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Abstract9

The purpose of super-resolution approaches is to overcome the hardware limitations10

and the clinical requirements of imaging procedures by reconstructing high-resolution im-11

ages from low-resolution acquisitions using post-processing methods. Super-resolution tech-12

niques could have strong impacts on structural magnetic resonance imaging when focusing13

on cortical surface or fine-scale structure analysis for instance. In this paper, we study deep14

three-dimensional convolutional neural networks for the super-resolution of brain magnetic15

resonance imaging data. First, our work delves into the relevance of several factors in the16

performance of the purely convolutional neural network-based techniques for the monomodal17

super-resolution: optimization methods, weight initialization, network depth, residual learn-18

ing, filter size in convolution layers, number of the filters, training patch size and number19

of training subjects. Second, our study also highlights that one single network can effi-20

ciently handle multiple arbitrary scaling factors based on a multiscale training approach.21

Third, we further extend our super-resolution networks to the multimodal super-resolution22

using intermodality priors. Fourth, we investigate the impact of transfer learning skills onto23

super-resolution performance in terms of generalization among different datasets. Lastly,24

the learnt models are used to enhance real clinical low-resolution images. Results tend to25

demonstrate the potential of deep neural networks with respect to practical medical image26

applications.27
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1. Introduction29

Magnetic Resonance Imaging (MRI) is a powerful imaging modality for in vivo brain30

visualization with a typical image resolution of 1mm. Acquisition time of MRI data and31

signal-to-noise ratio are two parameters that drive the choice of an appropriate image reso-32

lution for a given study. The accuracy of further analysis such as brain morphometry can be33

highly dependent on image resolution. Super-Resolution (SR) aims to enhance the resolution34

of an imaging system using single or multiple data acquisitions (Milanfar 2010). Increas-35

ing image resolution through super-resolution is a key to more accurate understanding of36

the anatomy (Greenspan 2008). Previous works have shown that applying super-resolution37

techniques leads to more accurate segmentation maps of brain MRI data (Rueda et al. 2013;38

Tor-Dı́ez et al. 2019) or cardiac data (Oktay et al. 2016).39

The use of SR techniques has been studied in many works in the context of brain MRI40

analysis: structural MRI (Manjón et al. 2010b; Rousseau et al. 2010a; Manjón et al. 2010a;41

Rueda et al. 2013; Shi et al. 2015), diffusion MRI (Scherrer et al. 2012; Poot et al. 2013; Fogt-42

mann et al. 2014; Steenkiste et al. 2016), spectroscopy MRI (Jain et al. 2017), quantitative43

T1 mapping (Ramos-Llordén et al. 2017; Van Steenkiste et al. 2017), fusion of orthogonal44

scans of moving subjects (Gholipour et al. 2010; Rousseau et al. 2010b; Kainz et al. 2015;45

Jia et al. 2017). The development of efficient and accurate SR techniques for 3D MRI data46

could be a major step forward for brain studies.47

Most SR methods rely on the minimization of a cost function consisting of a fidelity term48

related to an image acquisition model and a regularization term that constrains the space49

of solutions. The observation model is usually a linear model including blurring, motion,50

the effect of the point spread function (PSF) and downsampling. The regularizer, which51

guides the optimization process while avoiding unwanted image solutions, can be defined52

using pixel-based `2-norm term (Gholipour et al. 2010), total variation (Shi et al. 2015),53

local patch-based similarities (Manjón et al. 2010b,a; Rousseau et al. 2010a), sparse coding54

(Rueda et al. 2013), low rank property (Shi et al. 2015).55

In particular, the choice of this regularization term remains difficult as it modifies implic-56

itly the space of acceptable solutions without any guaranty on the reconstruction of realistic57

high-resolution images. Conversely, in a supervised context (in which one can exploit a58

learning database with low-resolution (LR) and high-resolution (HR) images), the SR of59

MRI data can be fully driven by examples. The key challenge of supervised techniques is60

then to accurately estimate the mapping operator from the LR image space to the HR one.61

Recently, significant advances were reported in SR for computer vision using convolutional62

neural networks (CNN). This trend follows the tremendous outcome of CNN-based schemes63

for a wide range of computer vision applications, including for instance image classifica-64

tion (Krizhevsky et al. 2012; Simonyan and Zisserman 2014; He et al. 2016), medical image65

segmentation (Kamnitsas et al. 2017) or medical image analysis (Tajbakhsh et al. 2016).66

CNN architectures have become the state-of-the-art for image SR. Initially, Dong et al.67

(2016a) proposed a three-layer CNN architecture. The first convolutional layer implicitly68

extracts a set of feature maps for the input LR image; the second layer maps these feature69

maps nonlinearly to HR patch representations; and the third layer reconstruct the HR70
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image from these patch representations. Several studies have further investigated CNN-71

based architectures for image SR. Among others, the following features have been reported72

to improve SR performance: an increased depth of the network (Kim et al. 2016a), residual73

block (with batch normalization and skip connection) (Ledig et al. 2017), sub-pixel layer (Shi74

et al. 2016), perceptual loss function (instead of mean squared error-based cost functions)75

(Johnson et al. 2016; Ledig et al. 2017; Zhao et al. 2017), recurrent networks (Kim et al.76

2016b), generative adversarial networks (Ledig et al. 2017; Pham et al. 2019). Very recently,77

Chen et al. (2018) proposed a 3D version of densely connected networks (Huang et al. 2017)78

for brain MRI SR. Inspired by the work by Jog et al. (2016), Zhao et al. (2018) investigated79

self super-resolution for MRI using enhanced deep residual networks (Lim et al. 2017).80

Recently, very deep architectures obtained the best performance in a challenge focusing81

on natural image SR (NTIRE 2017 challenge, Timofte et al. 2017). However, due to the82

variety of the proposed methods and the high number of parameters for the networks ar-83

chitecture design, it is currently difficult to identify the key elements of a CNN architecture84

to achieve good performance for image SR and assess their applicability in the context of85

3D brain MRI. In addition the extension of CNN architectures to 3D images, taking into86

account floating and possibly anisotropic scaling factors may be of interest to address the87

wide range of possible clinical acquisition settings, whereas classical CNN architectures only88

address a predefined (integer) scaling factor. The availability of multimodal imaging setting89

also questions the ability of CNN architectures to benefit from such multimodal data to90

improve the SR of a given modality.91

Contributions: This work presents a comprehensive review of deep convolutional neural92

networks, and associated key elements, for brain MRI SR. Following Timofte et al. (2016),93

who have experimentally shown several ways to improve SR techniques from a baseline ar-94

chitecture, we study the impact of eight key elements on the performance of convolutional95

neural networks for 3D brain MRI SR. We demonstrate empirically that residual learning96

associated with appropriate optimization methods can significantly reduce the time of the97

training step and fast convergence can be achieved in 3D SR context. Overall, we report98

better performance when learning deeper fully 3D convolution neural networks and using99

larger filters. Interestingly, we demonstrate that a single network can handle multiple arbi-100

trary scale factors efficiently, for example, from 2×2×2mm to 2×2×1mm or 1×1×1mm,101

by learning multiscale residuals from spline-interpolated image. We also report significant102

improvement using a multimodal architecture, where a HR reference image can guide the103

