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Maxime LHUILLIER and Shuda YU

Institut Pascal, UMR 6602, CNRS/UBP/IFMA, Aubière, France

Abstract

The majority of methods for the automatic surface reconstruction of an envi-
ronment from an image sequence have two steps: Structure-from-Motion and
dense stereo. From the computational standpoint, it would be interesting to
avoid dense stereo and to generate a surface directly from the sparse cloud
of 3D points and their visibility information provided by Structure-from-
Motion. The previous attempts to solve this problem are currently very
limited: the surface is non-manifold or has zero genus, the experiments are
done on small scenes or objects using a few dozens of images. Our solution
does not have these limitations. Furthermore, we experiment with hand-held
or helmet-held catadioptric cameras moving in a city and generate 3D models
such that the camera trajectory can be longer than one kilometer.

Keywords: 2-Manifold Reconstruction, 3D Delaunay Triangulation, Steiner
Vertices, Complexity Analysis, Sparse Point Cloud, Structure-from-Motion.

1. Introduction

The topic of the paper is the reconstruction of a manifold surface using a
sparse method. The definition and the importance of the manifold property
are detailed in Sec. 1.1. Sec. 1.2 explains the motivations for a sparse method,
i.e. a method which reconstructs a surface directly from the sparse point
cloud estimated by Structure-from-Motion (SfM). Sec. 1.3 compares our work
to the previous sparse methods and Sec. 1.4 summarizes our contributions.

Remember that SfM is a necessary and preliminary step which estimates
the successive poses and (sometimes) intrinsic parameters of the camera from
an image sequence. The sparsity comes from the fact that the SfM calcula-
tions are done for interest points, which have uneven distributions and low
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densities in the images (about 1 pixel over 200-300 is reconstructed in our
experiments using Harris points [15]).

The sparse methods contrast with the predominant dense methods. There
are two main cases of dense methods which estimate a manifold:

1. a surface evolves in 3D such that it minimizes a photo-consistency cost
function for all image pixels [11, 17, 18, 31]

2. a surface reconstruction method [41, 6, 21] is applied on a dense point
cloud obtained by a dense stereo method [12, 22].

Combinations of both cases are possible (e.g. [23]) and an exhaustive list of
references for dense methods is outside the paper scope. By contrast to the
dense methods, the sparse methods are less popular and are a minority [10,
19, 27, 29, 32, 36, 38] in the bibliography.

1.1. Why a 2-Manifold ?

In a 2-manifold, i.e. a 2D topological manifold surface, every point of the
surface has a surface neighborhood which is homeomorphic to a disk [5]. In
short, a 2-manifold is parametrized by two real parameters. In the discrete
case, a 2-manifold is usually defined by a list of triangles such that every
triangle is exactly connected by its three edges to three other triangles.

The manifold property is required to enforce smoothness constraints on
the computed surface. Indeed, the continuous differential operators of normal
and curvature are extended to the discrete case thanks to this property [28, 5],
and then we can use them to enforce smoothness constraints on the triangle
list as in dense stereo [17]. More generally, a lot of Computer Graphic algo-
rithms are not applicable if the triangle list is not a 2-manifold [5]. In our
work, the manifold property is used to constrain a surface interpolating the
sparse SfM point cloud and to improve surface denoising.

1.2. Why a Sparse Method ?

There are several reasons to estimate a surface directly from the sparse
SfM cloud. First, it would be ideal for both time and space complexities.
This is interesting for obtaining compact models of large and complete envi-
ronments like cities or for an implementation in a small embedded hardware.
Second, it could be used for navigation pre-visualization [8], for initialization
of dense stereo methods (e.g. [17, 18]), or for autonomous navigation [7].
Last, the accuracy of a point in SfM cloud is expected to be better than that
of a point in a dense stereo cloud, thanks to the SfM machinery [16] involving
interest point detection and bundle adjustment.

3



(A) (B)

Figure 1: Delaunay-based reconstruction in the 2d case (surfaces, tetrahedra and triangles
are replaced by curves, triangles and edges, respectively). (A) curves to be reconstructed
and points which sample the curves. (B) the Delaunay triangulation of the points. Note
that the inside of [4] is the gray region, but our inside (Sec. 2) is the white region.

1.3. Previous Works

Methods [10, 19, 27, 29, 32, 36, 38] using our input (sparse SfM data) start
by establishing potential adjacency relationships between the input points,
which are selected latter to build a surface. These methods can be classified
by examining the data structures encoding the potential adjacencies: [10, 32,
27, 38] use one 3D Delaunay triangulation (Sec. 1.3.2) and [29, 36, 19] use 2D
Delaunay triangulations (Sec. 1.3.3). The SfM data also includes visibility
constraints, i.e. line segments (rays) which should not intersect the target
surface, except at a segment end. A ray links a point to one of the view
points used by SfM to reconstruct the point.

1.3.1. Sculpting in a 3D Delaunay without Rays

The sculpting method in [4] is closely related to our method, although
it does not use rays. It partitions R3 into tetrahedra of the 3D Delaunay
triangulation of the input points. The tetrahedra are labeled as inside or
outside, and the surface is the list of triangles which bound the inside region
(according to [2] and Fig. 1, a “good” surface can be obtained by such a
segmentation). Every tetrahedron is initialized inside; the remainder of R3

is outside. Then an inside tetrahedron is selected by a geometric criterion and
becomes outside while the resulting surface is manifold and every Delaunay
vertex is in an inside tetrahedron. This method requires that the input point
cloud is denser that ours and does not contains bad points.

1.3.2. Sculpting in a 3D Delaunay with Rays

Methods [10, 22, 32, 27, 38, 39] use rays to label the tetrahedra of the
3D Delaunay triangulation: a tetrahedron is freespace if it is intersected by
ray(s), otherwise it is matter.
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Figure 2: Surface singularities defined by two freespace tetrahedra in matter space.

In contrast to our method, [22, 32] do not enforce manifold constraint
and [27] directly consider the surface as the list of triangles separating the
freespace and matter tetrahedra. Then, the resulting surface can be non-
manifold. For example, the surface has a singularity at vertex v if all tetra-
hedra which have vertex v are matter, except two freespace tetrahedra ∆1 and
∆2 such that the intersection of ∆1 and ∆2 is exactly v (left of Fig. 2). An-
other singularity example is obtained if we replace “vertex v” by “edge e” in
the previous example (right of Fig. 2). A post-processing [13] can be applied
to obtain a 2-manifold by removing the singularities, but such an approach
does not enforce the manifold constraint during the surface calculation and
generates new vertices for every singular vertex.

Only [10] and our previous work [38, 39] provide a 2-manifold. In [10], a
region growing procedure in the matter tetrahedra removes all surface singu-
larities and reconstructs very simple scenes. In [38, 39], the region growing
is in the freespace tetrahedra and deals with more complex topologies than
those in [10, 4]: the estimated surface can be a torus with several handles.
Our region growing is essentially a best first approach based on the number of
ray intersections per tetrahedron ([10] does not use this information). In [39],
artifacts called “spurious handles” and generated by [38] are removed while
maintaining the manifold property. Here the largest handles are removed
thanks to the tetrahedron labels (e.g. freespace). The previous removal
methods [37, 42] remove the smallest handles without these labels.

1.3.3. 2d Delaunay-based Work

Methods [29, 36, 19] use 2D Delaunay triangulations in images. In [19],
the surface is not 2-manifold and the approach is applied to a small sequence
of real images. In [29], the surface is a 2-manifold limited to a simple topology
(sphere or plane). In [36], reconstructed edges are inserted in the constrained
2D triangulations, then the back-projected 2.5d triangulations are merged
by computing the union of the freespace defined by the 2.5d triangulations.
The resulting implicit surface is converted to manifold mesh by the marching
cube method [26], which requires a thin-scale regular subdivision of space.
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However, an irregular space subdivision is better for large scale scene [22].
Compared to these methods, ours estimates a 2-manifold without topology
limitation and without thin-scale regular space subdivision.

1.4. Paper Contributions

According to Sec. 1.3.2 and 1.3.3, our contributions over the other sparse
methods are the following: we combine both 2-manifold and visibility con-
straints without limitation on the surface genus (i.e. the number of handles of
the surface), and the experiments are done on larger image sequences of com-
plete environments (hundreds/thousands of images in a few seconds/minutes).
Furthermore, this paper is an extended version of our previous work [38, 39].
New material includes: highlight of our method with visibility optimization
(Sec. 2), efficient tetrahedron-based manifold test (Sec. 2), discussion on bad
SfM points (Sec. 3.6), complexity analysis (Sec. 5 and 6). Sec. 3 describes the
overall method, then artifacts called “spurious handles” are removed by the
methods in Sec. 4. Also there are new experiments in Sec. 7 about manifold
constraint, varying densities of reconstructed and Steiner points, comparison
with the Poisson surface reconstruction [21], larger still and video sequences.
Note that we do not focus on the incremental surface reconstruction [40].

