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Abstract

The purpose of super-resolution (SR) approaches is to overcome the hardware limitations
and the clinical requirements of imaging procedures by reconstructing high-resolution images
from low-resolution acquisitions using post-processing methods. SR techniques could strong
impacts on structural MRI when focusing on cortical surface or fine-scale structure analy-
sis for instance. In this paper, we study deep three-dimensional (3D) convolutional neural
networks (CNNs) for SR of brain MRI data. First, our work delves the relevance of several
factors in the performance of the purely CNN-based technique for monomodal SR: optimiza-
tion method, weight initialization, network depth, residual learning, filter size in convolution
layers, number of the filters, training patch size and number of training subjects. Second,
our study also highlights that one single network can efficiently handle multiple arbitrary
scaling factors based on a multi-scale training approach. Third, we further extend our SR
networks to multimodal SR using intermodality priors. Lastly, comparison to state-of-the-
art methods in terms of transfer learning demonstrates the potential of CNNs for enhancing
medical imaging.
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1. Introduction

Magnetic Resonance Imaging (MRI) is a powerful imaging modality for in vivo brain
visualization with a typical image resolution of 1mm. Acquisition time of MRI data and
signal-to-noise ratio are two parameters that drive the choice of an appropriate image reso-
lution for a given study. The accuracy of further analysis such as brain morphometry can
be highly dependent on image resolution. Super-Resolution (SR) aims to enhance the res-
olution of an imaging system using single or multiple data acquisitions [1]. The use of SR
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techniques has been studied in many works in the context of brain MRI analysis: struc-
tural MRI [2, 3, 4, 5, 6], diffusion MRI [7, 8, 9, 10], spectroscopy MRI [11], quantitative T1
mapping [12, 13], fusion of orthogonal scans of moving subjects [14, 15, 16, 17], etc. The
development of efficient and accurate SR techniques for 3D MRI data could be a major step
forward for brain studies.

Most SR methods rely on the minimization of a cost function consisting of a fidelity term
related to an image acquisition model and a regularization term that constrains the space
of solutions. The observation model is usually a linear model including blurring, motion,
the effect of the point spread function and downsampling. The regularizer, which guides the
optimization process while avoiding unwanted image solutions, can be defined using pixel-
based l2-norm term [14], total variation [6], local patch-based similarities [2, 4, 3], sparse
coding [5], low rank property [6], etc.

However, the choice of the regularization term remains difficult as it modifies implicitly
the space of acceptable solutions without any guaranty on the reconstruction of realistic
high-resolution images. Conversely, in a supervised context (in which one can exploit a
learning database with low-resolution (LR) and high-resolution (HR) images), the SR of
MRI data can be fully driven by examples. The key challenge of supervised techniques is to
accurately estimate the mapping operator from the LR image space to the HR one. Recently,
significant advances have been reported in SR for computer vision using convolutional neural
networks (CNN). This trend follows the tremendous outcome of CNN-based schemes for
a wide range of computer vision applications, including for instance image classification
[18, 19, 20], medical segmentation [21] or medical image analysis [22].

CNN architectures have become the state-of-the-art for image SR. Initially, Dong et
al. [23], proposed a three-layer CNN architecture. The first convolutional layer implicitly
extracts a set of feature maps for the input LR image, the second layer maps these feature
maps nonlinearly to HR patch representations and the third layer reconstruct the HR image
from these patch representations. Several studies have further investigated CNN-based ar-
chitectures for image SR. Among other, the following features have been reported to improve
SR performance: an increased depth of the network [24], residual block (with batch nor-
malization and skip connection) [25], sub-pixel layer [26], perceptual loss function (instead
of Mean Square Error-based cost functions) [27, 25, 28], recurrent networks [29], generative
adversarial networks [25].

Very recently, very deep architectures obtained the best performance in a challenge
focusing on natural image SR (NTIRE 2017 challenge [30]). However, due to the variety
of the proposed methods and the high number of parameters for the networks architecture
design, it is currently difficult to identify the key elements of CNN architecture to achieve
good performance for image SR and assess their applicability in the context of 3D brain
MRI. In addition the extension of CNN architectures to 3D images, taking into account
floating and possibly anisotropic scaling factors may be of interest to address the wide range
of possible clinical acquisition settings, whereas classical CNN architectures only address
a predefined (integer) scaling factor. The availability of multimodal imaging setting also
questions the ability of CNN architectures to benefit from such multimodal data to improve
the SR of a given modality.
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Contributions: This work presents a comprehensive review of deep convolutional neu-
ral networks, and associated key elements, for brain MRI SR. Following Timofte et al. [31],
who have experimentally showed several ways to improve SR techniques from a baseline
architecture, we study the impact of eight key elements on the performance of convolutional
neural networks for 3D brain MRI SR. We demonstrate empirically that residual learning
associated with appropriate optimization methods can significantly reduce the time of the
training step and fast convergence can be achieved in 3D SR context. Overall, we report bet-
ter performance when learning deeper fully 3D convolution neural networks and using larger
filters. Interestingly, we demonstrate that a single network can handle multiple arbitrary
scale factors efficiently, for example, from 2× 2× 2 mm to 2× 2× 1 mm or 1× 1× 1 mm or
0.67× 0.67× 0.67 mm, by learning multiscale residuals from spline-interpolated image. We
also report significant improvement using a multimodal architecture, where a HR reference
image can guide the CNN-based SR of a given MRI volume.