CNN-based SR of a given MRI volume. Moreover, we demonstrate that our model can trans-104

fer the rich information available from high-resolution experimental dataset to lower-quality105

clinical image data.106

2. Super-Resolution using Deep Convolutional Neural Networks107

2.1. Learning-based SR108

Single image SR is a typically ill-posed inverse problem that can be stated according to109

the following linear formulation:110

Y = HX + N = D↓BX + N (1)
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where Y ∈ Rn and X ∈ Rm denote a LR image and a HR image, H ∈ Rm×n is the observation111

matrix (m > n) and N denotes an additive noise. D↓ represents the downsampling operator112

and B is the blur matrix. The purpose of SR methods is to estimate X from the observations113

Y. The SR image can be estimated by minimizing a least-square cost function:114

X̂ = arg min
X
‖Y−HX‖2. (2)

The minimization of the Equation (2) usually leads to unstable solutions and requires the use115

of appropriate regularization terms on X. Adding prior knowledge on the image solution116

(such as piecewise smooth image) may lead to unrealistic solution. In a learning-based117

context where a set of image pairs (Xi,Yi) is available, the objective is to learn the mapping118

from the LR images Yi to the HR images Xi, leading to the following formulation:119

X̂ = arg min
X
‖X−H−1Y‖2. (3)

In this setting, the matrix H−1 can be modeled as a combination of a restoration matrix120

F ∈ Rm×m and an upscaling interpolation operator S↑ : Rn → Rm. Given a set of HR121

images Xi and their corresponding LR images Yi with K samples, the restoration operator122

F can be estimated as follows:123

F̂ = arg min
F

K∑
i=1

‖Xi − F (S↑Yi)‖2 = arg min
F

K∑
i=1

‖Xi − F (Zi)‖2 (4)

where Z ∈ Rm is the interpolated LR (ILR) version of Y (i.e. Z = S↑Y). F is then a124

mapping from the ILR image space to the HR image space.125

SR is the process of estimating HR data from LR data. The main goal is then to estimate126

high-frequency components from LR observations. Instead of learning the mapping directly127

from the LR space to the HR one, it might be easier to estimate a mapping from the LR128

space to the missing high-frequency components, also called the residual between HR and129

LR data: R = X− Z or equivalently X = Z + R. This approach can be modeled by a skip130

connection in the network. In such a residual-based modeling, one typically assumes that R131

is a function of Z. The computation of HR data is then expressed as follows: X = Z+F (Z)132

where F can be learnt using the following equation:133

F̂ = arg min
F

K∑
i=1

‖(Xi − Zi)− F (Zi)‖2. (5)

2.2. CNN-based baseline architecture134

In this paper, we focus on the learning of the mapping F with convolutional neural135

networks. Following Dong et al. (2016a) and Kim et al. (2016a), the mapping F from Z136

to (X− Z) is decomposed into nonlinear operations that correspond to the combination of137

convolution-based and rectified linear unit (ReLU) layers.138

The baseline architecture used in this work can be described as follows:139
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Figure 1: 3D deep neural network for single brain MRI super-resolution.


F1(Z) = max(0,W1 ∗ Z +B1)

Fi(Z) = max(0,Wi ∗ Fi−1(Z) +Bi) for 1 < i < L
FL(Z) = WL ∗ FL−1(Z) +BL

(6)

where:140

• L is the number of layers,141

• Wi and Bi are the parameters of convolution layers to learn. Wi corresponds to ni142

convolution filters of support c× fi× fi× fi, where c is the number of channels in the143

input of layer i, fi and ni are respectively the spatial size of the filters and the number144

of filters of layer i,145

• max(0, ·) refers to a ReLU applied to the filter responses.146

This network architecture is depicted in Figure 1. Please note that, for instance, the SRCNN147

model proposed by Dong et al. 2016a corresponds to a specific parameterization of this148

baseline architecture with f1 = 9, f2 = 1, f3 = 5, n1 = 64, n2 = 32 and no skip connection.149

The performance of a given architecture depends on several parameters such as the filter150

size fi, the number of filters ni, the number of layers L, etc. Understanding how these151

parameters influence the reconstruction of the HR image with respect to the considered152

application setting (e.g., number of training samples, image size, scaling factor) is a key issue,153

which remains poorly explored. For instance, regarding the number of layers, it is commonly154

believed that the deeper the better (Simonyan and Zisserman 2014; Kim et al. 2016a).155

However, adding layers increases the number of parameters and can lead to overfitting. In156

particular, previous works (Dong et al. 2016a; Oktay et al. 2016), have shown that a deeper157

structure does not always lead to better results (Dong et al. 2016a).158

Specifically focusing on MRI data, the specific objectives of this study are: i) the eval-159

uation and understanding of the effect of key elements of CNN for brain MRI SR, ii) the160

experimental study of arbitrary multiscale SR using CNN, iii) investigating multimodality-161

guided SR using CNN.162
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3. Sensitivity Analysis of the Considered Architecture163

In this section, we present the MRI datasets used for evaluation and the key elements of164

CNN architecture to achieve good performance for single image SR.165

3.1. MRI Datasets and LR simulation166

To evaluate SR performances of CNN-based architectures, we have used two MRI datasets:167

the Kirby 21 dataset and the NAMIC Brain Multimodality dataset.168

The Kirby 21 dataset (Landman et al. 2011) consists of MRI scans of twenty-one healthy169

volunteers with no history of neurological conditions. Magnetization prepared gradient echo170

(MPRAGE, T1-weighted) scans were acquired using a 3T MR scanner (Achieva, Philips171

Healthcare, The Netherlands) with a 1.0 × 1.0 × 1.2mm3 resolution over an FOV of 240 ×172

204×256mm acquired in the sagittal plane. Flair data were acquired using 1.1×1.1×1.1mm3
173

resolution over an FOV of 242×180×200mm acquired in the sagittal plane. The T2-weighted174

volumes were acquired using a 3D multi-shot turbo-spin echo (TSE) with a TSE factor of175

100 with over an FOV of 200× 242× 180mm including a sagittal slice thickness of 1mm.176