2. Prerequisites on 2-Manifolds embedded in a 3D Delaunay

Our algorithm needs prerequisites on 2-manifolds embedded in a 3D De-
launay triangulation. Here we introduce notations (Sec. 2.1), our optimiza-
tion problem (Sec. 2.2), and the 2-manifold tests (Sec. 2.3).

2.1. Notations and Tetrahedron Labeling

Let P be a set of reconstructed points. The 3D Delaunay triangulation
of P is a list T of tetrahedra which meets the following conditions: the
tetrahedra partition the convex hull of P , their vertex set is P , and the
circumscribing sphere of every tetrahedron does not contain a vertex in its
interior. A vertex/edge/triangle is a face of a tetrahedron in T . Assuming
L ⊆ T , border δL is the list of triangles which are included in exactly one
tetrahedron of L. Let F ⊆ T be the list of freespace tetrahedra, i.e. the
tetrahedra intersected by ray(s). The tetrahedra which are not freespace
are matter. According to Sec. 1.3.2, δF can be non-manifold. Here we
introduce O ⊆ F , the list of outside tetrahedra, such that δO is manifold.
The tetrahedra which are not outside are inside.
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We also consider T as a graph: a graph vertex is a tetrahedron, a graph
edge is a triangle between two tetrahedra. A standard practice is to introduce
infinite vertex v∞ such that we define a virtual tetrahedron connecting δT
triangle and v∞ [1]. The virtual tetrahedra do not exist in 3D, but they
are vertices of the graph. They make easier both implementation and paper
clarity since every tetrahedron has exactly four neighbors in the graph.

Since P is reconstructed in all directions around the view points to model
complete environments, all rays are included in the convex hull of P . Then
the virtual tetrahedra are labeled matter. Every matter tetrahedron is inside.

Note that δF and δO are closed surfaces; δF cuts R3 into free-space (F )
and matter, δO cuts R3 into outside (O) and inside. Furthermore, O ⊆ F .

2.2. Optimization Problem for 2-Manifold Extraction

In short, the target surface δO is a 2-manifold which should separate the
matter and free-space tetrahedra “as much as possible”. Let r : F → R+∗ a
scalar and positive function. We extend r to O ⊆ F by r(O) =

∑

∆∈O r(∆).
We would like to estimate O included in F and maximizing r(O) subject to
the constraint that δO is a 2-manifold. Intuitively (if r = 1), a large O in F
with a 2-manifold border δO is a good solution. Now we give two remarks.

First, this optimization problem is difficult due to the manifold constraint.
Then we solve it using a greedy algorithm: we add progressively free-space
tetrahedra in O as long as δO remains a 2-manifold, then r(O) increases and
the final δO is an approximation of the exact solution of our problem.

Second, several definitions of r are possible. Here we optimize visibility
by defining r(∆) as the number of rays which intersect tetrahedron ∆. Since
our paper focuses on manifold extraction and related complexity, we do not
investigate on more sophisticated definitions of r inspired by [27, 32, 22, 20].

2.3. 2-Manifold Tests

Here we explain how to check that a surface S (a list of triangles of T ) is a
2-manifold. This topic is somewhat technical but very important in practice
for the computation time of our method.

Let v be a point in S. We say that v is regular if it has a neighborhood
in S which is topologically a disk. Otherwise v is singular. By definition
(Sec. 1.1), S is 2-manifold if all its points are regular. In our context where
S is a list of triangles of T , we only need to check that every vertex v of S
is regular using the following neighborhood of v: the list of the S triangles
which have vertex v [4]. Now we describe three 2-manifold tests.
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Figure 3: Regular and singular vertices. Left: v is regular since the edges opposite to
v define a simple polygon acdea on the surface. Middle: v is singular since polygon
dacdbed has multiple vertex d. Right: v is singular since acda−befb is not connected.

2.3.1. Polygon-Based Vertex Test

Vertex v is regular if and only if [4] the edges opposite to v in the triangles
of S having v as vertex form a simple polygon (Fig. 3). A simple polygon
is topologically a circle, i.e. a list of segments which forms a closed path
without self-intersection. This test was used in our previous work [38, 39].

2.3.2. Graph-Based Vertex Test

The test in Sec. 2.3.1 is adequate if the surface S is implemented as an
adjacency graph of triangles. This is not the case here since S is embedded
in a Delaunay T implemented as an adjacency graph of tetrahedra.

So we introduce a faster test to check that v is regular. Let gv be the
graph of the tetrahedra incident to v (gv is a sub-graph of T ). Appendix A
shows that the v-opposite edges above form a simple polygon if and only if
the inside tetrahedra of gv are connected and the outside tetrahedra of gv

are connected (Fig. 4). Thus we check that v is regular thanks to a simple
traversal of graph gv where the edges between inside and outside are removed.

2.3.3. Incremental Use of the Vertex Tests

Now we explain how to use the 2-manifold tests in Sec. 2.3.1 and 2.3.2.
In our context, S = δO is estimated by a greedy method (Sec. 2.2). Assume
that δO is a 2-manifold. We add A ⊆ F into O. Then we should check
that (the new) δO is still a 2-manifold. We collect in list W all vertices of
the tetrahedra in A which are in δO. The new δO is a 2-manifold if every
vertex in W is regular. Otherwise, it is not and A is removed from O. The
vertices of δO which are not in W do not need to be checked since the labels
outside-inside of their incident tetrahedra do not change by adding A.

2.3.4. Single Tetrahedron Test

In the special case where list A contains a single tetrahedron ∆, there is
a test based on [4], which is faster than those in Sec. 2.3.3. In this case, we
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Figure 4: Relation between topology and graph. Top: 8 tetrahedra incident to v and their
adjacency graph gv. Bottom: three cases of tetrahedra labeling (inside is black, outside is
white). Middle: the resulting topology around v. Middle and bottom: v is regular if and
only if the inside tetrahedra are connected and the outside tetrahedra are connected.

first check a condition on O and then add ∆ to O (if the condition is meet).
This condition is detailed in Appendix B. It only requires to read once the
lists of tetrahedra incident to the four ∆-vertices.

3. Surface Reconstruction Algorithm

Every sub-section describes a step of our method, except the last one
which discusses bad (false positive) SfM points.

3.1. 3D Delaunay Triangulation T

Assume that SfM estimates the geometry of the whole image sequence.
The geometry includes the sparse cloud of points {pi}, camera locations {cj}
and rays defined by visibility lists {Vi}. List Vi is the list of indices of images
which reconstruct the 3D point pi, and a ray is a line segment linking pi to
cj if j ∈ Vi. The size of Vi is greater than 2 (2 is the theoretical minimum
but it is insufficient for robustness).

Point pi has poor accuracy if it is reconstructed in degenerate configura-
tion [16]: if pi and all cj, j ∈ Vi are nearly collinear. This case occurs in part
of the camera trajectory which is a straight line and if points reconstructed
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from this part are close to the straight line. Thus, the point cloud is filtered
as in [9]: pi is added in T if and only if there is {j, k} ⊆ Vi such that angle
ĉjpick meets ǫ ≤ ĉjpick ≤ π − ǫ using threshold ǫ > 0.

3.2. Ray Tracing

We set r = 0 and apply ray tracing to all rays. Since T is a graph
(Sec. 2.1), tracing a ray cjpi is a walk in the graph, starting from a tetra-
hedron incident to pi, moving to another tetrahedron through the triangle
intersected by the line segment cjpi, and stopping to the tetrahedron which
contains cj (the inverse walk is also possible). Ray cjpi is traced if and only
if pi is a vertex of T . For every tetrahedron ∆ intersected by a ray, r(∆) is
increased by 1. We obtain function r and list F of the free-space tetrahedra.

3.3. 2-Manifold Extraction

According to Section 2.2, we use a greedy algorithm to approximate the
list O which maximizes r(O) such that δO is a 2-manifold and O ⊆ F :
O grows from ∅ by adding free-space tetrahedra such that δO remains 2-
manifold. The result of this step is the final δO. We use r to define a priority
for the free-space tetrahedra: the ∆s with the largest r(∆) are added in
O before others. Due to the manifold constraint, we also require that the
selected ∆ has (at least) one face in δO to avoid that the greedy algorithm
gets stuck too easily in a bad solution

The tetrahedra in the neighborhood of O are stored in a heap (priority
queue) for fast selection of the tetrahedron with the greatest r. Thus O
usually grows from the most confident free-space tetrahedra (with large r) to
the less confident ones (with small r).