2. Super-Resolution using Deep Convolutional Neural Networks

2.1. Related work and learning-based SR

Single image SR is a typically ill-posed inverse problem that can be stated according to
the following linear formulation:

Y = HX + N = D↓BX + N (1)

where one LR image Y ∈ Rn, X ∈ Rm is the HR image, H ∈ Rm×n is the observation matrix
(m > n) and N denotes an additive noise. D↓ represents the downsampling operator and B
is the blur matrix. The purpose of SR methods is to estimate X from the observations Y.
The SR image can be estimated by minimizing a least-square cost function:

X̂ = arg min
X
‖Y−HX‖2. (2)

In an unsupervised context, the optimization process usually leads to unstable solutions and
requires appropriate regularization techniques. However, in a supervised context, regular-
ization can be implicit and the HR image can be estimated with the following formulation:

X̂ = arg min
X
‖X−H−1Y‖2. (3)

In this setting, the matrix H−1 can be modeled as a combination of a restoration matrix
F ∈ Rm×m and an upscaling interpolation operator S↑ : Rn → Rm. Given a set of HR
images Xi and their corresponding LR images Yi with K samples, the restoration operator
F can be estimated as follows:

F̂ = arg min
F

K∑
i=1

‖Xi − F (S↑Yi)‖2 = arg min
F

K∑
i=1

‖Xi − F (Zi)‖2 (4)

where Z ∈ Rm is the interpolated LR (ILR) version of Y (i.e. Z = S↑Y). F is then a
mapping from the ILR image space to the HR image space.
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SR is the process of estimating HR data from LR data. The main goal is then to estimate
high-frequency components from LR observations. Instead of learning the mapping directly
from the LR space to the HR one, it might be easier to estimate a mapping from the LR
space to the missing high-frequency components, also called the residual between HR and
LR data: R = X− Z or equivalently X = Z + R. This approach can be modeled by a skip
connection in the network. In such a residual-based modeling, one typically assumes that R
is a function of Z. The computation of HR data is then expressed as follows: X = Z+F (Z)
where F can be learned using the following equation:

F̂ = arg min
F

K∑
i=1

‖(Xi − Zi)− F (Zi)‖2. (5)

2.2. CNN-based baseline architecture

Figure 1: 3D deep neural network for single brain MRI super-resolution.

In this paper, we focus on the learning of mapping F with convolutional neural networks.
Following Dong et al. [23] and Kim et al. [24], mapping F from Z to (X − Z) is decom-
posed into nonlinear operations corresponding to the combination of convolution-based and
rectified linear unit (ReLU) layers.

The baseline architecture used in this work can be described as follows:
F1(Z) = max(0,W1 ∗ Z +B1)

Fi(Z) = max(0,Wi ∗ Fi−1(Z) +Bi) for 1 < i < L
FL(Z) = WL ∗ FL−1(Z) +BL

(6)

where:

• L is the number of layers,

• Wi and Bi are the convolution parameters to learn. Wi corresponds to ni convolution
filters of support c×fi×fi×fi, where c is the number of channels in the input of layer
i, fi and ni are respectively the spatial size of the filters and the number of filters of
layer i,

• max(0, ·) refers to a ReLU applied to the filter responses.
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This network architecture is depicted in Figure 1(a). Please note that, for instance, the
SRCNN model [23] corresponds to a specific parameterization of this baseline architecture
(f1 = 9, f2 = 1, f3 = 5, n1 = 64, n2 = 32 and with no skip connection).

The performance of a given architecture depends on several parameters such as the
filter size fi, the number of filters ni, the number of layers L, etc. Understanding how
these parameters affect the reconstruction of the HR image with respect to the considered
application setting (e.g., number of training samples, image size, scaling factor) is a key
issue, which remains poorly explored. For instance, regarding the number of layers, it is
commonly believed that the deeper the better [19, 24]. However, adding layers increases the
number of parameters and can lead to overfitting. Previous works [23, 32], have shown that
”a deeper structure does not always lead to better results” [23].

Specifically focusing on MRI data, the specific objectives of this study are: i) the eval-
uation and understanding of the effect of key elements of CNN for brain MRI SR, ii) the
experimental study of arbitrary multi-scale SR using CNN, iii) investigating multimodality-
guided SR using CNN.

3. Sensitivity Analysis of the considered Architecture

In this section, we present the MRI datasets used for evaluation and the key elements of
CNN architecture to achieve good performance for single image SR.

3.1. MRI Datasets and LR simulation

To evaluate SR performances of CNN-based architectures, we have used two MRI datasets:
the Kirby 21 dataset and the NAMIC Brain Multimodality dataset.

