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This paper introduces a sparse and incremental 2-manifold surface reconstruction method. It uses a sparse 3D point cloud generated by a Structure-from-Motion algorithm (SfM) as its main input as opposed to the more common dense algorithms. Furthermore, our method is incremental: the surface is updated for every new camera pose computed by SfM, and the update occurs in a small neighborhood of the new camera pose. Compared to the other surface reconstruction methods, our method has the advantage to have all these properties at the same time. The quality and execution time of the proposed algorithm is evaluated on a large scale (2.5 km.) real sequence taken in an urban environment, and the method is quantitatively evaluated on a synthetic urban scene.

Introduction

The majority of methods which reconstruct the surface of an environment from images have a dense information as input (dense 3D point cloud or almost every image pixels). In contrast to these dense methods, the direct estimation of a surface from the sparse point cloud estimated by Structure-from-Motion step (SfM) is under-explored. The main argument against such a sparse method is that the lack of points implies an inaccurate scene surface. However, a sparse method has advantages. First, the quality (accuracy, robustness) of a 3D point is expected to be better than that of a dense stereo method, thanks to the SfM machinery involving interest point detection and bundle adjustment. Second, the resulting simplified cloud provides a simplified surface at low complexity that applications could accept: (pre)visualization with a small hardware, robot localization, initialization of a dense stereo method.

In this paper, we introduce a sparse and incremental method which reconstructs a triangulated manifold surface from SfM data. The method is incremental since the surface is locally updated for every new camera pose (and its 3D points) estimated by SfM. This is interesting for applications which require a surface while reading the video sequence. A triangulated manifold surface (shortened as "manifold") is a list of triangles in 3D such that the neighborhood of every surface point is topologically a disk. This property is needed to define surface normal and curvature [START_REF] Botsch | Polygon mesh processing[END_REF], then it is used by a lot of algorithms like surface refinement involving regularization (smoothing [START_REF] Gueziec | Cutting and stitching: converting sets of polygons to manifold surfaces[END_REF], dense stereo [START_REF] Hernandez Esteban | Silhouette and stereo fusion 3D object modeling[END_REF], . . . ) and others [START_REF] Botsch | Polygon mesh processing[END_REF][START_REF] Hoffmann | Geometric and solid modeling: an introduction[END_REF].

The majority of sparse methods are based on sculpting in a 3D Delaunay triangulation. Sec. 2 presents and discusses these methods. Then our method is described in Sec. 3 (prerequisites) and 4 (algorithm). Last Sec. [START_REF] Faugeras | Representing stereo data with the Delaunay triangulation[END_REF] provides experiments and we conclude in Sec. 6.

Sculpting Methods in a 3D Delaunay Triangulation

Let P be a set of 3D points sampled on an unknown surface. The 3D Delaunay triangulation T of P is a list of tetrahedra such that (1) the tetrahedra partition the convex hull of P, (2) their vertex set is P, (3) the circumscribing sphere of every tetrahedron does not contain a vertex in its interior. In our paper, a vertex/edge/triangle is a face of a T tetrahedron, and we use notation |L| for the union of triangles (or tetrahedra) in list L.

In the sculpting methods, a list V of tetrahedra (in T ) represents the reconstructed object whose volume is |V |. Border δV is the list of triangles which are included in exactly one tetrahedra of V . Then |δV | should be a manifold and the target surface. In the early work [START_REF] Boissonnat | Geometric structures for three-dimensional shape representation[END_REF], P has no bad point and we should have P ⊂ |V |. This method initializes V = T , then it selects and removes a tetrahedron ∆ from V while the following conditions are met: ∆ has a triangle in δV , |δ (V \ {∆})| is manifold, P ⊂ |V \ {∆}|. An efficient rule checks that |δ (V \ {∆})| is manifold. However, the genus of |δV | is always zero, i.e. |δV | is always homeomorphic to a 2-sphere without handle/hole. The genus can be greater than 0 in [START_REF] Floriani | Managing the level of detail in 3D shape reconstruction and presentation[END_REF][START_REF] Gezahegne | Surface reconstruction with constrained sculpting[END_REF] since several tetrahedra are removed at once from V .