Algorithm 1 presents our growing method in C style. The inputs are the
initial O, list F , list Q0 of tetrahedra which includes the initial value of the
heap, and function r. Here we use O = ∅ and Q0 = ∅. The output is O.

3.4. Topology Extension

The outside region O computed in Sec. 3.3 has the ball topology since
we add tetrahedra one-by-one [4]. This is problematic if the true outside
does not have the ball topology, e.g. if the camera trajectory contains closed
loop(s) around building(s). In the simplest case of one loop, the true outside
has the toroid topology and the computed outside O can not close the loop
(as shown by Fig. 5).
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Algorithm 1 Outside Growing

01: Q=∅; // *** initialization of priority queue Q ***
02: if (O==∅) { // Sec. 3.3
03: let ∆ ∈ F be such that r(∆) is maximum;
04: Q← Q ∪ {∆};
05: } else for each ∆ ∈ Q0 ∩ F // Sec. 3.4
06: if (∆ /∈ O and ∆ has a 4-neighbor in O)
07: Q← Q ∪ {∆};
08: while (Q!=∅) { // *** region growing of O ***
09: pick from Q the ∆ which has the largest r(∆);
10: if (∆ ∈ O) continue;
11: O ← O ∪ {∆};
12: if (all vertices of ∆ are regular) {
13: for each 4-neighbor tetrahedron ∆′ of ∆
14: if (∆′ ∈ F and ∆′ /∈ O)
15: Q← Q ∪ {∆′};
16: } else O ← O \ {∆};
17: }

Figure 5: Close the loop. Left: adding one tetrahedron (dark) at once in O (light) can not
close the loop due to singular vertex. Right: adding several tetrahedra at once can do it.
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This problem is corrected as follows. Firstly, we find a vertex in δO such
that all inside tetrahedra incident to this vertex are free-space. Secondly,
these tetrahedra are collected in list A. Thirdly, we try to add A into O
using a 2-manifold test in Sec. 2.3. At last, if the test is successful, we use
the region growing in Sec. 3.3 where Q0 is the list of tetrahedra neighbors of
A. In practice, we go through the list of δO vertices several times to do this
process.

3.5. Post-Processing

Although the surface S provided by the previous steps is a 2-manifold
(S = δO), it has several weaknesses which are easily noticed during visual-
ization. Now we examine these weaknesses and explain how to remove or
reduce them using prior knowledge of the scene.

3.5.1. Peak Removal

A peak is a vertex pi on S such that the ring of its incident triangles in
S defines a solid angle w which is too small to be physically plausible, i.e.
w < w0 where w0 is a threshold. Let L be the list of the tetrahedra in the
acute side of the peak ring. L is outside or inside. Now we reverse the L
label: inside becomes outside, and vice versa. The removal of peak pi from S
is successful if all vertices of the L tetrahedra remain regular. Otherwise, the
label of L is restored to its original value and we try to remove another peak.
In practice, we go through the list of S vertices several times to detect and
remove peaks. Note that this step ignores the free-space/matter labeling.

3.5.2. Surface Denoising

The S reconstruction noise is reduced thanks to a smoothing filter p′ =
p + ∆p where p is a vertex of S and ∆p is a discrete Laplacian defined on
S vertices [35]. The smoothed p′ is stored in a distinct array of p. We don’t
apply p← p′ to avoid the computation overhead due to vertex update in T .

3.5.3. Sky Removal

Up to now, S is closed and contains triangles which correspond to the
sky (assuming outdoor image sequence). These triangles should be removed
since they do not approximate a real surface. They also complicate the
visualization of the 3D model from a bird’s-eye view. Firstly, the upward
vertical direction u is robustly estimated assuming that the camera motion
is (roughly) on a horizontal plane. Secondly, we consider open rectangles

12



defined by the finite edge cici+1 and the two infinite edges (half lines) starting
from ci (or ci+1) with direction u. A triangle of S which is intersected by an
open rectangle is a sky triangle and is removed from S. Now S has hole in
the sky. Lastly, the hole is increased by propagating its border from triangle
to triangle while the angle between triangle normal (oriented from outside to
inside) and u is less than threshold β.

3.6. Bad (False Positive) SfM Points

SfM can reconstruct bad point p due to repetitive texture or image noise.
Now we discuss the consequences and give solutions for this problem. If p is
in the true matter of the scene, there are tetrahedra that should be matter
which are labeled free-space due to bad ray of p. If these tetrahedra are in
O, δO can be corrupted, e.g. a wall with a spurious concavity. In practice,
the risk of bad p is low thanks to the SfM machinery (bundle adjustment,
RANSAC, robust matching, interest point detectors).

Nevertheless, our method reduces this risk and can remove spurious con-
cavities. First, the risk is reduced thanks to the choice of ǫ in the point
selection step (Sec. 3.1): the larger ǫ, the more accurate points and their
rays used by Ray Tracing (Sec. 3.2), the lower risk of spurious concavity.
Second, the spurious concavities created by the manifold constraint in the
growing steps (Sec. 3.3 and 3.4) can not be worse (larger) than those of the
free-space in the matter. Indeed, a concavity is a list of outside tetrahedra
which are included in free-space. Third, Appendix C explains how Peak
Removal (Sec. 3.5.1) can remove spurious concavities.

4. Removal of Spurious Handles

Sec. 4.1 introduces spurious handles. Then two removal methods are
presented in Sec. 4.2 and 4.3, which complete our methods in Sec. 3 (the
removal methods are not presented in Sec. 3 for the paper clarity).

4.1. Definition of Spurious Handles

Topology Extension (Sec. 3.4) calculates a 2-manifold without genus con-
straint and improves our solution of the optimization problem (Sec. 2.2), but
it has one drawback: it can generate spurious handles. Fig. 6 shows an ex-
ample in a real case: the oblique handle on the left connects a small wall
to the ground. This handle is spurious: it does not exist on the true scene
surface and it should be removed while maintaining the manifold property.
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Figure 6: Spurious handle (left) and its removal (middle and right).

In the paper, we remove the handles which are both “visually critical”
and due to “incomplete” outside growing in the free-space. “Visually critical”
means that we ignore the handles that are too small to be easily noticeable
by viewers (virtual pedestrians) located at all view points cj reconstructed
by SfM. “Incomplete” means that the handles only contains free-space tetra-
hedra that are inside and which should be forced to outside. We use these
conditions to localize the spurious handles and to obtain a final 2-manifold
which meets the visibility constraints provided by the rays. For the remain-
der of the paper, a “spurious handle that is visually critical and due to
incomplete growing” is shortened to “spurious handle”.

Our spurious handle removal methods use Steiner vertices, i.e. extra
points in T which are not in the original (SfM) input. The Steiner vertices
do not have rays.

4.2. Method 1: Reduce Size of Tetrahedra

In [38], a simple method is used to reduce the risk of spurious handles. In
the 3D Delaunay step (Sec. 3.1), Steiner points are added in T such that the
long tetrahedra potentially involved in spurious handles are split in smaller
tetrahedra. The Steiner points are added in the critical region for visualiza-
tion: the immediate neighborhood of the camera trajectory. We randomly
add a fixed and small number of Steiner vertices at the neighborhood of ev-
ery camera location cj. A neighborhood is a ball centered at cj with radius
defined as a multiple (e.g. 10) of meanj ||cj+1 − cj||.

4.3. Method 2: Detect, Force and Repair

Another removal method [39] is applied after “Topology Extension” and
before “Post-Processing”. Every sub-section describes a step of the method.
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Figure 7: Spurious handle (left) and Edge Splitting (right) in the 2D case. Bold edges =
manifold edges, simple edges= Delaunay edges, white region= outside, light gray= inside-
freespace, dark gray= inside-matter. Left: edges ab, cd, ac are visually critical. Right:
Steiner point f is inserted on cd, this splits triangle cde and adc.

4.3.1. Detect Visually Critical Edges

Let e be an edge with finite vertices ae and be. Let α > 0 be a threshold.
Edge e is “visually critical” if

1. every tetrahedron including e is free-space and

2. at least one inside tetrahedron includes e and

3. there is a view point cj such that angle âecjbe is greater than α.

The first step is the calculation of all visually critical edges in list Lα. A
spurious handle has critical edges both on its border and its interior (Fig. 7).

The larger α, the smaller size of Lα and also the greater lengths of the
edges in Lα. We use this to select a moderated number of handles and
apply on every selected handle a processing, whose time computation per
tetrahedron/vertex is greater than those in Sec. 3.3 and 3.4.

4.3.2. Force Tetrahedra Outside

This step needs a mesh operator called “Edge Splitting”. It splits an
edge of T by adding a Steiner vertex on the edge, and every tetrahedron
including the edge is also split in two tetrahedra whose labels (free-space,
matter, inside, outside) are the same as the original tetrahedra. Thus, the
resulting triangulation T is not 100% Delaunay after this step, but our surface
δO which separates outside and inside tetrahedra is still a 2-manifold (the
set of surface points is unchanged).