The Kirby 21 dataset [33] consists of MRI scans of twenty-one healthy volunteers with
no history of neurological conditions. Magnetization prepared gradient echo (MPRAGE,
T1-weighted) scans were acquired using a 3-T MR scanner (Achieva, Philips Healthcare,
The Netherlands) with a 1.0 × 1.0 × 1.2 mm3 resolution over an FOV of 240 × 204 × 256
mm acquired in the sagittal plane. Flair data were acquired using 1.1 × 1.1 × 1.1 mm3

resolution over an FOV of 242 × 180 × 200 mm acquired in the sagittal plane. The T2-
weighted volumes were acquired using a 3D multi-shot turbo-spin echo (TSE) with a TSE
factor of 100 with over an FOV of 200 × 242 × 180 mm including a sagittal slice thickness
of 1 mm. Although, dataset Kirby 21 has repeated scans, we ensure that we do not have
the same subjects in both train and test set.

The NAMIC Brain Multimodality [34] dataset consist of T1-weighted and T2-weighted
data of ten normal controls and ten schizophrenic subjects with isotropic resolution of 1 ×
1 × 1mm3. These scans have been acquired using a 3T GE at BWH in Boston with the
following parameters : TR=7.4ms, TE=3ms, TI=600, 10 degree flip angle, 25.6 cm2 FOV,
matrix=256 × 256.

As in [6], LR images have been generated from a Gaussian blur with standard deviation
σ = 1 and a down-sampling by isotropic scaling factors. In the training phase, a set of
patches of training images is randomly extracted. In the baseline setting, the training
dataset comprises 10 subjects (KKI33 to KKI42, 3200 patches 25 × 25 × 25 per subject
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randomly sampled) and the testing dataset is composed of 5 subjects (KKI01 to KKI05).
During the testing step, the network is applied on the whole images. The peak signal-to-
noise ratio (PSNR) in decibels (dB) is used to evaluate the SR results with respect to the
original HR images.

3.2. Baseline and benchmarked architectures

The network architecture that is used as a baseline approach in this study is illustrated
in Figure 1 (a). The baseline network is a 10 blocks (convolution+ReLU) network with the
following parameters: 64 convolution filters of size (3 × 3 × 3) at each layer, mean square
error (MSE) as loss function, weight initialization by [35] (MSRA filler), Adam (adaptive
moment estimation) method for optimization [36], 20 epochs on Nvidia GPU and using Caffe
package [37], batch size of 64, learning rate set to 0.001, no regularization or drop out has
been used. The learning rate multipliers of weights and biases are respectively 1 and 0.1.
For benchmarking purposes, we consider two other state-of-the-art SR models: low-rank
total variation (LRTV) [6] and SRCNN3D [38].

The next sections present the impact of the key parameters studied in this work: op-
timization method, weight initialization, residual-based model, network depth, filter size,
filter number, training patch size and size of training dataset.

3.3. Optimization Method

In the context of supervised learning, given a training dataset which consists of pairs of
LR and HR images, network parameters are estimated by minimizing the objective function
using optimization algorithms. These algorithms play a very important role in training
neural networks. The more efficient and effective optimization strategies lead to faster
convergence and better performance. More precisely, during the training step, the estimation
of the restoration operator F corresponds to the minimization of the objective function L
in Equation 5 over network parameters θ = {Wi, Bi}i=1,...,L.

Most optimization methods for CNNs are based on gradient descent. A classic method
applies a mini-batch stochastic gradient descent with momentum (SGD [39]) as used in
[23, 38]. The following equations are used to update the network parameters θ at iteration
t+ 1:

Vt+1 = µVt − α∇L(θt)
θt+1 = θt + (Vj)t+1

(7)

where ∇L(θt) is the negative gradient of the objective function of current network param-
eters θt at iteration t, Vt is called the weight update, µ and α denote respectively the
momentum and learning rate. However, the fixed momentum causes numerical instabilities
around the minimum. Nesterov’s accelerated gradient (NAG) [40] was proposed to cope
with this issued using the following update:

Vt+1 = µVt − α∇L(θt + µVt)
θt+1 = θt + Vt+1

(8)
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However, when using small learning rates α with SGD or NAG (e.g. α ≤ 10−4), deeper
networks converge very slowly. By contrast, high learning rates may lead to exploding gra-
dients [41, 42]. In order to address this issue, Kim et al.. [24] proposed a stochastic gradient
descent with an adjustable gradient clipping (SGD-GC) [43] to achieve an optimization with
high learning rates (e.g. α = 0.1). When the norm of gradient goes over a threshold γ, this
gradient is rescaled as follows:

∇L(θ) =

{
∇L(θ)/γ ‖ ∇L((θ) ‖> γ

∇L(θ) otherwise
(9)

The predefined range over which gradient clipping is applied may still cause SGD-GC not
to converge quickly or make difficult the tuning of a global learning rate. Recently, methods
have been proposed to address this issue through an automatic adaption of the learning rate
for each parameter to be learned. RMSProp and Adam [44, 36] are the two most popular
models in this category. RMSProp (root mean square propagation) [44] method updates
trainable weights by rescaling the gradients by the root mean square of its second moments
u as:

ut = δut−1 + (1− δ)∇L(θt)
2

θt+1 = θt − α∇L(θt)√
ut

(10)

where δ is called RMSProp decay. But RMSProp ignores the first moment of gradients and
bias corrections, which may lead to very large step sizes and divergence [36]. Adam (Adaptive
moment estimation) method [36] uses a first-order stochastic gradient-based optimization,
which relies on adaptive estimates of both the first and second moments of the gradients
(m,u). The Adam method applies the following update:

mt = β1mt−1 + (1− β1)∇L(θt)
ut = β2ut−1 + (1− β2)∇L(θt)

2

m̂t = mt/(1− (β1)
t)

ût = ut/(1− (β2)
t)

θt+1 = θt − α m̂t√
ût+ε

(11)

where β1 and β2 are the first and second moment decay rates, and α is a predefined pa-
rameter. (m̂j)t and (v̂j)t are called respectively the moment bias corrections of the first and
second moment estimates.

