph G = (N, E), we define the adjacency matrix A as a bidimensional matrix where each element (i, j) in A takes a value of 1 if (i, j) ∈ E and 0 otherwise. Without loss of generality and assuming a non-directed graph, we can consider A a triangular matrix. This way, we will assume that A i,j = 0 when j < i.

Next, we can define a new matrix, B obtained as B = A 2 &A where & represents the bitwise and operator that is an entrywise operator defined as:

(M 1&M 2) i,j = M 1 i,j If M 2 i,j = 0 0 otherwise (5)
And, therefore, the B matrix is computed as:

B i,j = A 2 i,j If A i,j = 0 ∧ i < j 0 otherwise (6)
The use of a triangular matrix is due to the fact that the element A 2 ij represents the number of paths of length 2 between the nodes i and j, and with the additional condition of existence of an edge (i, j), the element B ij represents the number of triangles containing that edge. The rationale behind the computation of this matrix B is that a clique of size n that has an edge (i, j), where i < j, also contains a sequence of n -2 triangles, n -3 squares, n -4 pentagons, and so on, all of them with paths in ascendant order, that is, ascendant Hamiltonian paths. Now, we will define a third matrix, C that will store the results for the sub-problems that are being solved during the search for the maximum clique. This way, each element C ij will take the value | ÛGij |. Before describing in detail the way in which the C matrix is constructed, we can enumerate two simple properties:

1. The C Matrix is a triangular matrix. Since each element (i, j) in C stores the size of the maximum clique for the subgraph G ij , all the elements C i,j where j ≥ i will be equal to zero.

2. The elements in the diagonal C i,j where i = j -2 will be either 0 if (i, j) / ∈ E or B i,j otherwise.

The C matrix is constructed incrementally. Initially, we can fill the positions corresponding to the diagonal (j -2, j) from their respective values in the B matrix. Next, we will compute the elements for all the columns j = 1 . . . n in C in ascending row order. That is, C j-3,j , C j-4,j , . . . , C 1,j . It is necessary to strictly follow this order, since to compute the current element C ij we have to first estimate an upper bound for | Û Gij |, which is computed as it is shown in Eq 2, which requires that all the values in the right part of the equation have been already calculated b i,j = min(max

∀k:i<k<j∧A i,k =1∧A k,j =1 C i,k + 1, max ∀k:i<k<j:A k,j =1∧A k,j =1 C k,j + 1, B i,j) (7)
As we can see, Equation (7) is equivalent to Equation 2 but introducing the C matrix. Notice that the ÛG i,k and ÛG k,j in Equation (2) are taken from row i and column j in this C matrix. Next, we can build the HV -subgraph from the values stored in the C matrix:

HV i,j,bi,j = {k : i < k < j ∧ A i,k = 1 ∧ A k,j = 1 ∧ C i.k + C k,j ≥ b i,j -1} (8)
Again, the HV subgraph is obtained from the row i and column j in the C matrix (HV stands for Horizontal-Vertical). According to Equation (8), apart from the obvious fact that only the nodes connected to i and j are considered, we have two terms extracted from the already computed part of C. The first term (C i,k in the equation) corresponds to the H (Horizontal) contribution of the C matrix and represents the maximum clique between the i node and the considered node k. The second term (C k,j) corresponds to the V (vertical) contribution of the C matrix and denotes the maximum clique between the considered node k and the j node. This way, only those nodes whose H and V contributions sum at least b i,j -1 are candidates to participate in a clique of size b i,j as it is shown in Figure 1. 0 0 0 0 1 1 1 2 3 2 1 2 3 4 5 6 7 8 9 10 1 0 0 1 2 3 3 4 4 5 4 2 3 4 0 0 0 0 0 0 1 1 2 1 5 0 0 0 0 0 0 1 1 2 0 6 0 0 0 0 0 0 0 0 1 1 7 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 2 3 Fig. 1: Computation of the upper bound and the HV -subgraph. In this figure, we can see how both the upper bound and the HV subgraph for the position (2, 10) are computed. First, we can obtain the bound as the minimum of the maximums of the row 2 and column 10 plus 1 (as indicated in Eq (2)). We can assume, in this example that B10,2 ≥ 3 to consider all the elements in that Equation. Once that the bound has been obtained, the HV -subgraph consists of all the nodes whose sum of their H and V components is equal or greater than b -1 (where b = 3 in this example). In the figure. the H and V component for each node are graphically connected. For instance, the H component of the node 7 is found in the position (2, 7) while the V component for this node is found in the position [START_REF] Erdős | On the evolution of random graphs[END_REF][START_REF] Konc | An improved branch and bound algorithm for the maximum clique problem[END_REF]. This way HV2,10,3 = {3, 4, 6, 7, 8, 9}. Notice that the node 5 is not included in the HV subgraph since H(5)+V (5) = 1 < 2