Now we split every Lα edge by a Steiner vertex on its middle (one example
in Fig. 7). This changes the graph of tetrahedra and provides new tetrahedra
for the next step, which is a local region growing of O in F . For each vertex vi

on (split) critical edges, we define the list of tetrahedra Li incident to vi which
are free-space and inside. Then a first round of (Force,Repair) is applied to
the list Li. Function “Force” adds tetrahedra in O without checking that δO
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is a 2-manifold, and function “Repair” (Sec. 4.3.3) tries to grow O such that
δO becomes a 2-manifold. If it fails, another round of (Force,Repair) is tried
for every tetrahedron of Li. Algorithm 2 presents our method in C style.

Algorithm 2 Force Tetrahedra Outside

01: for each vertex vi of the (split) edges of every e ∈ Lα {
02: let Li be the list of tetrahedra incident to vi;
03: G = (Li ∩ F ) \O;
04: O ← O ∪G; // Force
05: if (!Repair)
06: for each tetrahedron ∆ ∈ Li

07: if (∆ ∈ F and ∆ /∈ O) {
08: G = {∆};
09: O ← O ∪G; // Force
10: Repair;
11: }
12: }

4.3.3. Repair δO by local growing of O

The repair step is a local growing of O in F such that the number n of sin-
gular vertices of surface δO decreases and every regular vertex is maintained
regular. At the beginning, n > 0 is due to the addition of G in O (Force).
Then a free-space and inside tetrahedron ∆ is chosen in the neighborhood of
G, and it is added to O. If n increases, we remove ∆ from O and try another
tetrahedron. We continue until every ∆ candidate increases n. If the final n
is 0, the local region growing succeeds. Otherwise it fails and O is restored
to its value before the Force step.

The inputs are O, G and g0 (an upper bound to limit the local growing
complexity). The output is a boolean which asserts that Repair is successful
or failed. Repair can also modify O. Algorithm 3 presents function Repair
in C style. Note that this algorithm looks like the one in Sec. 3.3. The main
differences are (1) the 2-manifold tests are replaced by non-increase tests of
the number of singular vertices and (2) the process can fail.

5. Starting the Complexity Analysis

Here we evaluate the time complexities of the 2-manifold tests (Sec. 5.2)
and region growing (Sec. 5.3) using notations and data structures in Sec. 5.1.
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Algorithm 3 Repair

01: let Y be the list of vertices of the tetrahedra in G;
02: let n be the number of singular vertices in Y ;
03: // **** initialization of priority queue Q ****
04: Q=∅;
05: for each tetrahedron ∆ in G
06: for each 4-neighbor tetrahedron ∆′ of ∆
07: if (∆′ ∈ F and ∆′ /∈ O)
08: Q← Q ∪ {∆′};
09: // **** region growing of O ****
10: while (Q!=∅) {
11: pick from Q the ∆ which has the largest r(∆);
12: if (∆ ∈ O) continue;
13: let b0

i be true iff the i-th vertex of ∆ is singular

14: n0 =
∑4

i=1
b0
i ; // number of singular ∆-vertices

15: O ← O ∪ {∆};
16: let b1

i be true iff the i-th vertex of ∆ is singular

17: n1 =
∑4

i=1
b1
i ; // number of singular ∆-vertices

18: if (n0 ≥ n1 && b0
1 ≥ b1

1 && b0
2 ≥ b1

2 && b0
3 ≥ b1

3 && b0
4 ≥ b1

4) {
19: G← G ∪ {∆}; // G is used latter
20: n← n + n1 − n0; // fast n update
21: if (the size of G is g0)
22: break; // too large computation: stop
23: for each 4-neighbor tetrahedron ∆′ of ∆
24: if (∆′ ∈ F and ∆′ /∈ O)
25: Q← Q ∪ {∆′};
26: } else O ← O \ {∆}; // failure of ∆ addition
27: }
28: // **** check the result ****
29: if (n) {
30: O ← O \G;
31: return 0;
32: } else return 1;
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Then Sec. 5.4 discusses the worst case complexities of these steps and others.
We use the standard “big o” notation O; x is bounded if x = O(1).

5.1. Notations and Data Structures

The 3D Delaunay triangulation T is the labeled graph defined in Sec. 2.1.
We note |L| the number of elements of list L; |T | is the number of tetrahedra.
Let v be the number of tetrahedra vertices. We assume that every tetrahe-
dron ∆ stores a label outside-inside, the number r(∆) of intersected rays, the
list of 4 vertices, and the list of 4 neighbor tetrahedra. The tetrahedra and
their vertices are referenced by integers in the lists above. There is a table of
vertices and a table of tetrahedra. Note that ∆ ∈ F if and only if r(∆) > 0.
Let d be the maximum vertex degree, i.e. the number of tetrahedra incident
to every finite vertex (every vertex except v∞) is less or equal to d.

5.2. Complexity of the 2-Manifold Tests

In Sec. 2.3.3, we add A to O if and only if δO remains 2-manifold, i.e. if
every vertex of W is regular. According to Sec. 3.3 and 3.4, A has a single
tetrahedron or several tetrahedra sharing a surface vertex. This vertex can
not be v∞ since all v∞-incident tetrahedra are matter and every surface
vertex is incident to a free-space tetrahedron. Thus, |A| ≤ d. Since W is the
list of the vertices of the tetrahedra in A, its complexity isO(d). Furthermore,
the complexity to check that a vertex is regular using the Graph-Based Test
in Sec. 2.3.2 is O(d). Thus the time complexity of the 2-manifold test for
list A is O(d2). If A has a single tetrahedron, both graph-based method
(Sec. 2.3.2) and single tetrahedron method (Appendix B) are O(d).

5.3. Complexity of One Region Growing

Here we estimate the time complexity of Algorithm 1. Let q0 be the
number of tetrahedra in list Q0. Let g be the number of grown tetrahedra,
i.e. the difference between the number of tetrahedra in the output O and
the number of tetrahedra in the input O of this algorithm. A tetrahedron
∆ is definitely added at most one time into O. In this case, at most four
tetrahedra are added to Q. There is no other addition to Q, except at the
initialization of Q where there are at most O(q0) additions to Q. Thus, the
number of “while” iterations is O(g + q0).

Now the time complexity of one iteration is estimated. Picking the best
tetrahedron in heap Q isO(log(g+q0)). The other instructions in one “while”
iterations are O(d) due to the 2-manifold test (Sec. 5.2 using |A| = 1).
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If we start from O = ∅, we should add the complexity of Q initialization:
the time complexity of one region growing is O(|T | + g(d + log(g))). If we
start from O 6= ∅, this time complexity is O((g + q0)(d + log(g + q0))).

5.4. Loose Results

The number of tetrahedra is |T | = O(v2) and the maximum vertex degree
is d = O(v) since T has v vertices [3, 34]; the worst case exists but it is
rare. Furthermore, a theoretical study starting from these numbers provides
time complexities that are not tight enough to be interesting. Here are two
examples. First, the time complexity in the worst case to trace a single ray is
O(v2). Indeed, one line segment can intersect all tetrahedra [34], but this is
almost impossible in practice. A second example is the region growing which
is O(v3) in the worst case (use d = O(v) and g + q0 = O(v2) in Sec. 5.3),
but it is quite smaller in practice. So we will use neither |T | = O(v2) nor
d = O(v) in the complexity analysis below.

6. Tight Time Complexity

Sec. 6.1 introduces two new assumptions: the bounded density of the
SfM points and the addition in T of a Cartesian grid of Steiner vertices.
Sec. 6.2 lists all our assumptions and Sec. 6.3 provides the worst case time
complexities for the steps of our method.

6.1. Additional Point Assumptions and their Consequences

We assume that the density of reconstructed points in 3D is bounded:
there are p > 0 and q > 0 such that every p-ball contains at most q points.
A p-ball is a ball with radius p. This could be justified as follows: (1) only
interest points are reconstructed and (2) the scene surface has texture such
that the interest points, which are detected due to grey-level 2D variations
in their neighborhood, have a bounded density (e.g. no fractal-like texture).

We also use a bounding box of the reconstructed points, which is com-
puted from the point coordinates. This box has Delaunay mesh T with two
kinds of vertices: the reconstructed vertices (Sec. 3.1) and Steiner vertices
located at the corners of a Cartesian grid. The adding of Steiner vertices (i.e.
extra points) is a standard method in Computational Geometry to generate
meshes with good properties, e.g. to guarantee a linear-size 3D Delaunay
triangulation with bounded vertex degree [3]. Every Steiner vertex has an
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empty visibility list. In practice, the number s of Steiner vertices is quite
smaller than the number m of reconstructed vertices (v = m + s ≈ m).