The results of four optimization methods (NAG, SGD-GC, RMSProp and Adam) for
the baseline network are illustrated in Figure 2. Firstly, regardless the method used, the
baseline network shows better performance than LRTV [6] and SRCNN3D [38]. Secondly,
it can be observed that the baseline network can converge very fast and stably (only 20
epochs with small learning rate of 0.001). Finally, in these experiments, the most efficient
and effective optimization method is Adam as regards both PSNR metric and convergence
speed. Hence, in the next sections, we use Adam method with β1 = 0.9 and β2 = 0.999 to
train our networks.
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Figure 2: Impact of the optimization methods onto SR performance: SGD-GC, NAG, RMSProp and Adam
optimisation of a 10L-ReCNN (10-layer residual-learning network with f = 3 and n = 64). We used Kirby
21 [33] for training and testing with isotropic scaling factor ×2. The initial learning rates of SGC-GC, NAG,
RMSProp and Adam are set respectively to 0.1, 0.0001, 0.001 and 0.001. These learning rates are decreased
by a factor of 10 every 20 epochs. The momentum of these methods, except RMSProp, is set to 0.9. All
optimization methods use the same weight initialization described in [35].

3.4. Weight Initialization

The optimization algorithms for training a CNN are typically initialized randomly. Inap-
propriate initialization can lead to long time convergence or even divergence. Several studies
[23, 32, 38] used a normal distribution N (0, 0.001) to initialize the weights of convolutional
filters. However, because of too small initial weights, the optimizer can be stuck into a
local minimum especially when building deeper networks. Both SRCNN [23] concluded that
deeper networks do not lead to better performance, and [32] confirmed that the addition
of extra convolutional layers to the 7-layer model is found to be ineffective. Deeper neural
networks are more difficult to train because of exploding gradients with 2D CNNs [41] due
to the multiplication of the variance at every layer by the number of weights n× f × f × f
(i.e. nf 3 ) [42]. Uniform distribution U(−

√
3/(nf 3),

√
3/(nf 3)) (called Xavier filler [42])

was also proposed to initialize the weights of deeper networks. In order to add more layers
to networks, He et al. [35] suggested an initial training stage by sampling from the normal
distribution N (0,

√
2/(nf 3)) (called here Microsoft Research Asia - MSRA filler). Several

deep networks adopted effectively this scheme such as very deep CNNs for SR [24], ResNet
[20] and the brain lesion segmentation using 3D CNN [21].

Overall, we evaluate here the weight initialization schemes described in [42] and [35], a
normal distribution N (0, 0.001) as in [23, 32] and a normal distribution N (0, 0.01) for the
considered SR architecture. Experiments with a deeper architecture were also performed,
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(a) : 10-layer residual-learning networks (10L-ReCNN)
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(b) : 20-layer residual-learning networks (20L-ReCNN)

Figure 3: Weight Initialization Scheme vs Performance (residual-learning networks with the same filter
numbers n = 64 and filter size f = 3 using Adam optimization and tested with isotropic scaling factor ×2
using Kirby 21 for training and testing, 32000 patches with size 253 for training).

more precisely for a 20-layer architecture, which is the deepest architecture that could be im-
plemented for the considered experimental setup due to GPU memory setting. As shown in
Figure 3, the initialization with normal distributions N (0, 0.001) failed to make the training
of both 10-layer and 20-layer residual-learning networks converge. In addition, our 20-layer
network also does not converge when initialized with normal distributions N (0, 0.01). By
contrast, MSRA and Xavier filler schemes make the networks converge and reach similar
reconstruction performance. For the rest of this paper, we use MSRA weight filler as ini-
tialization scheme [35].

3.5. Residual Learning

The CNN methods in [23, 26, 45] use the LR image as input and outputs the HR one. We
refer to such approach as a non-residual learning. Within these approaches, low-frequency
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features are propagated through the all network, which may decrease the sparsity overall
the network structure and in turn the computational efficiency of the training stage. By
contrast, one may consider residual learning or normalized HR patch prediction as pointed
out by numerous learning-based SR model [46, 47, 48, 24]. When considering CNN methods,
one may design a network which predicts the residual between the HR image and the output
of the first transposed convolutional layer [32]. Using residual blocks, a CNN architecture
may implicitly embed residual learning while still predicting the HR image [25].