From the upper bound and the HV -subgraph we can compute the real value of C ij . Nonetheless, we have to remark that there is a circular dependence between the bound b i,j and the HV -subgraph. This is because the HV -subgraph depends on the previously computed bound and, similarly, the nodes in the HV graph condition the presence or not of a clique of size b i,j (for instance, if the number of nodes in the HV -subgraph is lower than b i,j , we can update the bound to a lower value and, correspondingly, the HV -subgraph has to be rebuilt according to the new bound).

On account of this, finding the exact value for C i,j (ÛGi,j) entails performing an iterative process until a clique of size b i,j is found in the current subgraph. Therefore, assuming that we have an algorithm called kClique that can determine whether or not there is a clique of k nodes in the HV -subgraph, we can follow the Algorithm 1. end if 9: end while 10: C i,j = b Notice that step 3 corresponds to the k-clique problem. Owing to the fact that this problem is similar in time complexity to the maximum clique problem [START_REF] Vassilevska | Efficient algorithms for clique problems[END_REF] we can obtain as a byproduct (one of the) maximum cliques between i and j in this step. Once the C matrix is completely filled, we can easily find the maximum clique in the graph by returning the clique corresponding to the position with the highest value in the C matrix. It is trivial to observe that it is not necessary to store the cliques for all the positions in C. Instead, we just have to save the maximum clique found so far and after finishing the computation of all the elements in C, this will be the maximum clique in the graph (as it is stated in Eq (3.1).

Regarding the search algorithm for finding the the maximum clique given the current HV -subgraph, we can follow a straightforward approach by relying on a state-of-the-art algorithm. Let's say that we have a generic algorithm to solve the maximum clique problem (we will call this algorithm MaxClique from now on). This leads to an interesting situation because the HV method can take advantage of any improvements in the state of the art in the clique problem just by using a new MaxClique.

Besides, we can easily construct an experimental framework to test the general performance of the HV algorithm. The point here is that we can run the MaxClique algorithm on the input graph as a baseline scenario and then the HV method using the same MaxClique to find the maximum clique in each HVgraph.

Pruning the search. An alternative approach

The technique described above computes all the ÛGij to solve the maximization in Eq (3.1) (we will call this method ExactHV). Although the computation of those intermediate values can be useful in some scenarios, to obtain the maximum clique of a given graph, we could improve the algorithm performance if we just compute the real values for those G ij whose initial bound b i,j is greater than the maximum clique found so far (we can call this new approach PrunedHV). In other words and if the current bound b i,j for an element C ij is greater than the best clique found, we will call to MaxClique to determine whether or not there is a clique of this size. Otherwise we just take the current bound as the value for C ij as it is shown in Algorithm 2 end if 8: end while 9: C i,j = b At this point, it can be necessary to remark that using the initial bounds in some positions in C has no impact on the final result of the search. This is because using an upper bound in any C position instead of the true value only causes that the HV -subgraphs for future elements in C contain more nodes than actually needed to compute the maximum clique for this position, but the real value of the maximum clique remains the same.

By introducing this pruned search, we can reduce the number of calls to MaxClique at the expense of increasing the size of the HV -subgraph in each call. Because of the exponential complexity of the available MaxClique algorithms, we could expect that below certain threshold (defined in terms of a combination of graph size and density) PrunedHV is faster than ExactHV. Conversely, beyond this threshold ExactHV would be more efficient since the reduction in the subproblems size will have a greater impact on the performance than the higher number of calls to MaxClique. Experiments with both approaches (pruned and not pruned) will be reported in Section4.

In Algorithm 3 the full algorithm for finding the maximum clique in both versions (pruned and exact) is defined.