In our Computer Vision context, SfM provides additional visibility knowledge R i : every point p i ∈ P is computed from camera locations c j where j ∈ R i . This implies that |δV | should not intersect the rays (line segments) c j p i , j ∈ R i except at p i . The tetrahedra intersected by a ray are labeled "freespace", the others are "matter". Then the triangles between freespace and matter are good candidates to be in δV . Thanks to the visibility, we expect to reconstruct surfaces with fewer points than the methods referenced above. However, some bad points can occur since they are estimated from images, and we should not enforce P ⊂ |V |.

Several sculpting methods [START_REF] Faugeras | Representing stereo data with the Delaunay triangulation[END_REF][START_REF] Labatut | Efficient multiview reconstruction of large-scale scenes using interest points, Delaunay triangulation, and graph cut[END_REF][START_REF] Lovi | Incremental free-space carving for real-time 3D reconstruction[END_REF][START_REF] Pan | ProFORMA: probabilistic feature-based on-line rapid model acquisition[END_REF][START_REF] Yu | Incremental reconstruction of a manifold surface from sparse visual mapping[END_REF] use visibility knowledge and sparse point cloud P estimated from images. The manifold constraint on |δV | is not enforced by [START_REF] Labatut | Efficient multiview reconstruction of large-scale scenes using interest points, Delaunay triangulation, and graph cut[END_REF][START_REF] Lovi | Incremental free-space carving for real-time 3D reconstruction[END_REF][START_REF] Pan | ProFORMA: probabilistic feature-based on-line rapid model acquisition[END_REF]. Method [START_REF] Lovi | Incremental free-space carving for real-time 3D reconstruction[END_REF] is incremental, but it defines directly V as the list of the matter tetrahedra, then the resulting surface |δV | is not manifold. Method [START_REF] Pan | ProFORMA: probabilistic feature-based on-line rapid model acquisition[END_REF] is real-time (for small objects) and deals with image noise, but it is not incremental. In [START_REF] Labatut | Efficient multiview reconstruction of large-scale scenes using interest points, Delaunay triangulation, and graph cut[END_REF], a non-incremental method estimates a surface minimizing a cost involving visibility and photoconsistency. The manifold constraint is enforced in [START_REF] Faugeras | Representing stereo data with the Delaunay triangulation[END_REF][START_REF] Yu | Incremental reconstruction of a manifold surface from sparse visual mapping[END_REF]. Method [START_REF] Faugeras | Representing stereo data with the Delaunay triangulation[END_REF] is limited to genus zero surface. Method [START_REF] Yu | Incremental reconstruction of a manifold surface from sparse visual mapping[END_REF] is incremental but the time complexity of one iteration can be too large: if the camera trajectory is a loop, this complexity is at least linear to the number of camera poses in the loop.

Our contribution is an incremental sculpting method which estimates a manifold from sparse SfM data, without genus restriction and without prohibitive complexity in presence of loop in the camera trajectory. Note that other sparse methods [START_REF] Hilton | Scene modelling from sparse 3D data[END_REF][START_REF] Morris | Image-consistent surface triangulation[END_REF][START_REF] Taylor | Surface reconstruction from feature based stereo[END_REF] exist, but they can not be classified in this Section and do not estimate a manifold in an incremental scheme.

Prerequisites

Manifold Tests

According to p. 723 of [START_REF]Handbook of discrete and computational geometry[END_REF], |δV | is manifold if for every vertex v of every δV triangle, the general test is successful: the triangles in δV including v can be ordered as that t i ∩ t (i+1) mod k is an edge, and such an edge is included in exactly two triangles t i and t j . In other words [START_REF] Giblin | Graphs, surfaces and homology[END_REF], the graph of the v-opposite edges in the δV triangles must be a cycle.
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We complete the rule of [START_REF] Boissonnat | Geometric structures for three-dimensional shape representation[END_REF] in our case where constraint P ⊂ |V | is not used and obtain the subtraction test. Assume that ∆ ∈ V , V ⊆ T , and |δV | is manifold. Then |δ (V \ {∆})| is manifold if the numbers of (vertices,edges,triangles) in ∆ ∩ |δV | is in {(0, 0, 0), (3, 3, 1), (4, 5, 2), (4, 6, 3), (4, 6, 4)} (Fig. 1). Only cases (3,3,1) and (4,5,2) are in [START_REF] Boissonnat | Geometric structures for three-dimensional shape representation[END_REF].