0 5 10 15 20
Epochs

34

35

36

37

38

39

PS
N
R
(d
B
)

Spline Interpolation

10L-ReCNN (Residual)

10L-CNN (Non-residual)

20L-ReCNN (Residual)

20L-CNN (Non-residual)

Figure 4: Non-residual-learning vs Residual-learning networks with the same n = 64 and f3 = 33 and the
depths of 10 and 20 (called here 10L-CNN vs 10L-ReCNN and 20L-CNN vs 20L-ReCNN) over 20 training
epochs using Adam optimization with the same training strategy and tested with isotropic scale factor ×2
using Kirby 21 for training and testing.

Here, we perform a comparative evaluation of non-residual learning vs. residual learning
strategies. Figure 4 depicts PSNR values and convergence speed of residual vs non-residual
network structures with 10 and 20 convolutional layers. The residual-learning networks
converge faster than the non-residual-learning ones. In addition, residual learning leads to
significant improvements in PSNR (+0.4dB for 10 layers and +1.2dB for 20 layers). It might
be noted that these experiments do not support the common statement that the deeper, the
better for CNNs. Here, the use of additional layers is only beneficial when using residual
modeling. Deeper architectures even lower the reconstruction performance with non-residual
learning.

3.6. Depth, Filter Size and Number of Filters

As shown by the previous experiment, the link between network depth and performance
remains unclear. Besides, it is hard to train deeper networks because gradient computation
can be unstable when adding layers [42]. For instance, Oktay et al. tested extra convolu-
tional layers to a 7-layer model but achieved negligible performance improvement [32]. As
mentioned in the Section 2.2, SRCNN [23] was also tested with deeper architectures but no
improvement was reported. However in [24] Kim et al. argue that the performance of CNNs
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Figure 5: Depth vs Performance (residual-learning networks with the same filter numbers n = 64 and filter
size f = 3 over 20 training epochs using Adam optimization and tested with isotropic scale factor ×2 using
Kirby 21 for training and testing, 32000 patches with size 253 for training).

for SR could be improved by increasing the depth of network compared to neural network
architectures in [23, 32].

The previous section supports that deeper architectures may be beneficial when con-
sidering a residual learning. We further evaluate here the reconstruction performance as a
function of the number of layers. Results are reported in Figure 5. They stress that increas-
ing network depth with residual learning significantly improves the quality of the estimated
HR image (e.g. +1.6dB increasing of the depth from 3 to 20 or +0.5dB increasing of the
depth from 7 to 20).

The parameterization of the convolutional filters is also of key interest. Inspired by the
VGG network designed for classification [19], previous CNN methods for SR mostly focused
on small convolutional filters of size (3×3×3) in [24, 32, 21]. Oktay et al.. [32] even argued
that such architecture can lead to better non-linear estimations. Regarding the number of
filters for each layer, [23] reported greater reconstruction performance when increasing the
number of filters. No such experimental evaluation was reported in the studies we further
explored CNN-based SR [24, 32] . Here, we both evaluate the effect of the filter size and of
the number of filters.

Figure 6 shows that a 10-layer network with a filter size of 53 leads to better results
than a 20-layer network with 33 filters. Besides reconstruction performance, the use of a
larger filter size decreases the training speed and significantly increases the complexity and
memory cost for training. For example, it took us 50 hours to train a 10-layer network with
a filter size of 53. By contrast, a deeper network with smaller filler (i.e. 20-layer network
with 33 filters) involves a smaller number of parameters, such that it took us only 24 hours to
train. These experiments suggest that deeper architectures with small filters can relevantly
replace shallower networks with larger filters both in terms of computational complexity and
of reconstruction performance.
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Figure 6: Impact of convolution filter parameters (sizes f × f × f = f3 with n filters) on PSNR and com-
putation time. These 10-layers residual-learning networks are trained from scratch with Adam optimization
over 20 epochs and tested with Kirby 21 for isotropic scale factor ×2.

3.7. Training Patch Size and Subject Number

In the context of brain MRI SR, the acquisition and collection of large datasets with
homogeneous acquisition settings is a critical issue. We here evaluate the extent to which
the number of training subjects affects SR reconstruction performance. It may be noted
that data augmentation [49, 50, 24, 31], which is widely used for application to natural
images, does appear relevant in our context. Brain MRI images have the same direction and
orientation and share the same anatomical form. As the training exemplars are extracted
as patches of brain MRI images, we also evaluate the impact of the training patch size onto
learning and reconstruction performance.

The size of training patches should be larger or equal to the size of the receptive field
of the considered network [19, 24], which is given by ((f − 1)D + 1)3 for a D-layer network
with filter size f 3. Figure 7 confirms that better performance can be achieved using larger
training patches (from 113 to 313 with the 10-layer network and from 113 to 293 with the 12-
layer network). However, if the patch size is larger than the receptive field (e.g. 213 within
the 10-layers network and 253 within the 12-layers network), the improvement is negligible.

We stressed previously that the selection of the network depth involves a trade-off be-
tween reconstruction performance and GPU memory requirement and training time increase.
A similar pattern can be drawn with respect to the patch size. Figure 7 illustrates that larger
training patch sizes also require more memory for training. Moreover, this figure shows that
better performance can be achieved using larger training patch sizes. It may be noted that
the relatively lower performance of the 10-layer networks may reach a performance similar
to 12-layer and 20-layer networks when using larger training patches.