MR images of NAMIC Brain Multimodality1 dataset have been acquired using a 3T177

GE at BWH in Boston, MA. An 8 Channel coil was used in order to perform parallel178

imaging using ASSET (Array Spatial Sensitivity Encoding techniques, GE) with a SENSE-179

factor (speed-up) of 2. The structural MRI acquisition protocol included two MRI pulse180

sequences. The first results in contiguous spoiled gradient-recalled acquisition (fastSPGR)181

with the following parameters: TR=7.4ms, TE=3ms, TI=600, 10 degree flip angle, 25.6cm2
182

field of view, matrix=256×256. The voxel dimensions are 1×1×1mm3. The second XETA183

(eXtended Echo Train Acquisition) produces a series of contiguous T2-weighted images184

(TR=2500ms, TE=80ms, 25.6cm2 field of view, 1 mm slice thickness). Voxel dimensions185

are 1× 1× 1mm3.186

As in Shi et al. 2015 and Rueda et al. 2013, LR images have been generated from a187

Gaussian blur and a down-sampling by isotropic scaling factors. In the training phase, a188

set of patches of training images is randomly extracted. In the baseline setting, the training189

dataset comprises 10 subjects (3 200 patches 25 × 25 × 25 per subject randomly sampled)190

and the testing dataset is composed of 5 subjects. During the testing step, the network191

is applied on the whole images. The peak signal-to-noise ratio (PSNR) in decibels (dB) is192

used to evaluate the SR results with respect to the original HR images. No denoising or193

bias correction algorithms were applied to the data. Image intensity has been normalized194

between 0 and 1. The following figures are drawn based on the average PSNR over all test195

images.196

3.2. Baseline and benchmarked architectures197

The network architecture that is used as a baseline approach in this study is illustrated198

in Figure 1. The baseline network is a 10 blocks (convolution+ReLU) network with the199

following parameters: 64 convolution filters of size (3× 3× 3) at each layer, mean squared200

1NAMIC : http://hdl.handle.net/1926/1687
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error (MSE) as loss function, weight initialization by He et al. (2015) (MSRA filler), Adam201

(adaptive moment estimation) method for optimization (Kingma and Ba 2015), 20 epochs202

on Nvidia GPU and using Caffe package (Jia et al. 2014), batch size of 64, learning rate203

set to 0.0001, no regularization or drop out has been used. The learning rate multipliers204

of weights and biases are 1 and 0.1, respectively. For benchmarking purposes, we consider205

two other state-of-the-art SR models: low-rank total variation (LRTV) (Shi et al. 2015) and206

SRCNN3D (Pham et al. 2017). SRCNN3D (Pham et al. 2017), which is a 3D extension of207

the method described in (Dong et al. 2016a), has 3 convolutional layers with the size of 93,208

13 and 53, respectively. The layers of SRCNN3D consist of 64 filters, 32 filters and one filter,209

respectively.210

The next sections present the impact of the key parameters studied in this work: op-211

timization method, weight initialization, residual-based model, network depth, filter size,212

filter number, training patch size and size of training dataset.213

3.3. Optimization Method214

0 10 20 30 40 50 60
Epochs

32

33

34

35

36

37

38

39

P
S
N
R
(d
B
)

Spline Interpolation

LRTV

SRCNN3D + SGD

SRCNN3D + Adam

10L-ReCNN + NAG

10L-ReCNN + SGD-GC

10L-ReCNN + RMSProp 

10L-ReCNN + Adam 

Figure 2: Impact of the optimization methods onto SR performance: SGD-GC, NAG, RMSProp and Adam
optimisation of a 10L-ReCNN (10-layer residual-learning network with f = 3 and n = 64). We used
Kirby 21 for training and testing with isotropic scaling factor ×2. The initial learning rates of SGD-GC,
NAG, RMSProp and Adam are set respectively to 0.1, 0.0001, 0.0001 and 0.0001. These learning rates are
decreased by a factor of 10 every 20 epochs. The momentum of these methods, except RMSProp, is set to
0.9. All optimization methods use the same weight initialization described by He et al. (2015).

Given a training dataset which consists of pairs of LR and HR images, network parame-215

ters are estimated by minimizing the objective function using optimization algorithms. These216

algorithms play a very important role in training neural networks. The more efficient and217
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effective optimization strategies lead to faster convergence and better performance. More218

precisely, during the training step, the estimation of the restoration operator F corresponds219

to the minimization of the objective function L in Equation (5) over network parameters220

θ = {Wi, Bi}i=1,...,L.221

Most optimization methods for CNNs are based on gradient descent. A classical method222

applies a mini-batch stochastic gradient descent with momentum (SGD) (LeCun et al. 1998)223

as used by Dong et al. (2016a); Pham et al. (2017). However, the use of fixed momentum224

causes numerical instabilities around the minimum. Nesterov’s accelerated gradient (NAG)225

(Nesterov 1983) was proposed to cope with this issue but the use of small learning rates226

induces slow convergence. By contrast, high learning rates may lead to exploding gradients227

(Bengio et al. 1994; Glorot and Bengio 2010). In order to address this issue, Kim et al.228

(2016a) proposed the stochastic gradient descent method with an adjustable gradient clip-229

ping (SGD-GC) (Pascanu et al. 2013) to achieve an optimization with high learning rates.230

The predefined range over which gradient clipping is applied may still cause SGD-GC not231

to converge quickly or make difficult the tuning of a global learning rate. Recently, methods232

have been proposed to address this issue through an automatic adaption of the learning rate233

for each parameter to be learnt. RMSProp (root-mean-square propagation) (Tieleman and234

Hinton 2012) and Adam (adaptive moment estimation) (Kingma and Ba 2015) are the two235

most popular models in this category.236

The results of four optimization methods (NAG, SGD-GC, RMSProp and Adam) for237

the baseline network are illustrated in Figure 2. Firstly, regardless the method used, the238

baseline network shows better performance than LRTV (Shi et al. 2015) and SRCNN3D239

(Pham et al. 2017). Secondly, it can be observed that the baseline network can converge very240

rapidly (only 20 epochs with small learning rate of 0.0001). Finally, in these experiments,241

the most efficient and effective optimization method is Adam as regards both PSNR metric242

and convergence speed. Hence, in the next sections, we use Adam method with β1 = 0.9243

and β2 = 0.999 to train our networks with 20 epochs.244

3.4. Weight Initialization245

The optimization algorithms for training a CNN are typically initialized randomly. In-246

appropriate initialization can lead to long time convergence or even divergence. Several247

studies (Dong et al. 2016a; Oktay et al. 2016; Pham et al. 2017) used a normal distribu-248

tion N (0, 0.001) to initialize the weights of convolutional filters. However, because of too249

small initial weights, the optimizer may be stuck into a local minimum especially when250

building deeper networks. Both Dong et al. (2016a) concluded that deeper networks do not251

lead to better performance, and Oktay et al. (2016) confirmed that the addition of extra252

convolutional layers to the 7-layer model is found to be ineffective. Uniform distribution253