Thanks to the bounded density of the SfM points and the Cartesian grid
of Steiner vertices, Appendix D shows that the tetrahedron density is also
bounded, i.e. there are p′ > 0 and q′ > 0 such that every p′-ball intersects
at most q′ tetrahedra. The proof has two steps: first the tetrahedron diam-
eter is bounded by the diagonal length l of a grid voxel, second we use the
bounded density of the points in the p′ + l-ball which includes all tetrahedra
intersecting the p′-ball. If the p′-ball is centered at a finite vertex, we see
that the maximum vertex degree d is bounded.

6.2. List of Properties and Assumptions

This list is used in the complexity proofs.

H0: T has m reconstructed and s Steiner vertices where s < m

H1: the tetrahedron density is bounded

H2: the maximum vertex degree d is bounded

H3: the access to the 4 neighbors of a tetrahedron is O(1)

H4: the size of visibility list Vi is bounded

H5: the distance between two consecutive view points is bounded.

H0-2 are in Sec. 6.1. H3 is in Sec. 5.1. In practice, the distance between the
locations of two successive images is bounded (H5) and we assume that the
track length (of interest point in successive images) is also bounded (H4).

6.3. Worst Case Time Complexities

Tab. 1 gives the time complexities of the steps of our method. Here we
briefly summarize these results. The detailed proofs are in Appendix E.

Step “3D Delaunay Triangulation” has the largest complexity: O(m2).
This is due to the computation of the Delaunay triangulation in 3D [14].
Fortunately, the experimental complexity is almost linear in m [10].

Step “Ray-Tracing” is O(m) since the ray length is bounded (using ǫ > 0,
H4 and H5) and thanks to H1-3.

Step “2-Manifold Extraction” is O(m log m). Indeed, there are O(m)
tetrahedra (since T has O(m) vertices (H0) and d is bounded (H2)) and we
obtain the result thanks to Sec. 5.3 and H2.

Step “Topology Extension” is also O(m log m). This is essentially due to
the fact that the successive outside growings of this step are disjoint in the
free-space.
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3D Delaunay Triangulation DT O(m2)
Ray-Tracing RT O(m)

Manifold Extraction ME O(m log m)
Topology Extension TE O(m log m)

Handle Removal (Sec. 4.2) HR1 N/A (see text)
Handle Removal (Sec. 4.3) HR2 O(cm)

Post Processing PP O(cm)

Table 1: Worst case time complexities and shortened names of all steps.

Step “Post-Processing” is O(cm), where c is the number of camera lo-
cations ck. More precisely, Peak Removal and Surface Denoising are O(m),
Sky Removal is O(cm). In practice, c is quite smaller than the number m of
reconstructed vertices (c < m/85 in our experiments).

Step “Handle Removal” in Sec. 4.2 has no “O” additional complexity.
Indeed, it adds to T a number of Steiner vertices which is linear to c, and
the complexities of all steps of the methods do not change since c < m.

Step “Handle Removal” in Sec. 4.3 is O(cm + wg0 log g0), where w is the
number of critical edges. Term cm is due to the detection of the critical edges;
term wg0 log g0 is due to the force and repair operations (region growings
whose sizes are bounded by g0). In practice, the main term is wg0 log g0

where g0 = 10d and w is smaller than m (w < m/4.6 in our experiments).
We obtain complexity O(cm) using w = O(m) (H2) and g0 = O(1).

7. Experiments

Sec. 7.1 provides an overview of the results (both SfM and surface recon-
struction) in the case of a still image sequence. Then we experiment and
discuss the manifold constraint in Sec. 7.2, varying densities of reconstructed
and Steiner points in Sec. 7.3 and 7.4, comparison with the Poisson surface
reconstruction [21] in Sec. 7.5, handle removal in Sec. 7.6. Last, Sec. 7.7 gives
quantitative experiments for a synthetic image sequence and Sec. 7.8 shows
results for a 1.4km long video sequence.

We use equiangular catadioptric cameras, which are hand/helmet-held.
The view field is 360◦ in the horizontal plane and about 50◦− 60◦ above and
below. This is adequate for the 3D modeling of complete environments at
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Figure 8: Overview of the results. Left: top view of the 136k points and 343 poses
reconstructed by SfM and images of the sequence. Right: top and oblique views of the
resulting surface (152k triangles), including triangle normals (gray) and trajectory (black).

low cost. The calculation times are given for an Intel Core 2 Duo E8500 at
3.16GHz. Suffix k multiplies numbers by 1000.

7.1. Overview of the Results

Except in Sec. 7.7 and 7.8, we use a still jpeg image sequence taken by the
0-360 mirror mounted with the Nikon Coolpix 8700 thanks to an additional
adapter ring. We take 343 images during a complete walk around a church.
Fig. 8 (left) shows top view of our SfM; it also estimates radial distortion
parameters using a central model [24]. There are 136k 3D points and 872k
Harris (inlier) points. The final RMS error is 0.74 pixels. A 2D point is
considered as an outlier if the reprojection error is greater than 2 pixels.

Fig. 8 (right) shows the surface estimated using ǫ = 10◦ (Delaunay Step),
without the Steiner vertices of the tight time complexity (Sec. 6), with the
second Handle Removal method (HR2) and α = 5◦, and using post-processing
thresholds: w0 = π/2 steradians (Peak Removal), β = 45◦ (Sky Removal).
The parameter setting in this Section is the default setting of our paper. The
VRML model is computed in 35s. It has 152k triangles, which are few for
a scene like this. The lines “still” in Tab. 2 provides information for this
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type length radius c SfM |T | |F |
|T |

|Oinit|
|F |

|Oend|
|F |

still 103m 574pix. 343 136k 500k 0.47 0.88 0.92
video 1.4km 297pix. 2504 385k 1335k 0.51 0.87 0.92

type |δO| DT RT ME TE HR2 PP total
still 152k 7.6s 2.9s 2.5s 2.9s 16.8s 2.5s 35s

video 416k 18.7s 6.9s 6.7s 5.9s 120s 7.7s 166s

Table 2: Overview of our two sequences. Top: type, trajectory length, radius of large
image circle, numbers of (key)frames and SfM points and tetrahedra, ratio of free-space
tetrahedra, ratios of outside tetrahedra after Manifold Extraction and at the end. Bottom:
number of triangles in the final VRML model, times for every step (shortening in Tab. 1).

sequence, including the computation times for every step, number of images,
trajectory length, and performance of the outside growing in free-space (ratio
between the numbers of free-space and outside tetrahedra). More details are
given on several steps in the next Sections.

The joint video (supplementary content) has three parts: catadioptric
images (input) and the corresponding panoramic images, walkthough in the
3D model from pedestrian’s-eye views (the sky is not removed to obtain an
immersive 3D model), full turn around the 3D model from bird’s-eye view
(the sky is removed). Both textures and triangle normals are shown in colors.

7.2. 2-Manifold Constraint

Here are additional informations on the 2-manifold constraint in the ex-
periment of Sec. 7.1. First, there are several methods to test that a surface is
manifold (Sec. 2.3). We use the Single Tetrahedron Test for the 2-Manifold
Extraction step (adding the tetrahedra one-by-one in O), and the Graph-
Based Test for the Topology Extension step (adding the tetrahedra several-
at-once in O). In our implementation, the Polygon-Based Test is slower: if
we use it, it multiplies the computation time of the 2-Manifold Extraction
step by 1.4 and that of the Topology Extension step by 1.9. We also check
that the different tests provide the same surface.

Now, we study the advantage of the 2-manifold constraint. We start from
two closed surfaces: δF (non-manifold) and δO (manifold) generated by the
2-Manifold Extraction step. 24.6% of the δF vertices are singular. Then the
denoising step is used, and we obtain four surfaces: denoised manifold, non-
denoised manifold, denoised non-manifold, non-denoised non-manifold. For
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Figure 9: 2-manifold constraint and surface denoising. With (top and middle) and without
(bottom) the manifold constraint. Without (left) and with (right) surface denoising.

the remainder of Sec. 7.2, the further steps of our method are not applied.
Fig. 9 shows that the manifold constraint helps surface denoising: the

denoised manifold surface is smoother than the denoised non-manifold sur-
face. The use of several denoising does not change this observation. Fig. 9
also shows that the texturing of the denoised 2-manifold is better than the
texturing of the non-denoised 2-manifold.