Regarding the number of training subjects, Figure 8 points out that a single subject
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Figure 7: First row: Training patch size vs Performance. Second row: Patch size vs Training Time. Third
row: Patch size vs Training GPU Memory Requirement. These networks with the same n = 64 and f3 = 33

are trained from scratch with batch of 64 and tested with Kirby 21 for isotropic scale factor ×2.

is enough to reach better performance than spline interpolation. Interestingly, reconstruc-
tion performance reaches a plateau when about 10 subjects are considered, which appears
appropriate for real-world applications.

4. Handling Arbitrary Scales

In some CNN-based SR approaches, the networks are learned for a fixed and specified
scaling factor. Thus, a network built for one scaling factor cannot deal with any other
scale. In medical imaging, Oktay et al.. [32] have applied CNNs for upscaling cardiac image
slices with the scale of 5 (e.g. upscaling the voxel size from 1.25 × 1.25 × 10.00mm to
1.25× 1.25× 2.00mm). Typically, their network is not capable of handling other scales due
to the use of fixed deconvolutional layers. In brain MRI imaging, the variety of the possible
acquisition settings motivates us to explore multi-scale settings.

Following Kim et al. [24], we investigate how we may embed multiple scales in a single
network. It consists in creating a training dataset within which we consider LR and HR
image pairs corresponding to different scaling factors. To avoid a converge towards a local
minimum of one of the scale factor, we learn network parameters on randomly swapped
dataset.

Table 1 summarizes experimental results. First, when the training is achieved for the
scaling from (2×2×2) on a dataset of (2×2×2) scale, it can be noticed that reconstruction
performances decrease very fast when applied to other scaling factors (there is a drop from
39.01dB to 33.43dB when testing with (3 × 3 × 3)). Second, it can be noticed that when
the training is performed on multi-scale data, there is no significant performance change
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Figure 8: Number of Subjects vs Performance (10-layer residual-learning networks with the same filter
numbers n = 64 and filter size f = 3 over 20 training epochs using Adam optimization and tested with
isotropic scale factor ×2 using Kirby 21 for training and testing, 3200 patches per subject with size 253 for
training).

compared to training from a single-scale dataset. Training from multiple scaling factors
leads to the estimation of a more versatile network. Overall, these result shows that one
single network can handle multiple arbitrary scaling factors efficiently.

Test / Train
Full-training

×(2,2,2) ×(3,3,3) ×(2,2,2),(3,3,3)
×(2,2,2) 39.01 35.25 38.80
×(2,2,3) 36.80 35.11 37.24
×(2,2.5,2) 37.71 35.41 37.93
×(2,3,3) 35.23 35.13 36.20

×(2.5,2.5,2.5) 35.47 35.52 36.63
×(3,3,3) 33.43 35.01 35.20

Table 1: Experiments with multiple isotropic scaling factors with the 20-layers network. Bold numbers
indicate that the tested scaling factor is present in the training dataset.

5. Multimodality-guided SR

In a typical clinical setting, it is common to acquire one isotropic HR image and other LR
images in order to limit the acquisition time. Hence, a coplanar isotropic HR image might
be considered as a complementary information source to reconstruct HR MRI images from
LR ones [3]. To address this multimodality-guided SR problem, we add a concatenation
layer as the first layer of the network as illustrated in Figure 9. This layer concatenates the
ILR image and a registered HR reference along the channel axis. The registration step of
HR reference ensures that the two input images share the same geometrical space.
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Figure 9: 3D deep neural network for multimodal brain MRI super-resolution using intermodality priors.
Skip connection computes the residual between ILR image and HR image.

We experimentally evaluate the relevance of the proposed multimodality-guided SR
model according to the following setting. We investigate whether the complementary use
of a Flair or T2-weighted MRI image might be beneficial to improve the reconstruction
HR T1-weighted MRI images from LR ones. In our experiments, we use T1-weighted,
T2-weighted, Flair MRIs of the Kirby 21 dataset and T1-weighted, T2-weighted MRIs of
NAMIC dataset. We apply FSL software [51] for the registration of Flair and T2-weighted
data onto T1-weighted scans and we adopt the observation model and the baseline network
as in the Section 3.2 (10L-ReCNN). Due to the same resolution of T1-weighted and T2-
weighted scans of NAMIC, no registration is required. The scans of 10 subjects of NAMIC
are used for training and 10 other subjects for testing.

Figure 10 shows the results of the multimodailty-guided SR compared to the monodal
SR for both Kirby dataset (a) and NAMIC datasets (b). It can be seen that multimodality
driven approach can lead to improved reconstruction results. It however depends on the
quality of the HR image used to drive the reconstruction process. For instance, when
considering T2w images, no improvement is observed for Kirby dataset and a significant
improvement greater than 1dB is reported for NAMIC dataset. As T2w image resolution
is lower than T1w modality in Kirby dataset, these results may emphasize the requirement
for actual HR information source to expect significant gain w.r.t. the monomodal model.