U(−
√

3/(nf 3),
√

3/(nf 3)) (called Xavier filler) (Glorot and Bengio 2010) was also proposed254

to initialize the weights of deeper networks. In order to add more layers to networks, He255

et al. (2015) suggested an initial training stage by sampling from the normal distribution256

N (0,
√

2/(nf 3)) (called here Microsoft Research Asia - MSRA filler).257

Overall, we evaluate here the weight initialization schemes described by Glorot and Ben-258

gio (2010) and He et al. (2015), a normal distribution N (0, 0.001) as proposed by Dong et al.259
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(a) : 10-layer residual-learning networks (10L-ReCNN)
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(b) : 20-layer residual-learning networks (20L-ReCNN)

Figure 3: Weight initialization scheme vs. performance (residual-learning networks with the same filter
numbers n = 64 and filter size f = 3 using Adam optimization and tested with isotropic scaling factor ×2
using Kirby 21 for training and testing, 32 000 patches with size 253 for training).

(2016a); Oktay et al. (2016) and a normal distribution N (0, 0.01) for the considered SR ar-260

chitecture. Experiments with a deeper architecture were also performed, more precisely for261

a 20-layer architecture, which is the deepest architecture that could be implemented for262

the considered experimental setup due to GPU memory setting. As shown in Figure 3,263

the initialization with normal distributions N (0, 0.001) failed to make the training of both264

10-layer and 20-layer residual-learning networks converge. In addition, our 20-layer network265

also does not converge when initialized with normal distributions N (0, 0.01). By contrast,266

MSRA and Xavier filler schemes make the networks converge and reach similar reconstruc-267

tion performance. For the rest of this paper, we use MSRA weight filler as initialization268

scheme.269
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3.5. Residual Learning270

The CNN methods proposed by Dong et al. (2016a); Shi et al. (2016); Dong et al.271

(2016b) use the LR image as input and outputs the HR one. We refer to such approach272

as a non-residual learning. Within these approaches, low-frequency features are propagated273

through the layers of networks, which may increase the representation of redundant features274

in each layer and in turn the computational efficiency of the training stage. By contrast,275

one may consider residual learning or normalized HR patch prediction as pointed out by276

several learning-based SR methods (Zeyde et al. 2012; Timofte et al. 2013, 2014; Kim et al.277

2016a). When considering CNN methods, one may design a network which predicts the278

residual between the HR image and the output of the first transposed convolutional layer279

(Oktay et al. 2016). Using residual blocks, a CNN architecture may implicitly embed residual280

learning while still predicting the HR image (Ledig et al. 2017).281

0 5 10 15 20
Epochs

34

35

36
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38

39
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R
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)

Spline Interpolation

10L-ReCNN (Residual)

10L-CNN (Non-residual)

20L-ReCNN (Residual)

20L-CNN (Non-residual)

Figure 4: Non-residual-learning vs Residual-learning networks with the same n = 64 and f3 = 33 and the
depths of 10 and 20 (called here 10L-CNN vs 10L-ReCNN and 20L-CNN vs 20L-ReCNN) over 20 training
epochs using Adam optimization with the same training strategy and tested with isotropic scale factor ×2
using Kirby 21 for training and testing.

Here, we perform a comparative evaluation of non-residual learning vs. residual learning282

strategies. Figure 4 depicts PSNR values and convergence speed of residual vs. non-residual283

network structures with 10 and 20 convolutional layers. The residual-learning networks284

converge faster than the non-residual-learning ones. In addition, residual learning leads285

to improvements in PSNR (+0.4dB for 10 layers and +1.2dB for 20 layers). It might be286

noted that these experiments do not support the common statement that the deeper, the287

better for CNNs. Here, the use of additional layers is only beneficial when using residual288

modeling. Deeper architectures may even lower the reconstruction performance with non-289

residual learning.290

3.6. Depth, Filter Size and Number of Filters291

As shown by the previous experiment, the link between network depth and performance292

remains unclear. Besides, it is hard to train deeper networks because gradient computation293
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Figure 5: Depth vs Performance (residual-learning networks with the same filter numbers n = 64 and filter
size f = 3 over 20 training epochs using Adam optimization and tested with isotropic scale factor ×2 using
Kirby 21 for training and testing, 32 000 patches with size 253 for training).

can be unstable when adding layers (Glorot and Bengio 2010). For instance, Oktay et al.294

(2016) tested extra convolutional layers to a 7-layer model but achieved negligible perfor-295

mance improvement. As mentioned in Section 2.2, SRCNN (Dong et al. 2016a) was also296

tested with deeper architectures but no improvement was reported. However, Kim et al.297

(2016a) argue that the performance of CNNs for SR could be improved by increasing the298

depth of network compared to neural network architectures proposed by Dong et al. (2016a);299

Oktay et al. (2016).300

The previous section supports that deeper architectures may be beneficial when consid-301

ering a residual learning. We now evaluate the reconstruction performance as a function of302

the number of layers. Results are reported in Figure 5. They stress that increasing network303

depth with residual learning improves the quality of the estimated HR image (e.g. +1.6dB304

increasing of the depth from 3 to 20 or +0.5dB increasing of the depth from 7 to 20).305

The parameterization of the convolutional filters is also of key interest. Inspired by the306

VGG network designed for classification (Simonyan and Zisserman 2014), previous CNN307

methods for SR mostly focused on small convolutional filters of size (3× 3× 3) as proposed308

by Kim et al. (2016a); Oktay et al. (2016); Kamnitsas et al. (2017). Oktay et al. (2016)309

even argued that such architecture can lead to better non-linear estimations. Regarding310

the number of filters for each layer, Dong et al. (2016a) reported greater reconstruction311

performance when increasing the number of filters. But these experiences were not reported312

in other CNN-based SR studies (Kim et al. 2016a; Oktay et al. 2016). Here, we both evaluate313

the effect of the filter size and of the number of filters.314

Figure 6 shows that a 10-layer network with a filter size of 53 shows results as well as315

a 20-layer network with 33 filters. Besides reconstruction performance, the use of a larger316

filter size decreases the training speed and significantly increases the complexity and memory317

cost for training. For example, it took us 50 hours to train a 10-layer network with a filter318

size of 53. By contrast, a deeper network with smaller filters (i.e. 20-layer network with 33
319

filters) involves a smaller number of parameters, such that it took us only 24 hours to train.320
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Figure 6: Impact of convolution filter parameters (sizes f × f × f = f3 with n filters) on PSNR and
computation time. These 10-layers residual-learning networks are trained from scratch using Kirby 21 with
Adam optimization over 20 epochs and tested with the testing images of the same dataset for isotropic scale
factor ×2.