7.3. Density of Reconstructed Points

Since our goal is the 2-manifold estimation from a small number of SfM
points (and their visibility), it would be interesting to experiment on the
same data as in Sec. 7.1, but with a yet smaller number of points. Thus we
reduce the size of the images by several coefficients, and for each resulting
sequence, we apply the whole process (both SfM and surface estimations)
with the same parameter settings. This reduces the number of reconstructed
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rc SfM m |T |/v d |δO| t
1 136k 81k 6.19 296 152k 35

1.5 65k 40k 6.21 620 76k 20
2 37k 23k 6.22 386 44k 12

2.5 23k 14k 6.23 501 28k 9.8

Table 3: Numbers for calculations on reduced sequences: reduction coefficient, number of
reconstructed points, number of Delaunay vertices, ratio between the numbers of tetrahe-
dra and vertices, vertex degree, number of triangles, surface computation time in seconds.

points as if we use a different camera to reconstruct the same scene. Image
reduction also increases the image noise impact on the 3D result. We think
that this experiment is more interesting than the surface calculations from
random selections of the SfM points in Sec. 7.1.

Tab. 3 provides numbers for reduction coefficients rc ∈ {1, 1.5, 2, 2.5}.
The number of reconstructed points is roughly linear to 1/(rc)2, the ratio
between the numbers of tetrahedra and vertices of the Delaunay is almost
constant, and the calculation times are very small for large rc (a few seconds).
We also see that relations |T | = O(v2) and d = O(v) are not tight enough
to be used in the proofs of time complexities. Fig. 10 shows the surfaces for
different rc values. We see the progressive reduction of the level of details.

7.4. Density of Steiner Vertices

Here we study the effects of the Steiner vertices located at the corners
of the Cartesian grid introduced in Sec. 6. The length of voxel edges of the
grid is a multiple sz of the camera step between two consecutive images (the
length is sz meanj||cj+1 − cj||).

Fig. 11 shows views for sz ∈ {2, 5, 10, 20}. The smaller sz, the greater
decrease of surface quality. The negative effect of the Steiner vertices is
essentially in the areas where the density of reconstructed vertices is low
(sky and parts of ground in our example). In the sky, there are too much
tetrahedra for a fixed number of rays, then small matter tetrahedra appears
if sz is small. Thus sz should not be too small.

Tab. 4 shows the experimental computation times for large enough sz
(the grid is unused if sz = ∞). We see that the grid does not really have
complexity advantage in practice, and we conclude that the grid essentially
has a theoretical interest: it guaranties the worst case complexities derived
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Figure 10: Surfaces for several densities of reconstructed points, defined by coefficient rc.
From top to bottom: texture and normals for rc = 1, 1, 1.5, 2, 2.5.
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Figure 11: Effect of grids of Steiner vertices. From left to right: sz = 2, 5, 10, 20.

sz s/m |T |/v d DT RT ME TE HR2
10 0.079 6.11 386 9.0 2.7 2.4 2.2 15.1
20 0.016 6.16 550 7.7 3.0 2.5 2.9 15.8
∞ 0 6.19 296 7.6 2.9 2.5 2.9 16.8

Table 4: Numbers for several grids: edge length coefficient, ratio between the numbers of
Steiner vertices and reconstructed vertices, ratio between numbers of tetrahedra and all
vertices, vertex degree, time in seconds of steps DT...HR2 (shortening defined in Tab. 1).

in Sec. 6. The fact that the smallest d in Tab. 4 is obtained without the grid
might be surprising, but this is not in contradiction to the fact that every
finite grid size sz guaranties an upper bound for d (Sec. 6.1). Note that d
can be smaller than d(sz =∞), e.g. d(sz = 5) = 264.

7.5. Poisson Surface Reconstruction

Our method is also compared to the Poisson Surface Reconstruction [21].
Remember that this method starts from a set of points and their oriented
normals. We use parameter depth = 12 to obtain a large enough resolution
(the mesh size is moderated thanks to an octree-based sampling).

There are several surfaces depending on the method used to compute the
oriented normal ni of reconstructed point pi:

• Sray: ni is the mean of directions of all pi’s rays

• S6nn: ni is the normal of the plane Π minimizing the sum of the squared
point-plane distances between Π and the 6-nearest neighbors of pi

• Sman: ni is a weighted sum of normals of the pi-incident triangles
separating outside and inside tetrahedra.
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Figure 12: Comparison of Poisson’s and ours surfaces. From left to right: Sray, S6nn,
Sman, Sours (normal) and Sours (texture) viewed from the same viewpoint.

And let Sours be the surface of our method.
In the four cases, the point filtering of Sec. 3.1 is applied and there is

no Sky Removal step. Note that Sman is obtained by a combination of two
methods: ours and Poisson. Furthermore, the weight is the incident triangle
angle at pi [5], and pi is not used by Sman if its normal can not be computed
due to the pi-tetrahedra labeling.

Fig. 12 shows views of the four surfaces. The better accuracy of normal
computation, the better quality of the Poisson surface: Sman is better than
S6nn, which is better than Sray. The quality of Sours is between those of S6nn

and Sman, although Sman is oversmoothed compared to Sours. Regarding the
processing time, Sours has 154k triangles computed in 35s and Sman has 178k
triangles computed in 35+93s, which is about 3.5 times of Sours.

7.6. Handle Removal

Fig. 13 compares the two handle removal methods. HR1(ns) adds ran-
domly a given number ns of Steiner points in the ball neighborhood of every
camera pose (Sec. 4.2). The radius coefficient is 10. HR2 detects, forces
and repairs the spurious handles (Sec. 4.3). We compare HR2 to HR1(ns)
with several values of ns ∈ {0, 1, 5, 10} (handles are not removed if ns = 0).
The right column shows the largest spurious handles of the surface if ns = 0.
These handles are reduced by HR1(1) and are removed by HR2 and HR1(ns),
ns ∈ {5, 10}. However, HR1(ns), ns ∈ {1, 5, 10} are not able to remove spu-
rious handles at other locations (two examples are shown in the two columns
on the right). Furthermore, we notice that ns should not be too large for
the same reasons as sz should not be too small in Sec. 7.4. HR2 gives the
best results and removes the large handles at the locations viewed by Fig. 13
(and others). Note that the sky is not removed in these experiments since we
would like to examine the Handle Removal step only. Indeed, Sky Removal
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Figure 13: Comparison of two handle removal methods: HR1 (bottom) and HR2 (top and
middle). Each column shows the results for given number of Steiner points per camera
pose for HR1 (from left to right: 0, 1, 5, 10).

also removes spurious handles in a special case: if they are above the camera
poses (they are intersected by the open rectangles of Sec. 3.5.3).

Remember that the main parameter of HR2 is the angle α, which selects
the minimal size of critical edges where the computations are done. We found
that the α default value (5◦) is a good compromise: (1) HR2 misses visually
noticeable handles if α is larger than 5 and (2) the calculation times increases
while the improvement is negligible if α is smaller than 5. 1.5% of the 581k
Delaunay edges are critical edges using α = 5.

7.7. Quantitative Evaluation on a Synthetic Scene

The synthetic scene is manually generated from real images taken in a city.
The trajectory is a 230 m long closed loop around a building including several
shops. The images are generated by ray-tracing and taking into account the
ray reflection on the catadioptric mirror. The large circle, which contains the
scene projection in the image, has a 600 pixel radius. Fig. 14 (left) shows
two images of the synthetic sequence. SfM [24] reconstructs 600 camera poses
and a sparse cloud of 257k 3D points from the sequence.

Now we explain how to estimate the reconstruction error. Let Z be the
similarity transformation which minimizes E(Z) =

∑599

i=0
||Z(ci)−c

g
i ||2, where
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Figure 14: Two omnidirectional images, sparse SfM point cloud and camera trajectory, top
view of the estimated and ground truth surfaces (the colors encode the triangle normal).

ci and c
g
i are the estimated locations and the ground truth locations of the

camera, respectively (ci is the camera center and c
g
i is the mirror apex). We

use Z to map the estimated geometry (poses and point cloud) in the ground
truth coordinate system. Our error is based on ray tracing. Let q be a pixel.
Let pe be the intersection of the estimated surface and the back-projected ray
of q by the estimated camera pose. Let pg be the intersection of the ground
truth surface and the back-projected ray of q by the ground truth camera
pose. In both cases, if there are several intersections, we take the intersection
which is the closest to the camera pose. Then we use error e(q) = ||pe−pg||.
If pg does not exist or e(q) > µ0 (where µ0 = 2 m), we assume that the point
matching (pe,pg) is outlier (e.g. for the pixels of the sky).

The pose-registration provides
√

E(Z)/600 = 5.1cm. Then we uni-
formly sample pixels in the sequence and examine the distribution of e(q)
for 6000000 pixels. 75.7% of sampled points are inliers, the error median
of inliers is 8cm, the 90% quantile of inliers is 55cm. Lastly, the same ex-
periment (both SfM and surface estimations) is re-done for the same images
down-sampled by 2. We found

√

E(Z)/600 = 56cm, which implies that the
SfM drift is larger than in the previous case. 73.9% of sampled points are
inliers, the error median of inliers is 64.3cm, the 90% quantile of inliers is
103cm. Fig. 14 shows the sparse point cloud by SfM and the surface.