Figure 12 highlights the fact that the proposed multimodal method provides a more
favorable result compared to interpolation and monomodal methods. In addition, we explore
the impact of the network depth augmentation with regard to the performance of multimodal
SR approach. The experiments shown in Figure 11 indicate that the deeper structures do
not lead to better results within the multimodal method.
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(a) Multimodal experiments using Kirby dataset for training and testing. Images are registered using FSL
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(b) Multimodal experiments using NAMIC dataset for training and testing. No image registration is
performed.

Figure 10: Multimodality-guided SR experiments. The LR T1-weighted images are upscaled with isotropic
scale factor ×2 using respectively monomodal network (10L-ReCNN for LR T1w), HR T2w multimodal
network, HR Flair multimodal network and both HR Flair and T2w multimodal images.

6. Transfer Learning

Training a CNN from scratch requires a substantial amount of training data and may
take a long time. Moreover, to avoid overfitting, the training dataset has to reflect the
appearance varibility of the images to reconstruct. In the context of brain MRI, part of
image variability comes from acquisition systems. Hence, we investigate the impact of such
image variability onto SR performance by evaluating transfer learning skills among different
datasets corresponding to the same imaging modality.

In order to characterize such transfer learning skills, we evaluate the extent to which the
selection of a given training dataset affects the reconstruction performance of the network.
We proceed as follows. We train from scratch two 20L-ReCNN networks respectively for
a 10-image NAMIC T1-weighted dataset and a 10-image Kirby T1-weighted dataset, and
we test the trained models for the remaining 10-image NAMIC and Kirby T1-weighted
datasets. The considered case-study involves a scaling factor of (2×2×2). For quantitative
comparison, the PSNR and SSIM [52] are used to evaluate the performance of each model
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Figure 11: Depth vs Performance (multimodal SR using residual-learning networks with the same filter
numbers n = 64 and filter size f = 3 over 20 training epochs using Adam optimization and tested with
isotropic scale factor ×2 using NAMIC for training and testing).

in Table 2. For benchmarking purposes, we also include a comparison with the following
methods: cubic spline interpolation, low-rank total variation (LRTV) [6], SRCNN3D [38].
The use of 20-layer CNN-based approaches for each training dataset can lead to significant
improvement over spline interpolation, LRTV method and SRCNN3D (with respect to both
PSNR and SSIM). Although, we lose a little gain (e.g. PSNR: 0.55dB for testing Kirby and
0.74dB for NAMIC, SSIM: 0.003 for Kirby and 0.0019 for NAMIC) when using different
training and testing dataset (i.e. different resolution), our proposed networks have better
results than compared methods.

For qualitative comparison, Figures 13 and14 show the results of reconstructed 3D images
obtained from all the compared techniques. The HR reconstruction of the proposed 20L-
ReCNN model best preserves contours and geometrical structures. It also visually better
recovers the image contrast compared with the other methods.

Testing dataset
Spline Interpolation LRTV [6] SRCNN3D 20L-ReCNN

Kirby (10 images) Kirby (10 images) NAMIC(10 images)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Kirby (5 images ) 34.16 0.9402 35.08 0.9585 37.51 0.9735 38.80 0.9797 38.06 0.9767
Standard deviation 1.90 0.0111 2.09 0.0083 1.97 0.0053 1.84 0.0044 1.83 0.0045

Gain - - 0.92 0.0183 3.36 0.0333 4.64 0.0395 3.9 0.0365

NAMIC (10 images) 33.78 0.9388 34.34 0.9549 36.72 0.9694 37.73 0.9762 38.28 0.9781
Standard deviation 1.82 0.0071 1.79 0.0044 1.76 0.0035 1.81 0.0031 1.78 0.0029

Gain - - 0.56 0.0161 2.94 0.0306 3.95 0.0374 4.5 0.0393

Table 2: The results of PSNR/SSIM for isotropic scale factor ×2 with the gain between compared methods
and the method of spline interpolation. One network 20L-ReCNN trained with 10 images of Kirby and one
trained with NAMIC
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(a) Original HR T1-weighted (b) LR T1-weighted image (c) HR T2-weighted reference

(d) Spline Interpolation (e) Monomodal 10L-ReCNN (g) Multimodal 10L-ReCNN

Figure 12: Illustration of the axial slices of monomodal and multimodal SR results (01018, pathological case)
with isotropic voxel upsampling. LR T1-weighted image (b) with voxel size 2× 2× 2mm3 is upsampled to
size 1× 1× 1mm3. Multimodal network 10L-ReCNN uses the HR T2-weighted reference (c) to upscale LR
image. The different between ground truth image and reconstruction results are at the bottom. Their zoom
version are at the right.

7. Discussion

This study investigates CNN-based models for 3D brain MR image SR. Based on a com-
prehensive experimental evaluation, we may first draw the following conclusions and recom-
mendations regarding the setup to be considered. We highlight that eight complementary
factors may drive the reconstruction performance of CNN-based models. The combination
of 1) appropriate optimization with 2) weight initialization and 3) residual learning is a key
to exploit deeper networks with a faster and effective convergence. The choice of an appro-
priate optimization method can lead to a improvement of (at least) 1dB. In this study, it has
appeared that Adam method [36] provides significantly better reconstruction results than
other classic techniques such as SGD, and a faster convergence. Moreover, weights initializa-
tion is a very important step. Indeed, some approaches simply do not achieve convergence
in the learning phase. This study has also shown that residual modeling for single image SR
is a straightforward technique to improve the reconstruction performances (+0.4dB) with-
out requiring major changes in the network architecture. Appropriate weight initialization
methods described in [35, 42] allow us to build deeper residual-learning networks. From our
point of view, these three aspects of SR algorithm are the first to require special attention
for the implementation of a SR technique based on CNN.