Using a cache of cliques

In the exactHV method, to compute each element in the C matrix we obtain as a byproduct a clique of the corresponding subgraph G ij . We can benefit from this by storing these found cliques in order to reduce the number of calls to MaxClique for future elements in C. This is based on the assumption that when computing the element C ij we can obtain a clique of size b = b ij by adding the nodes i and j to some of the cliques found previously. Specifically, given the current subgraph HV i, j, we can take those elements k ∈ HV i, j : H(k) ≥ b -1. That value b -1 of the H component indicates that we previously found a clique of size b -1 in the element C i,k . If this clique was stored, we can try to get a bigger clique (of size b) by adding the node j to this previously saved clique. We can follow a similar reasoning for those elements l ∈ HV i, j : V (l) ≥ b -1 in such a way that we know that a clique of size b -1 was found in the element C l,j and, therefore, we can add the node i to that clique to try to obtain a clique of size b.

Notice that to estimate the correct value of each C ij element it is enough to find a clique of the size indicated by the current bound. As a result of this, it seems plausible that we can save some calls to MaxClique by trying to extend those cliques found previously. In Algorithm 4 the use of the cache of cliques is explained.

Algorithm 3 Algorithm for finding the maximum clique. The algorithm takes as inputs the graph G, a generic method MaxClique and a parameter that indicates which one of the two algorithms (ExactHV or PrunedHV) will be carried out HV = HV i,j,b as stated in Eq (4)

13:

C i,j = b 14:
if prune=true then Update HV = HV i,j,b as stated in Eq (4) return bestClique 43: end function Algorithm 4 Using a cache of cliques to reduce the number of calls to MaxClique. This algorithm would be inserted just before the calls to Maxclique in Algorithm 3 in lines 16 and 25.

1: for each node k ∈ HV i,j,bi,j :

H[k] ≥ b(i, j) -1 do 2: candidate → clique stored in position (i,k) 3: candidate → candidate ∪ j 4:
if candidate is a clique then 5:

C(i, j) = b(i, j) return 6:
end if 7: end for 8: for each node l ∈ HV i,j,bi,j :

V [l] ≥ b(i, j) -1 do 9:
candidate=clique stored in position (l,j)

C(i, j) = b(i, j) return 13:
end if 14: end for

Experimental Framework

In this section, we will describe the experimental framework adopted in order to test the efficiency of the approach presented here. For these experiments, we have used Tomita's MCS [START_REF] Tomita | A simple and faster branch-and-bound algorithm for finding a maximum clique[END_REF] as the baseline scenario. Besides, the MaxClique algorithm used to compute the real value of each ÛGij (C ij) as it is shown in lines 16 and 25 in Algorithm 3 is, as well, MCS. The experiments have been performed on two different sets. First, several random graphs with different sizes and densities were produced. Second, a subset of the DIMACS benchmark set was employed as well.

In Table 1 the main results on random graphs, generated according to the well known Erdős-Rényi model [START_REF] Erdős | On random graphs i[END_REF], [START_REF] Erdős | On the evolution of random graphs[END_REF], are summarized. Each entry in the table represents the average time for 10 instances of each graph.

From the results presented in Table 1, we can conclude that the HV approach is not appropriate for small graphs and low densities (specifically, M CS is always faster for graphs with 200 or fewer nodes). This can be explained by the fact that the polynomial cost associated to computing the the C matrix elements and obtaining the HV -subgraphs, which is O(n 3) heavily influences the performance of the algorithm in this cases. In addition, the decomposition in subproblems can be not so advantageous for this small size problems. However, as the problem complexity increases (either in size or density) we can see how the difference in performance between M CS and HV becomes tighter and tighter to reach a point where HV outperforms M CS.

In spite of the fact that the improvements presented in Table 1 can be considered modest, it is worth mentioning that as the size or density of the input random graphs grow, we can see how the performance gap between M CS and HV also grows as it is shown in Figure 2. In this figure, we can see how the the time complexity for HV grows at a lower rate than M CS when either the size or graph density is increased. Therefore, we can expect notable improvements in performance for very large graphs (or very dense graphs given a minimum number of nodes). In this case, the decomposition in smaller sub-problems is clearly beneficial given the exponential nature of the available algorithms for the clique problem. In Table 2 we can see the number of size of subproblems for several random graphs.