These experiments suggest that deeper architectures with small filters can replace shallower321

networks with larger filters both in terms of computational complexity and of reconstruction322

performance. In addition, the increase in the number of filters within networks can increase323

the performance. However, we were not able to use 128 filters with the baseline architecture324

due to the limited amount of memory. This stresses out the need to design memory efficient325

architectures for 3D image processing using deeper CNNs with more filters.326

3.7. Training Patch Size and Subject Number327

In the context of brain MRI SR, the acquisition and collection of large datasets with328

homogeneous acquisition settings is a critical issue. We now evaluate the extent to which329

the number of training subjects influences SR reconstruction performance. As the training330

samples are extracted as patches of brain MRI images, we also evaluate the impact of the331

training patch size on learning and reconstruction performances.332

The size of training patches should be greater or equal to the size of the receptive field333

of the considered network (Simonyan and Zisserman 2014; Kim et al. 2016a), which is given334

by ((f − 1)D + 1)3 for a D-layer network with filter size f 3. Figure 7 confirms that better335

performances can be achieved using larger training patches (from 113 to 313 with the 10-layer336

network and from 113 to 293 with the 12-layer network). However, if the patch size is larger337

than the receptive field (e.g. 213 within the 10-layers network and 253 within the 12-layers338

network), then the improvement is negligible consuming, in the meantime, considerably339

more GPU memory and training time.340

We stressed previously that the selection of the network depth involves a trade-off be-341

tween reconstruction performance and GPU memory requirement and training time increase.342
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Figure 7: First row: Training patch size vs. performance. Second row: Patch size vs. training time. Third
row: Patch size vs training GPU memory requirement. These networks with the same n = 64 and f3 = 33

are trained from scratch using Kirby 21 with batch of 64 and tested with the testing images of the same
dataset for isotropic scale factor ×2.

A similar result can be drawn with respect to the patch size. Figure 7 illustrates that larger343

training patch sizes also require more memory for training. Moreover, this figure shows that344

better performance can be achieved using larger training patch sizes. It may be noted that345

the performance of the 10-layer networks may reach a performance similar to 12-layer and346

20-layer networks when using larger training patches but it takes more time and more GPU347

memory for training.348

Regarding the number of training subjects, Figure 8 points out that a single subject is349

enough to reach better performance than spline interpolation. Interestingly, reconstruction350

performance increases slightly when more subjects are considered, which appears appropriate351

for real-world applications. However, in fact, more training dataset takes more time within352

the same experience settings. In the next sections, for saving training time, we propose to353

use 10 subjects for learning.354

4. Handling Arbitrary Scales355

In some CNN-based SR approaches, the networks are learnt for a fixed and specified356

scaling factor. Thus, a network built for one scaling factor cannot deal with any other357

scale. In medical imaging, Oktay et al. (2016) have applied CNNs for upscaling cardiac358

image slices with the scale of 5 (e.g. upscaling the voxel size from 1.25× 1.25× 10.0mm to359

1.25× 1.25× 2.00mm). Typically, their network is not capable of handling other scales due360

to the use of fixed deconvolutional layers. In brain MRI imaging, the variety of the possible361

acquisition settings motivates us to explore multiscale settings.362
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Figure 8: Number of subjects vs. performance (10-layer residual-learning networks with the same filter
numbers n = 64 and filter size f = 3 over 20 training epochs using Adam optimization and tested with
isotropic scale factor ×2 using Kirby 21 for training and testing, 3 200 patches per subject with size 253 for
training).

Following Kim et al. (2016a), we investigate how we may deal with multiple scales in a363

single network. It consists of creating a training dataset within which we consider LR and364

HR image pairs corresponding to different scaling factors. We test two cases: the first case365

where the learning dataset for combined scale factors (×2,×3) has the same number as a366

single scale factor and the second one where we double the learning dataset for multiple367

scale factors. To avoid a convergence towards a local minimum of one of the scaling factors,368

we learn network parameters on randomly shuffled dataset.369

Table 1 summarizes experimental results. First, when the training is achieved for the370

scaling from (2×2×2) on a dataset of (2×2×2) scale, it can be noticed that reconstruction371

performances decrease significantly when applied to other scaling factors (there is a drop372

from 39.01dB to 33.43dB when testing with (3 × 3 × 3)). Second, it can be noticed that373

when the training is performed on multiscale data within the same training samples, there is374

no significant performance change compared to training from a single-scale dataset. Third,375

a training dataset with double samples leads to a better performance. Moreover, training376

from multiple scaling factors leads to the estimation of a more versatile network. Overall,377

these results show that one single network can handle multiple arbitrary scaling factors.378

5. Multimodality-guided SR379

In clinical cases, it is frequent to acquire one isotropic HR image and LR images with380

different contrasts in order to reduce the acquisition time. Hence, a coplanar isotropic HR381

image might be considered as a complementary source of information to reconstruct HR382

MRI images from LR ones (Rousseau et al. 2010a). To address this multimodality-guided383

SR problem, we add a concatenation layer as the first layer of the network, as illustrated in384

Figure 9. This layer concatenates the ILR image and a registered HR reference along the385
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Test / Train

Full-training
Same training samples Double samples

×(2,2,2) ×(3,3,3) ×(2,2,2),(3,3,3) ×(2,2,2),(3,3,3)
PSNR PSNR PSNR PSNR

×(2,2,2) 39.01 35.25 37.35 38.80
×(2,2,3) 36.80 35.11 36.47 37.24
×(2,2.5,2) 37.71 35.41 36.91 37.93
×(2,3,3) 35.23 35.13 35.75 36.20

×(2.5,2.5,2.5) 35.47 35.52 36.09 36.63
×(3,3,3) 33.43 35.01 34.89 35.20

Table 1: Experiments with multiple isotropic scaling factors with the 20-layers network using the training
and testing images of Kirby 21. Bold numbers indicate that the tested scaling factor is present in the
training dataset. We test two conditions of same training data and double training data.

channel axis. The registration step of HR reference ensures that the two input images share386

the same geometrical space.387

We experimentally evaluate the relevance of the proposed multimodality-guided SR388

model according to the following setting. We investigate whether the complementary use of389

a Flair or a T2-weighted MRI image might be beneficial to improve the resolution of a LR390