7.8. Video as Input

Here the catadioptric camera is the 0-360 mirror mounted with the Canon
Legria HFS10. We take an AVCHD video biking in a city. The trajectory
length is about 1.4km long and the camera is mounted on a helmet.

Fig. 15 (top) shows a top view of the SfM result. First, a SfM method
similar to [30] in the central case is applied. 2504 keyframes are selected
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Figure 15: Top: top view of the SfM result, five images of the video sequence, and the
catadioptric camera. Bottom: views of the VRML model (textures and triangle normals).
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from 24700 frames such that about 600 Harris points are matched in three
consecutive keyframes. Second, we use the loop closure method in [25] (the
SfM drift is not corrected at both sequence ends). We obtain 385k 3D points
reconstructed from 2230k Harris (inlier) points in 2504 keyframes.

Fig. 15 (bottom) shows views of the VRML model with the parameters
in Sec. 7.1. The 416k triangles of the surface are estimated in 166s. The
lines “video” in Tab. 2 provides information for this sequence, including the
computation times for every step. The most costly step is Handle Removal;
3% of the 1548k Delaunay edges are critical edges.

The mean number of points reconstructed per meter is 275 (ratio be-
tween SfM and length in Tab. 2). Thus the scene model is very simplified
and compact. The thin details such as electric posts, threes with low den-
sity foliage, window concavities in facades, are not modeled. Note that this
number (275) is quite smaller than that of the “still” sequence (1320). Both
image resolution and number of points contribute to the surface quality.

8. Conclusion

In this paper, a 2-manifold surface is reconstructed from the Structure-
from-Motion output: a sparse cloud of reconstructed Harris points and their
visibilities in the images. The potential adjacencies between the points are
encoded in a 3D Delaunay triangulation, then the point visibilities are used
to label the tetrahedra, last a 2-manifold is extracted thanks to a greedy
method and the use of Steiner vertices. The time complexity is also studied.
Furthermore, the experiments show the interest of the manifold constraint
(neglected in the previous work using the same sparse SfM data), results
using several densities of reconstructed/Steiner vertices, comparisons to the
Poisson surface reconstruction, comparisons between variants of our method,
quantitative evaluation, both still and video (catadioptric) image sequences.

The current system is able to reconstruct the main components of envi-
ronments (ground, building, dense vegetation ...), but the main limitation
is due to the lack of points to reconstruct thin scene details. Future work
can improve the surface quality while staying in our sparse feature scheme
and maintaining a low computational cost: reconstruct and integrate the
image contours in the 3D Delaunay triangulation, improve the interest point
matching (especially in the video case), design a dedicated surface denois-
ing method for sparse SfM point clouds, investigate other cost functions r.
Otherwise, the accuracy could be improved by a dense stereo refinement.
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Figure A.16: Duality of planar graphes. Left: the height v-incident tetrahedra whose union
is an octahedron, and border (bold edges) between inside and outside tetrahedra. Middle:
planar graph G and bold edges F . Right: planar graph G∗ and bold edges F ∗. The dual
of G (octahedron) is G∗ (cube). The dual of F = {ac, cd, de, ea} is F ∗ = {jg, jn, im, ih}.

Appendix A. Sketch Proof of the Graph-Based Test

Here we use theory on planar graphs and duality in [33] to show that the
Graph- and Edge-based tests in Sec. 2.3 are equivalent.

First, we introduce notations G and G∗. Let v be a vertex on surface δO.
Let V ∗ be the list of v-incident tetrahedra of the Delaunay T . Let E∗ be the
list of triangles between adjacent tetrahedra in V ∗. Graph G∗ = (V ∗, E∗)
has vertices V ∗ and edges E∗, and G∗ = gv. Let V be the list of vertices of
the tetrahedra of V ∗, except v. Let E be the list of edges of the tetrahedra
of V ∗ without endvertex v. Graph G = (V, E) has vertices V and edges E.

Fig. A.16 shows an example: there are height v-incident tetrahedra whose
union is an octahedron centered at v, G has the vertices and edges of the
octahedron, G∗ has the vertices and edges of a cube. Note that G∗ is also
the adjacency graph of the v-opposite triangles in the v-incident tetrahedra.

Second we detail the duality between G and G∗. Graph G is planar since
it lies on the border of a v-star-shaped volume which is homeomorphic to a
2-sphere. Remember that a planar graph is embedded in R2, it cuts R2 into
regions called faces such that every edge has two faces (one on the left and
one on the right). The dual graph of G is defined as follows: its vertices are
the faces of G, its edges connect the left and right faces of an edge in G. Now
we see that G∗ is the dual graph of G.

Third we explicit the duality between edges due to the inside-outside
labeling. We have a nontrivial bipartition of V ∗: V ∗

I (inside tetrahedra) and
V ∗

O (outside tetrahedra). This implicitly defines a bipartition of inside and
outside (v-opposite) triangles. Let F ∗ be the edges of graph G∗ having an
endvertex in V ∗

I and an endvertex in V ∗
O. Let F be the edges of graph G

having an inside triangle and an outside triangle as its two faces. The edges
F ∗ of graph G∗ are the duals of edges F of graph G (Fig. A.16).
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Last we show that Graph-based and Edge-based tests give the same result.
According to the Graph-based test, v is regular iff (if and only if) V ∗

I and V ∗
O

are connected in the graph (V ∗, E∗ \ F ∗), i.e. iff F ∗ is a minimal edge-cut of
G∗. According to the Edge-based test, v is regular iff F is a cycle in graph
G. Now we use proposition 7 in [33]: “Let G = (V, E) be a connected plane
multigraph. A set F included in E is a cycle in G if and only if F ∗ is a
minimal edge-cut in G∗”. We obtain the result. Note that a multigraph is a
graph allowing loop edges and parallel edges, that our graphes have not.

Appendix B. Single Tetrahedron Test

Assume that δO is a 2-manifold. In Sec. 2.3.4, we would like to add one
tetrahedron ∆ in O such that δO remains a 2-manifold using the structures in
Sec. 5.1. Let f be the number of ∆ facets (i.e. triangles) which are included
in δO. If f = 0, ∆ will be added to O if and only if the ∆ vertices do not
have incident tetrahedron in O. If f = 1, ∆ will be added to O if and only
if the ∆ vertex, which is not in the ∆ facet included in δO, does not have
incident tetrahedron in O. If f = 2, ∆ will be added to O if and only if the
∆ edge, which is not an edge of the two ∆ facets included in δO, does not
have incident tetrahedron in O. If f ∈ {3, 4}, ∆ will be added to O.

The complexity of this step is needed in Sec. 5.2. Cases f ∈ {3, 4} are
O(1). Since the computation of the list Lv of tetrahedra incident to a (finite)
vertex v is a traversal of graph gv, it is O(d). Then cases f ∈ {0, 1} are O(d).
Case f = 2 requires the computation of the list Le of tetrahedra which include
an edge e. Let v1 and v2 be the endvertices of e. Since ∆′ ∈ Le if and only
if ∆′ ∈ Lv1

and ∆′ has vertex v2, case f = 2 is also O(d).
In practice, we greatly accelerate these computations and others by pre-

calculating for every vertex the list (stored as a table) of its incident tetra-
hedra. This is done in O(|T |) from the data structure in Sec. 5.1.

Appendix C. Peak Removal can Remove Spurious Concavity

Fig. C.17 explains how Peak Removal (Sec. 3.5.1) can remove a spurious
concavity due to bad point p (Sec. 3.6). Here p carves a peak due to its rays,
the peak apex is p and the acute side of the peak is the spurious concavity.
The larger density of the good points, the smaller the angle of the peak, the
better is the success rate of the spurious concavity removal.
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Figure C.17: Peak Removal can remove spurious concavity (2D case). Outside is white,
inside is gray. Points and camera locations are small black squares and large disks, respec-
tively. The density of good points on the surface is high (top) or low (bottom). Left: no
bad point. Middle: one bad point adds a spurious concavity due to its two rays. Right:
Peak Removal removes the concavity (which is a peak) if it has a small angle.

Appendix D. Proof of the Bounded Density of the Tetrahedra

Since T is Delaunay, every tetrahedron has a circumscribing sphere such
that the interior does not contain any Delaunay vertex [4]. These vertices
include the Steiner vertices of the grid introduced in Sec. 6.1. Then Appendix
D.1 shows the intuitive result that the tetrahedron diameter is less than (or
equal to) the diagonal length of a grid voxel. Last we finish the proof thanks
to Appendix D.2.