Tab. 1: Results on random graphs. PrunedHV corresponds to the technique described in Section 3.3 Regarding the results on the DIMACS benchmark, reported in Table 3 they show that, for some families of graphs, we can see a behavior similar to random graphs. Conversely, for some other graph types the HV algorithms shows poor performance. Families P-hat and Dsjc are examples of this and,in particular, Mann graphs. In general, we can say that for those graphs that have stronger symmetries, the difference is notable in favor of MCS. The only exception is the Johnson16-2-4 graph which, despite being a small graph, is surprisingly solved faster by HV.

Graph

MCS

From this results, if we consider the Erdős-Rényi model as a possible distribution of all the different classes of graphs, the HV algorithm is a new interesting approach to cope with the problem of the maximum clique, even considering the poor performance showed for some graph types. Moreover, this approach can be considered as a kind of meta-algorithm since any method to solve the clique problem can be embedded into any of the HV variants.

Finally, we have to mention that, from the algorithm presented in Algorithm 3 an interesting question arises. The calls to MaxClique (which are calls to M CS in the experiments here reported) can be replaced with recursive calls to the HV algorithm itself. Although we can not expect any improvement for the graph sizes and densities considered in this section, we can guess that, for very large graphs, the inclusion of these recursive calls can improve the HV results shown in Table 1. This improvement can be even higher if the base case for recursion is defined as a call to other MaxClique algorithm (for instance, M CS) when the size and density of the current HV -subgraph is below a fix threshold.

Complexity

As commented in the introduction section, the algorithmic complexity for the worst case for maximum clique searching algorithms is exponential, but no explanation is due, in general, about the average complexity because the difficulty to cope with this case. Thus, no analytical studies showing the complexity of this problem can be found in the literature. On the contrary, our approach allows us to achieve an approximation, albeit still preliminary and not very developed, about this aspect.

To do this, we consider as hypothesis a distribution of cliques on graphs following the well known Erdős-Rényi model [START_REF] Erdős | On random graphs i[END_REF], [START_REF] Erdős | On the evolution of random graphs[END_REF]. According to this model, every edge between two nodes will be present with a certain probability p. We consider the hypothesis of p = 0.5 to calculate the time complexity under this assumption.

We call T HV (n) the time required to compute the solution with HV algorithm for a problem of size n in that hypothesis, where this value is the number of nodes in the graph. Of course, if this number is small, the complexity will be constant, in O(1). Otherwise, the first part of the algorithm consists on a matrix multiplication, and this operation can be carried out in a time O(n 3) or smaller, thus, in the worst case we use this value as an upper bound of the complexity. After that, we take the calculations of the values for each C(i, j). As there are a number n • (n -1) of different pairs (i, j), that is the number of calls needed for the algorithm to compute those values C(i, j) using the MCS algorithm. We call T M CS (n) its complexity, but now, the size of the problem with which we feed this algorithm becomes n/K for a certain value K. This value is unknown, but we can use the hypothesis of the Erdős-Rényi model with p = 0.5, and, in this case, we can guarantee that this number is greater than 4, because this is the expected value of number of nodes with connection with both nodes i and j.

Thus, we have this equation to approximate the time complexity:

T HV (n) ∈ O(n 3) + n • (n -1) • T M CS (n/K) If n > Size O(1)

Otherwise

The value of T M CS (n) is also unknown, but as we rely on the MCS algorithm to solve the maximum clique problem between nodes i, j, in the same way, we can consider a recursive version of HV , using the HV approach itself to solve the corresponding subproblems. We can calculate the complexity of this new algorithm by means of a differences equation:

T HV (n) ∈ O(n 3) + n • (n -1) • T HV (n/K) If n > Size O(1)

Otherwise

To solve this recurrence equation, we assume, in accordance with the considerations indicated above, that K > 4. In fact, the value, depending of n, is greater than 4, but, again, we can consider this value as upper bound, and the solution of this equation in that case is

T HV (n) ∈ n O(log n)
Finally, experimentally, we can check that time performance of Tomita algorithm is better than HV recursive algorithm, and thus we can consider

T T (n) < T HV (n) ∈ n O(log n)
Of course, this calculation is with respect to Erdős-Rényi graphs, and the hypothesis p = 0.5, although the result is valid for any other probability, taking into the account that this variation will influence only in the base of the logarithm.

Conclusions and Future Work

In this work, we have presented a new technique to solve the classical problem of finding the maximum clique in a graph, which is a well-known N P -complete problem. This algorithm is quite novel, since the traditional successful methods are based on backtracking and pruning methods, whereas the method here proposed is based on a heterodox version of the divide and conquer methodology.