Overall, we show that better performance can be achieved by learning a 4) deeper fully 3D
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(a) Original HR (b) LR image (c) Spline Interpolation

(d) LRTV [6] (e) SRCNN3D [38] (g) 20L-ReCNN

Figure 13: Illustration of SR results (KKI2009-02-MPRAGE, non-pathological case) with isotropic voxel
upsampling. LR data (b) with voxel size 2× 2× 2.4mm3 is upsampled to size 1× 1× 1.2mm3. The different
between ground truth image and reconstruction results are in the right bottom corners. Both network
SRCNN3D [38] and network 20L-ReCNN are trained with the 10 last images of Kirby.

convolution neural network, 5) exploring more filters and 6) increasing filter size. In addition,
using 7) larger training patch size and 8) augmentation of training subject lead to significant
increase in PSNR performance. The adjustment of these 5 elements provides a similar
improvement (about 0.5dB). Although it seems natural to implement the deepest possible
network, this parameter is not always the key to obtaining a better estimate of a high-
resolution image. Our study shows that, depending on the type of input data (monomodal
or multimodal), network depth is not necessarily the main parameter leading to better image
reconstruction. In addition, it is necessary to take into account the time of the learning
phase as well as the maximum memory available in the GPU in order to choose the best
architecture of the network. For instance, for the monomodal SR case, we suggest using
20-layer networks with 64 small filters with size of 33 regarding 10 training subjects of size
253 to achieve practicable results.

In CNN-based approaches, the up-scaling operation can be performed by using trans-
posed convolution (so-called fractionally strided convolutional) layers in [32, 45] or sub-pixel
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(a) Original HR (b) LR image (c) Spline Interpolation

(d) Low-Rank Total Variation
(LRTV) [6]

(e) 20L-ReCNN (trained with
Kirby)

(g) 20L-ReCNN (trained with
NAMIC)

Figure 14: Illustration of SR results (01011-t1w, pathological case) with isotropic voxel upsampling. LR
data (b) with voxel size 2× 2× 2mm3 is upsampled to size 1× 1× 1mm3. The zoom versions of the axial
slices are in the right bottom corners.

layers [26]. However, the trained weights of these networks are appropriately applied for a
specified scale factor. This is a limiting aspect of CNN-based SR for MR data since a fixed
upscaling factor is not appropriate in this context. In this study, we have presented a multi-
scale CNN-based SR method for single 3D brain MRI that is capable of learning multiple
scale by training fully all isotropic scale factors due to an independent upsampling technique
such as spline interpolation. Handling multiple scales is related to multi-task learning. The
lack of flexibility of learned network architecture raises an open issue requiring further stud-
ies: how can we build a network that can deal with a set of observation models (i.e. multiple
scales, arbitrary point spread functions, non uniform sampling, etc.)?

In this paper, we have proposed a multimodal method for brain MRI SR using CNNs
where a HR reference image of the same subject can drive the reconstruction process of
the LR image. By concatenating these HR and LR images, the reconstruction of the LR
one can be enhanced by exploiting the multimodality feature of MR data. As shown in
previous works [3, 4], the use of HR reference can lead to significant improvements of the
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reconstruction process. However, unlike the monomodal setup, a deeper network does not
necessarily lead to better performance. Experiments from our study show that future work is
needed to understand the relationship between network depth and the quality of HR image
estimation.

Moreover, we have experimentally investigated the performances of CNN for transfer
learning (”i.e. how a learned network can be used in another context”). More specifically,
our study illustrates how knowledge learned from one MR dataset is transferred to another
one (different acquisition protocol and different scales). We have used KKI and NAMIC
datasets for this purpose. Although a slight decrease in performance can be observed,
CNN-based approach can still achieve better performance than existing methods. These
results tend to demonstrate the potential applications of CNN-based techniques for MRI
SR. Further investigations are required to fully assess the possibilities of transfer learning in
medical imaging context, and the contributions of fine-tuning technique [22].

Finally, future research directions for CNN-based SR techniques could focus on other
elements of network architecture. For instance, batch normalization (BN) step has been
proposed by Ioffe et al. in [53]. The purpose of a BN layer is to normalize the data through
the entire network, rather than just performing normalization once in the beginning. Al-
though BN has been shown to improve classification accuracy and decrease training time [53],
our first attempts to include BN layers into CNN for image SR have not lead to performance
increase. Similarly, following previous work described in [54], we have examined the con-
tribution of residual blocks and experiments have not shown performance improvement.
Moreover, while the classical MSE-based loss attempts to recover the smooth component,
perceptual losses [25, 27, 28] are proposed for natural image SR to better reconstruct fine
details and edges. Thus, adding this type of layer (BN or residual block) or defining new
loss functions may be beneficial for MRI SR and may provide new directions for research.
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