We also need the addition test, which is similar to the subtraction test (adding ∆ to V is like subtracting ∆ from T \V ). Assume that ∆ ∈ T \V , V ⊆ T , and |δV | is manifold. Then surface |δ (V ∪ {∆})| is manifold if the numbers of (vertices,edges,triangles) in ∆ ∩ |δV | is in {(0, 0, 0), (3, 3, 1), (4, 5, 2), (4, 6, 3), (4, 6, 4)} (Fig. 1).

If we would like to add a single tetrahedron ∆ to V such that |δV | is manifold, we can use the addition test or use the general test on triangles δ (V ∪ {∆}) at every vertex in ∆ ∩ |δV |. In this case, the addition test is faster than using the general test. These tests can be converted to tests that are more convenient if T is implemented as the adjacency graph of the tetrahedra (e.g. see Appendix of [START_REF] Yu | Incremental reconstruction of a manifold surface from sparse visual mapping[END_REF] for the addition test).

Notations

At image (or time) t + 1, our method has the following input:

• 3D Delaunay triangulation T t ; • list F t of freespace tetrahedra such that F t ⊆ T t ; • list O t such that O t ⊆ F t and |δ O t | is manifold;
• list P t+1 of new Structure-from-Motion points, camera locations c t where t ≤ t + 1; and output:

• 3D Delaunay triangulation T t+1 by adding P t+1 in T t ;

• list F t+1 of freespace tetrahedra (by raytracing in T t+1 ) such that F t+1 ⊆ T t+1 ;

• list O t+1 such that |δ O t+1 | is manifold and O t+1 is the largest as possible in F t+1 .
Notations T, O, F are these tetrahedra lists if t does not need to be mentioned. The 3D ball centered at x ∈ R 3 with radius r > 0 is B r (x). Note that the vertex set of T t is

P 0 ∪ P 1 ∪ • • • ∪ P t .

Assumptions and Consequences

The following assumptions are done for complexity reasons.

First we assume that p i ∈ P t and t ∈ R i imply t ∈ R i and t ≤ t. This means that p i is reconstructed from the t-th image and previous ones, but it is not reconstructed from next ones. This implies that ray p i c t exists if p i ∈ P t and SfM does not update a reconstructed point once it is a vertex of T .

Second we assume that the lengths of all rays p i c t are bounded by r > 0. This is almost a consequence of standard SfM point filtering, since the point uncertainty roughly increases as the square of the ray length [START_REF] Lhuillier | A generic error model and its application to automatic 3d modeling of scenes using a catadioptric camera[END_REF]. Then P t is included in B r (c t ).

Third we assume that the diameters of the tetrahedra are bounded by l > 0. This condition is met if T is initialized by a large cartesian grid of Steiner vertices (i.e. extra vertices): the diameter of the circumscribing sphere of a tetrahedron is less than the diagonal length l of the (implicit) grid voxels. Since every tetrahedron created by the addition of a point has this point as vertex [START_REF] Faugeras | Representing stereo data with the Delaunay triangulation[END_REF], the addition of P t+1 is a local update of T included in B r+l (c t+1 ).

Our Incremental Sculpting Method

Assume that we add P t+1 in the Delaunay T t as soon as the O t computation is done. This destroys a list D of tetrahedra, which can contain tetrahedra in O t (Fig. 2.f). The problem is the following: if we initialize O t+1 = O t \ D, |δ O t+1 | can be non manifold, and there is no obvious method to update O t+1 such that |δ O t+1 | becomes manifold (inspired by [START_REF] Gueziec | Cutting and stitching: converting sets of polygons to manifold surfaces[END_REF], we could add new points in the Delaunay, but new tetrahedra will be destroyed and so on).