Appendix D.1. Bounded Diameter of Tetrahedron

To make the proof easier, the grid is increased by an additional layer of
Steiner vertices as shown in Fig D.18. Let A = {−1, 0, 1, 2}. Without loss
of generality, the grid contains vertices A3 = A × A × A, point p is in the
cube [0, 1]3, the length of the cube diagonal is

√
3. Let c be the center of a

circumscribing sphere S of a tetrahedron which has vertex p. Here we show
that ||c− p|| ≤

√
3/2 (then the tetrahedron diameter is less than

√
3).

Assume (reductio ad absurdum) that c /∈ [−1, 2]3. We show that

min
s∈A3

||c− s|| < ||c− p||. (D.1)

Using coordinates of vectors c, s and p, Eq. D.1 means that

min
sx∈A

(cx − sx)
2 + min

sy∈A
(cy − sy)

2 + min
sz∈A

(cz − sz)
2 (D.2)

is less than

(cx − px)
2 + (cy − py)

2 + (cz − pz)
2. (D.3)
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Figure D.18: Delaunay mesh T (in the 2D case) for tight complexity analysis. Steiner and
reconstructed points are small and large black squares, respectively. The dotted circles
are circumcircles of triangles. The surrounded points by small circle are the border of the
bounding box. This box is increased by an additional layer of Steiner vertices.

Using u ∈ {x, y, z}, we introduce

fu = (cu − pu)
2 − min

su∈A
(cu − su)

2. (D.4)

It can be shown that

pu ∈ [0, 1] and cu ∈ [−1, 2] ⇒ fu ≥ −min
su∈A

(cu − su)
2 ≥ −1/4

pu ∈ [0, 1] and cu ≤ −1 ⇒ fu = (cu − pu)
2 − (cu + 1)2 ≥ 1

pu ∈ [0, 1] and 2 ≤ cu ⇒ fu = (cu − pu)
2 − (cu − 2)2 ≥ 1. (D.5)

Since c /∈ [−1, 2]3, there is u ∈ {x, y, z} such that cu /∈ [−1, 2]. Thus fx +
fy + fz ≥ 1− 1/4− 1/4 > 0 and Eq. D.1 is met.

However, ||c − p|| is the S radius and Eq. D.1 means that the interior
of S contains a vertex s of the grid. This is not possible in a 3D Delaunay
triangulation [4]. Thus assumption c /∈ [−1, 2]3 is wrong.

Since c ∈ [−1, 2]3, c is in a cube of A3 grid. So there is a vertex s ∈ A3

such that ||s − c||2 ≤ (1/2)2 + (1/2)2 + (1/2)2, i.e. ||s− c|| ≤
√

3/2. Since
the interior of S does not contains s, we see that ||c−p|| ≤ ||s−c|| ≤

√
3/2.

Appendix D.2. From Bounded Diameter to Bounded Density of Tetrahedra

Let l be the diagonal length of a grid voxel. Let p′ > 0 and L(z) be the
list of tetrahedra which intersect the p′-ball centered at point z. Thanks to
the triangular inequality, the tetrahedra of L(z) are in the p′+ l-ball centered
at z. In R3, we can cover the p′ + l-ball with a finite number b of p-balls
(b does not depend on z). According to Sec. 6.1, each p-ball contains at
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most q vertices. Thus the p′ + l-ball contains at most bq vertices. Since a
tetrahedron is a 4-tuple of vertices, we see that the number of tetrahedra in
L(z) is bounded. We conclude that the tetrahedron density is bounded.

Appendix E. Proofs of Complexities

Here are the proofs for results in Sec. 6.3 using assumptions in Sec. 6.2.

Appendix E.1. “Ray-Tracing” Complexity

Firstly, we estimate the complexity of tracing one ray (line segment) cjpi.
The ray is covered by a number of p′-balls which is linear to the euclidean
distance ||cj −pi||. Since every p′-ball intersects at most q′ tetrahedra (H1),
cjpi intersects a number of tetrahedra which is O(||cj − pi||). Furthermore,
cjpi-tracing is a walk (Sec. 3.2) in graph T restricted to these tetrahedra and
started from pi, which is a T vertex. Now we see that cjpi-tracing has time
complexity O(||cj − pi||) thanks to H3.

Secondly, we show that ray length ||cj − pi|| is bounded. Let h be the
orthogonal projection of cj into the line crossing ck and pi. This implies
||h− cj|| ≤ ||ck − cj || and sin(ĉjpick) = ||h− cj||/||pi − cj||. Furthermore,
reconstructed point pi is added to T if it meets the ray-angle criterion π−ǫ ≥
ĉjpick ≥ ǫ > 0 (Sec. 3.1). We obtain

||pi − cj|| =
||h− cj ||
sin ĉjpick

≤ ||ck − cj||
sin ǫ

. (E.1)

Now, H4 and H5 imply that ||cj−ck|| is bounded if j ∈ Vi and k ∈ Vi. Thus,
||pi − cj || is also bounded and cjpi-tracing is O(1).

Lastly, the time complexity is O(m) since there are m reconstructed ver-
tices (H0), every vertex has O(1) rays (H4), and tracing one ray is O(1).

Appendix E.2. “Topology Extension” Complexity

Remember that Topology Extension alternates two steps:

1. switching from inside to outside tetrahedra around a surface vertex

2. region growing in F starting from the neighborhood of these tetrahedra.

Step 2 only occurs if step 1 is successful. If it is not successful, step 1 includes
the reverse switching (from outside to inside). This process is tried a finite
number of times for every surface vertex.
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There are O(m) surface vertices, and H2-H3 imply that step 1 is O(1) for
one vertex. So the complexity of all steps 1 is O(m). The i-th growing from
the i-th vertex (step 2) has complexity O((gi + qi)(d + log(gi + qi))) where
gi is the number of grown tetrahedra and qi the number of tetrahedra in Q0.
We have

∑

i gi = O(m) since the total number of tetrahedra is O(m). We
have

∑

i qi =
∑

iO(1) = O(m) since qi = O(1) thanks to H2. Thus,

∑

i∈I

(gi + qi)(d + log(gi + qi)) ≤
∑

i∈I

(gi + qi)(d + log(
∑

i′∈I

gi′ +
∑

i′∈I

qi′))

= O(m(d + log m). (E.2)

Thanks to H2, the complexity of all steps 2 is O(m log m). We see that
Topology Extension is O(m log m).

Appendix E.3. “Post-Processing” Complexity

Trying to remove one peak pi of the surface S is O(1): the access to the
data (tetrahedra and vertices) to do this is O(1) thanks to H2 and H3, the
manifold test at a vertex is O(1) thanks to H2. Since S has O(m) vertices
and every vertex is tried a finite number of times, Peak Removal is O(m).

Remember that p′ is calculated from p and list N (p) of vertices which
are connected to p by an edge of S. Thanks to H2 and H3, the calculation
of N (p) is O(1). Since S has O(m) vertices, Surface Denoising is O(m).

Now we study Sky Removal. The rectangle-triangle intersections are
O(cm) since S has O(m) triangles (thanks to H2) and there are c open
rectangles. The border growing is bounded by the number of S triangles.
Thus Sky Removal is O(cm).

Appendix E.4. “Spurious Handle Removal” Complexity

The first method (Sec. 4.2) adds to T a number of Steiner vertices which
is linear to c. In practice, there are no more than 10 Steiner vertices per
camera location and they act as reconstructed vertices with empty visibility
lists. Since c < m, the complexities of all steps of the methods do not change.

Now we study the second method (Sec. 4.3). Thanks to H2, T has O(m)
edges and the complexity of step “Detect” for every edge is O(d+ c) = O(c).
Then “Detect” is O(cm).

In the “Force” step, the vertices of the split edges are finite. Then the
complexity of one split edge isO(1) thanks to H2 and H3. Furthermore, every
critical edge generates 3 vertices vi, and the time and space complexities of
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Li is O(1) for every vi (thanks to H2 and H3). We see that the computation
time of “Force” for one critical edge is O(1). Thus the Force complexity is
O(w), where w is the number of critical edges.

“Repair” is a best first region growing which increases O using a heap Q
as the method in Sec. 3.3. Thus, it can be shown (as in Sec. 5.3) that the
number of “while” iterations is O(g + q0) where g is the number of grown
tetrahedra and q0 the number of tetrahedra in the initialization of heap Q.
Furthermore, the complexity of one “while” iteration is O(d+log(g + q0)) as
in Sec. 5.3. In the Repair case, q0 = O(1) (since |Li| = O(1)) and g ≤ g0. We
see that the complexity of one “Repair” is O(g0 log g0). There are O(1) uses
of “Repair” for every critical edge since |Li| = O(1). Thus the complexity
of all “Repair” uses is O(wg0 log g0). We conclude that the second removal
method is O(cm + wg0 log g0).
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