T1-weighted MRI image. Concerning the Kirby 21 dataset, we apply an affine transform391

estimated using FSL (Jenkinson et al. 2012) to register images of a same subject into a com-392

mon coordinate space. We assume here that the affine registration can compensate motion393

between two scans during the same acquisition session. This appears a fair assumption since394

here we are considering an organ that does not undergo significant deformation between two395

acquisitions. The registration step has been checked visually for all the images. Data of the396

NAMIC dataset are already in the same coordinate space so no registration step is required.397

Figure 10 shows the results of the multimodality-guided SR compared to the monomodal398

SR for both Kirby dataset (a) and NAMIC datasets (b). It can be seen that multimodal-399

ity driven approach can lead to improved reconstruction results. In these experiments, the400

overall upsampling result depends on the quality of the HR image used to drive the re-401

construction process. Thus, adding high resolution information containing artifacts limits402

reconstruction performance. This is especially the case for the Kirby dataset. For instance,403

when considering T2w images, no improvement is observed for Kirby dataset and an im-404

provement greater than 1dB is reported for NAMIC dataset. As the T2w image resolution405

is lower than T1w modality in Kirby dataset, these results may emphasize the requirement406

for actual HR information to expect significant gain w.r.t. the monomodal model. Figure407

11 shows visually that edges in the residual image between the ground truth and the recon-408

struction by the multimodal approach are reduced significantly compared to interpolation409

and monomodal methods (e.g. the regions of lateral ventricles). This means that the mul-410

timodal approach resulting the reconstructions which are the most similar to the ground411

truth. These qualitative results highlight the fact that the proposed multimodal method412

provides a better performance than other compared methods.413

15



Figure 9: 3D deep neural network for multimodal brain MRI super-resolution using intermodality priors.
Skip connection computes the residual between ILR image and HR image.

In addition, we explore the impact of the network depth augmentation with regard to414

the performance of multimodal SR approach. The experiments shown in Figure 12 indicate415

that the deeper structures do not lead to better results within the multimodal method.416

6. How Transferable are learnt Features?417

Training a CNN from scratch requires a substantial amount of training data and may418

take a long time. Moreover, to avoid overfitting, the training dataset has to reflect the419

appearance variability of the images to reconstruct. In the context of brain MRI, part of420

image variability comes from acquisition systems. Hence, we investigate the impact of such421

image variability onto SR performance by evaluating transfer learning skills among different422

datasets corresponding to the same imaging modality.423

In order to characterize such generalization skills, we evaluate in which extent the selec-424

tion of a given training dataset influences the reconstruction performance of the network.425

To this end, we train from scratch two 20L-ReCNN networks separately for a 10-image426

NAMIC T1-weighted dataset and a 10-image Kirby T1-weighted dataset, and we test the427

trained models for the remaining 10-image NAMIC and Kirby T1-weighted datasets. The428

considered case-study involves a scaling factor of (2 × 2 × 2). For quantitative compari-429

son, the PSNR and the structural similarity (SSIM) (the definition of SSIM can be found430

in Wang et al. 2004) are used to evaluate the performance of each model in Table 2. For431

benchmarking purposes, we also include a comparison with the following methods: cubic432

spline interpolation, low-rank total variation (LRTV) (Shi et al. 2015), SRCNN3D (Pham433

et al. 2017). The use of 20-layer CNN-based approaches for each training dataset can lead434

to improvements over spline interpolation, LRTV method and SRCNN3D (with respect to435

both PSNR and SSIM). Although, the gain is slightly lowered (e.g. PSNR: 0.55dB for test-436

ing Kirby and 0.74dB for NAMIC, SSIM: 0.003 for Kirby and 0.0019 for NAMIC) when437
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(a) Multimodal experiments using Kirby 21 dataset for training and testing.
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(b) Multimodal experiments using NAMIC dataset for training and testing.

Figure 10: Multimodality-guided SR experiments. The LR T1-weighted images are upscaled with isotropic
scale factor ×2 using respectively monomodal network (10L-ReCNN for LR T1w), HR T2w multimodal
network, HR Flair multimodal network and both HR Flair and T2w multimodal images.

using different training and testing dataset (i.e. different resolution), our proposed networks438

obtain better results than compared methods.439

For qualitative comparison, Figures 13 and 14 show the results of reconstructed 3D440

images obtained from all the compared techniques. The zoom version of the reconstructions441

20L-ReCNN shows sharpen edges and a grayscale intensity which are closest to the ground442

truth. In addition, the HR reconstruction of the 20L-ReCNN model shows that its differences443

from the ground truth are less than other methods (i.e. the contours of the residual image444

of the 20L-ReCNN method are less visible than those of others). Hence, we can infer that445

our proposed method better preserves contours, geometrical structures and better recovers446

the image contrast compared with the other methods.447

7. Application of Super-Resolution on Clinical Neonatal Data448

In clinical routine, anisotropic LR MRI data are usually acquired in order to limit the449

acquisition time due to patient comfort such as infant brain MRI scans (Makropoulos et al.,450

2018), or in case of rapid emergency scans (Walter et al., 2003). These images usually have451

a high in-plane resolution and a low through-plane resolution. Anisotropic data acquisition452
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(a) Original HR T1-weighted (b) LR T1-weighted image (c) HR T2-weighted reference

(d) Spline Interpolation (e) Monomodal 10L-ReCNN (f) Multimodal 10L-ReCNN

Figure 11: Illustration of the axial slices of monomodal and multimodal SR results (subject 01018, patho-
logical case of testing set) with isotropic voxel upsampling using NAMIC. The LR T1-weighted image (b)
with voxel size 2 × 2 × 2mm3 is upsampled to size 1 × 1 × 1mm3. The monomodal network 10L-ReCNN
is applied directly the LR T1-weighted image (b), whereas the multimodal network 10L-ReCNN uses the
HR T2-weighted reference (c) to upscale LR T1-weighted image (b). The results of the monomodal and
multimodal networks are shown in (e) and (f), respectively. The different between ground truth image and
reconstruction results are at the bottom. Their zoom version are at the right.

severely limits the 3D exploitation of MRI data. Interpolation is commonly used to upsam-453

pled these LR images to isotropic resolution. However, interpolated LR images may lead to454

partial volume artifacts that may affect segmentation (Ballester et al., 2002). In this section,455

we aim to use our single image SR method to enhance the resolution of such clinical data.456

The idea is to apply our proposed convolutional neural networks-based SR method to457

transfer the rich information available from high-resolution experimental dataset to lower-458

quality image data. The procedure first uses CNNs to learn mappings between real HR459

images and their corresponding simulated LR images with the same resolution of real data.460

The LR data is generated by the observation model, which is decomposed into a linear461

downsampling operator after a space-invariant blurring model as a Gaussian kernel with462

the full-width-at-half-maximum (FWHM) equal to slice thickness (Greenspan, 2008). Once463

models are learnt, these mappings enhance the LR resolution of unseen low quality images.464

In order to verify the applicability of our CNN-based methods, we have used two neona-465

tal brain MRI dataset: the Developing Human Connectome Project (dHCP) (Hughes et al.,466

2017) and clinical neonatal MRI data acquired in the neonatology service of Reims Hos-467

pital (Multiphysics image-based AnalysIs for premature brAin development understanding468
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Figure 12: Depth vs. performance (multimodal SR using residual-learning networks with the same filter
numbers n = 64 and filter size f = 3 over 20 training epochs using Adam optimization and tested with
isotropic scale factor ×2 using NAMIC for training and testing).