As a result of decomposing the main problem into smaller elements, we can obtain, in the first place, additional information in the form of sub-cliques for certain subgraphs of the main graph. In addition and, more interestingly, the algorithm seems to outperforms the classical backtracking approaches for random graphs where the size or density are high enough. Although the improvements obtained are not actually notable we can expect that, asymptotically, the difference in performance is quite remarkable.

Regarding future work, experiments with larger graphs have to be conducted in order to reinforce the conclusions presented about the algorithm performance. In addition, the results for some DIMACS graph have to be analyzed to find possible improvements when dealing with graphs having strong regularities. Finally, a deep theoretical and empirical study of the recursive version of the HV algorithm, as described in Section 4 could be addressed as well.

Algorithm 1

 1 Computing the final value of C ij 1: Compute an initial bound b = b i,j as it is stated in Equation (7

Algorithm 2

 2 Computing the final value of C ij . Pruned version 1: Compute an initial bound b = b i,j as it is stated in Equation (7). 2: res=0 3: while b < bestCliqueF ound and res < b do

1 :while i ≥ 1 do 10 :

 110 function MAXIMUMHVCLIQUE(G,maxClique,prune) if B i,j > 0 then 11: b = b ij as stated in Eq (2) 12:

 HV = HV i,j,b as stated in Eq (

 Size and number of subproblems for several random graphs. For PrunedHV (HVMax) and ExactHV(HVMax) The number of subproblems (calls to MaxClique) along with the maximum and average subproblem size (the subproblem size corresponds to the size of the subgraphs in the calls to MaxClique) are shown In this figure we can see a comparison between the performance of MCS and HVApprox for random graphs as the graph size increases. The left figure shows the MCS and HVApprox times for different graph sizes generated with p = 0.5 while the right figure shows the performance improvement in percentage. Results on the DIMACS benchmark. HVMax corresponds to the technique described in Section 3.3. The blank entries indicate that the algorithm was stopped because the time elapsed was too high

	PrunedHV ExactHV 2.8 7.0 2.8 7.0 30.6 99.9 11.8 54.4 0.5 15 -16 234.2 182.5 p w 0.4 10-12 2.2 0.5 13 2.2 0.6 16-17 33.2 1000 0.4 12 n 500 10.6 591.6 0.6 19-20 12295 10635 28401 1500 0.4 12-13 127.0 118.2 279.4 0.5 16 -17 4930 3674 10689 2000 0.4 13 860.9 724.9 1575 0.5 17 50151 34188 101806 3000 0.4 14 12512 9233 21020 PrunedHV (HVMax) ExactHV (HVMax) #subpr. max size av. size #subpr. max size av. size 0.85 204190 p 177 107 228954 177 96 0.7 975751 184 90.5 1062611 184 84 1000 0.6 Tab. 2: n 300 500 7841222 228 103 10005828 228 94 0 10000 20000 30000 40000 50000 400 600 800 1000 1200 1400 1600 1800 2000 time (s) n MCS HVApprox -30 -20 -10 0 10 20 30 40 400 600 800 1000 1200 1400 1600 1800 Improvement (%) n HVApprox/MCS MCS PrunedHV ExactHV Instance n w brock400 1 400 27 604.7 399.3 2384 brock400 2 400 29 272.2 352.9 1432 brock400 3 400 31 415.1 157.8 1328 brock800 1 800 23 7916 5937 18812 brock800 2 800 24 7216 8873 21474 brock800 3 800 25 4860 3671 18588 brock800 4 800 26 3669 5041 19279 phat500-3 500 50 137.9 319.5 378.38 phat700-2 700 44 4.4 15.07 38.3 phat1000-2 1000 46 197.7 440 1034 phat1500-1 1500 12 3.1 10.3 27.9 Fig. 2: Tab. 3: Graph C250.9 250 44 3827 3761 9146	2000

| ÛG1,2 | = 0 | ÛG2,5 | = 2 | ÛG1,3 | = 1 | ÛG3,5 | = 1 | ÛG1,4 | = 2 | ÛG4,5 | = 0

Acknowledgements

This work has been partially supported by Spanish Minister of Economy project TIN2015-65845-C3-2-R.