Testing dataset
Spline Interpolation LRTV SRCNN3D 20L-ReCNN

Kirby (10 images) Kirby (10 images) NAMIC(10 images)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Kirby (5 images ) 34.16 0.9402 35.08 0.9585 37.51 0.9735 38.93 0.9797 38.06 0.9767
Standard deviation 1.90 0.0111 2.09 0.0083 1.97 0.0053 1.87 0.0044 1.83 0.0045

Gain - - 0.92 0.0183 3.36 0.0333 4.77 0.0395 3.9 0.0365

NAMIC (10 images) 33.78 0.9388 34.34 0.9549 36.72 0.9694 37.73 0.9762 38.28 0.9781
Standard deviation 1.82 0.0071 1.79 0.0044 1.76 0.0035 1.81 0.0031 1.78 0.0029

Gain - - 0.56 0.0161 2.94 0.0306 3.95 0.0374 4.5 0.0393

Table 2: The results of PSNR/SSIM for isotropic scale factor ×2 with the gain between compared methods
and the method of spline interpolation. One network 20L-ReCNN trained with 10 images of Kirby and one
trained with NAMIC

- MAIA dataset). The HR images are T2-weighted MRIs of the dHCP and provided by469

the Evelina Neonatal Imaging Centre, London, UK. Forty neonatal data were acquired on470

a 3T Achieva scanner with repetition (TR) of 12 000 ms and echo times (TE) of 156ms,471

respectively. The size of voxels is 0.5 × 0.5 × 0.5 mm3. In-vivo neonatal LR images has a472

voxel size of about 0.4464× 0.4464× 3 mm3.473

Figure 15 compares the qualitative results of HR reconstructions (spline interpolation,474

NMU (Manjón et al., 2010b) and our proposed networks) of a LR image from MAIA dataset.475

In this experiment, we do not have the ground truth of real LR data for calculating quanti-476

tative metrics. The comparison reveals that the CNNs-based methods recover shaper images477

and better defined boundaries than spline interpolation. For instance, the cerebrospinal fluid478

(CSF) of the cerebellum of the proposed method, in Figure 15, is more visible than those479

obtained with the compared methods. Our proposed technique reconstructs more curved480

cortex and more accurate ventricles. These results tend to confirm qualitatively the efficacy481

of our approach.482
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(a) Original HR (b) LR image (c) Spline Interpolation

(d) LRTV (e) SRCNN3D (f) 20L-ReCNN

Figure 13: Illustration of SR results (subject KKI2009-02-MPRAGE, non-pathological case, in testing set of
dataset Kirby 21) with isotropic voxel upsampling. LR data (b) with voxel size 2×2×2.4mm3 is upsampled
to size 1× 1× 1.2mm3. The difference between the ground truth image and the reconstruction results are in
the right bottom corners. Both network SRCNN3D and network 20L-ReCNN are trained with the 10 last
images of Kirby.

8. Discussion483

This study investigates CNN-based models for 3D brain MR image SR. Based on a484

comprehensive experimental evaluation, we would like to draw the following conclusions485

and recommendations regarding the setup to be considered. We highlight that eight com-486

plementary factors may drive the reconstruction performance of CNN-based models. The487

combination of 1) appropriate optimization with 2) weight initialization and 3) residual488

learning is a key to exploit deeper networks with a faster and effective convergence. The489

choice of an appropriate optimization method can lead to a PSNR improvement of (at least)490

1dB. In this study, it has appeared that Adam method (Kingma and Ba 2015) provides491

significantly better reconstruction results than other classical techniques such as SGD, and a492

faster convergence. Moreover, weights initialization is a very important step. Indeed, some493

approaches simply do not achieve convergence in the learning phase. This study has also494
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(a) Original HR (b) LR image (c) Spline Interpolation

(d) Low-Rank Total Variation
(LRTV)

(e) 20L-ReCNN (trained with
Kirby)

(f) 20L-ReCNN (trained with
NAMIC)

Figure 14: Illustration of SR results (subject 01011-t1w, pathological case, in testing set of dataset NAMIC)
with isotropic voxel upsampling. LR data (b) with voxel size 2×2×2mm3 is upsampled to size 1×1×1mm3.
The zoom versions of the axial slices are in the right bottom corners.

shown that residual modeling for single image SR is a straightforward technique to improve495

the reconstruction performances (+0.4dB) without requiring major changes in the network496

architecture. Appropriate weight initialization methods described by He et al. (2015); Glo-497

rot and Bengio (2010) allow us to build deeper residual-learning networks. From our point498

of view, these three aspects of SR algorithm are the first to require special attention for the499

implementation of a SR technique based on CNN.500

Overall, we show that better performance can be achieved by learning 4) a deeper fully 3D501

convolution neural network, 5) exploring more filters and 6) increasing filter size. In addition,502

using 7) larger training patch size and 8) augmentation of training subject leads to increase503

the performance of the networks. The adjustment of these 5 elements provides a similar504

improvement (about 0.5dB). Although it seems natural to implement the deepest possible505

network, this parameter is not always the key to obtaining a better estimate of a high-506

resolution image. Our study shows that, depending on the type of input data (monomodal507

or multimodal), network depth is not necessarily the main parameter leading to better508
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(a) Original LR image (b) Spline interpolation (c) NMU (d) Our proposed method

Figure 15: Illustration of SR results on a clinical data of MAIA dataset with isotropic voxel upsampling.
Original data with voxel size of about 0.4464×0.4464×3 is resampled to size 0.5×0.5×0.5 mm3. Networks
are trained with the dHCP dataset. The first, second, third and last rows presents the sagittal slices, the
zoom versions of the sagittal slices, the coronal slices and the zoom versions of the coronal slices, respectively.

image reconstruction. In addition, it is important to take into account the time of the509

learning phase as well as the maximum memory available in the GPU in order to choose the510

best architecture of the network. For instance, for the monomodal SR case based on the511

simulations of Kirby dataset, we suggest using 20-layer networks with 64 small filters with512

size of 33 regarding 10 training subjects of size 253 to achieve practicable results.513

In CNN-based approaches, the upscaling operation can be performed by using transposed514

convolution (so-called fractionally strided convolutional) layers as proposed by Oktay et al.515

(2016); Dong et al. (2016b) or sub-pixel layers (Shi et al. 2016). However, the trained weights516

of these networks are totally applied for a specified scale factor. This is a limiting aspect of517

CNN-based SR for MR data since a fixed upscaling factor is not appropriate in this context.518

In this study, we have presented a multiscale CNN-based SR method for single 3D brain519

MRI that is capable of learning multiple scales by training multiple isotropic scale factors520
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(a) Nearest-neighbor (b) Spline interpolation

(c) LRTV (d) 20L-ReCNN

Figure 16: Illustration of SR results (subject 01018-t1w in testing set of dataset NAMIC) with isotropic
voxel upsampling. Original data with voxel size of 1× 1× 1 mm3 is upsampled to size 0.5× 0.5× 0.5 mm3.
20L-ReCNN is trained with the NAMIC dataset.

due to an independent upsampling technique such as spline interpolation. Handling multiple521

scales is related to multi-task learning. The lack of flexibility of learnt network architectures522

raises an open issue motivating further studies: how can we build a network that can deal523

with a set of observation models (i.e. multiple scales, arbitrary point spread functions, non524

uniform sampling, etc.)? For instance, when applying SR techniques in a realistic setting,525

the choice of the PSF is indeed a key element for SR methods and it depends on the type526

of MRI sequence. More specifically, the shape of the PSF depends on the trajectory in the527

k-space (Cartesian, radial, spiral). Making the network independent from the PSF model528

(i.e. doing blind SR) would be a major step for its use in routine protocol. Further research529

directions could focus on making more flexible CNN-based SR methods for greater use of530

these techniques in human brain mapping studies.531

Evaluation of SR techniques is carried out on simulated LR images. However, one po-532

tential use of SR techniques would be to improve the resolution of isotropic data acquired in533

clinical routine. Figure 16 shows upsampling results on isotropic T1-weighted MR images534

(the resolution was increased from 1 × 1 × 1mm3 to 0.5 × 0.5 × 0.5mm3). In this experi-535

ment, the applied network has been trained to increase image resolution from 2× 2× 2mm3
536

to 1 × 1 × 1mm3. Although quantitative results cannot be computed, visual inspection537

of reconstructed upsampled images tend to show the potential of this SR method. Thus,538

features learnt at a lower scale (2mm in this experiment) may be used to compute very539
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high-resolution images that could be involved in fine studies of thin brain structures such540

as the cortex. Further work is required to investigate this aspect and more particularly the541

link with self-similarity based approaches.542

In this article, we have proposed a multimodal method for brain MRI SR using CNNs543

where a HR reference image of the same subject can drive the reconstruction process of the544

LR image. By concatenating these HR and LR images, the reconstruction of the LR one545

can be enhanced by exploiting the multimodality feature of MR data. As shown in previous546

works (Rousseau et al. 2010a; Manjón et al. 2010a), the use of HR reference can lead to547

significant improvements of the reconstruction process. However, unlike the monomodal548

setup, a deeper network does not lead to better performance within the experiments on549

NAMIC dataset. Experiments from our study show that future work is needed to understand550

the relationship between network depth and the quality of HR image estimation.551

Moreover, we have experimentally investigated the performances of CNN for generalizing552

on a different dataset (i.e. how a learnt network can be used in another context). More553

specifically, our study illustrates how knowledge learnt from one MR dataset is transferred554

to another one (different acquisition protocol and different scales). We have used Kirby555

and NAMIC datasets for this purpose. Although a slight decrease in performance can be556

observed, CNN-based approach can still achieve better performances than existing methods.557

These results tend to demonstrate the potential applications of CNN-based techniques for558

MRI SR. Further investigations are required to fully assess the possibilities of transfer learn-559

ing in medical imaging context, and the contributions of fine-tuning technique (Tajbakhsh560

et al. 2016).561

Finally, future research directions for CNN-based SR techniques could focus on other562

elements of the network architecture or the learning procedure. For instance, batch normal-563

ization (BN) step has been proposed by Ioffe and Szegedy (2015). The purpose of a BN layer564

is to normalize the data through the entire network, rather than just performing normaliza-565

tion once in the beginning. Although BN has been shown to improve classification accuracy566

and decrease training time (Ioffe and Szegedy 2015), we attempt to include BN layers into567

CNN for image SR but they do not lead to performance increase. Similar observations have568

been made in a recent SR challenge (Timofte et al. 2017). Moreover, whereas the classical569

MSE-based loss attempts to recover the smooth component, perceptual losses (Ledig et al.570

2017; Johnson et al. 2016; Zhao et al. 2017) are proposed for natural image SR to better571

reconstruct fine details and edges. Thus, adding this type of layer (BN or residual block) or572

defining new loss functions may be beneficial for MRI SR and may provide new directions573

for research.574

In this study, we have investigated the impact of adding data (about 3 200 patches575

per added subject of Kirby dataset) on SR performances through PSNR computation. It576

appeared that using more subjects sightly improves the reconstruction results in this exper-577

imental setting. However, further work could focus on SR-specific data augmentation by578

rotation and flipping, which is usually used in many works (Kim et al. 2016a; Timofte et al.579

2016), for improving algorithm generalization.580

The evaluation on synthetic low-resolution images remains a limited approach to accu-581

rately quantify the performance of developed algorithms in real-world situations. However,582
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acquiring low-resolution (LR) and high-resolution (HR) MRI data with the exact same con-583

trast is very challenging. The development of such a database is beyond the scope of this584

work. There is currently no available dataset of pairs of real HR and LR images. This is585

the reason why all the works on SR perform quantitative analysis on synthetic data.586

In order to demonstrate the potential of SR methods for enhancing the quality of clinical587

LR images, we have presented a practical application: image quality transfer from high-588

resolution experimental dataset to real anisotropic low-resolution images. Our CNN-based589

SR method shows clear improvements over interpolation, which is the standard technique590

to enhance image quality from visualisation by a radiologist. SR method is therefore a591

highly relevant alternative to interpolation. Future work on the support of SR techniques592

for applications in brain segmentation could be investigated to evaluate the performance of593

these methods. Besides, the best way to evaluate the performances of SR methods is to594

gather datasets where pairs of real HR and LR images are available.595
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