Here is our idea. List D is computed without adding P t+1 in T t . Then we initialize 

O t+1 = O t , shrink O t+1 such that |δ O t+1 |

Step 1: Enclosing

We should calculate D without updating T to ensure that |δ O t+1 | is always a manifold. In practice, the results are better if we replace D by E such that D ⊆ E ⊆ T t , then shrinking will be stopped when O t+1 ∩ E = / 0 (which implies what we would like:

O t+1 ∩ D = / 0).
We chose E such that it is the list of the tetrahedra in T t included in a ball B including |D| (Fig. 2 2.a) and we remove from O t+1 tetrahedra one-at-once (using the subtraction test) or several-at-once (using the general test). During this shrinking process, |δ O t+1 | is manifold and O t+1 ⊆ F t (Fig. 2.b). The selection of the removed tetrahedra and the stopping criteria of this process are detailed in Sec. 4.7. Actually, we can not prove that the resulting O t+1 meets exactly O t+1 ∩ D = / 0, but we expect that the number of tetrahedra in O t+1 ∩ D is very small and the next step deals with this problem.

Step 3: Adding Points without Destroying δ O

We initialize T t+1 = T t and F t+1 = F t . For every point p in P t+1 , we use the following process.

Thanks to CGAL [START_REF] Cgal | [END_REF], we calculate the list D(p) of tetrahedra of T t+1 which would be destroyed if we add p in T t+1 .

If D(p) ∩ O t+1 = / 0, we add p in T t+1 (Fig. 2.c). This does not update O t+1 , thus |δ O t+1 | is still a manifold. We also apply F t+1 ← F t+1 \ D(p) i.e. the tetrahedra created by the addition of p are labelled matter. We still have O t+1 ⊆ F t+1 . The creation date t + 1 is also given to the created tetrahedra.

If D(p) ∩ O t+1 = / 0, it is difficult to update O t+1 such that |δ O t+1
| is still manifold and T t+1 is still a 3D Delaunay triangulation. We do not add p in this case, which is rare since O t+1 ∩ D is expected to be very small (Sec. 4.2). We also apply P t+1 ← P t+1 \ {p}.

Step 4: Ray-Tracing

Ray tracing labels tetrahedra in T t+1 as freespace, i.e. it increases list F t+1 . We do not trace all rays available at time t + 1 for complexity reason, so the rays are selected before tracing.

First, we trace the rays of P t+1 , i.e. every ray p i c j , j ∈ R i of every point p i in P t+1 , since this computation was not done before. Tracing ray p i c j is a walk in the adjacency graph of the tetrahedra: the walk starts from p i (which is a vertex of T ), and we go from a tetrahedron to one of its four neighboring tetrahedra if the common (face) triangle is intersected by the ray. Every tetrahedron has an intersection counter which is incremented if it is in the walk.

Second, we collect in list R every ray of P t (where t ≤ t) which can intersect a tetrahedron of N. List N is the list of the new tetrahedra, i.e. the tetrahedra which have creation date t + 1 (Sec. 4.3). The other rays do not need to be considered. Then we trace every ray in R as explained before. Since this ray was already traced, we only increment the intersection counter for the tetrahedra in N (every ray is counted once). At the end, O t+1 ⊆ F t+1 since the ray-tracing step adds new tetrahedra to the list F t+1 (Fig. 2

.d).

Here is a method to compute R efficiently. Let X N be a bounding box of the tetrahedra in N. Let X t be a bounding box of the rays of P t . For every t such that t ≤ t and X N ∩ X t = / 0, we put in R the rays of P t which intersect X N .

Step 5: O Growing

We grow O t+1 in freespace F t+1 by adding tetrahedra one-at-once (addition test) and severalat-once (general test). As required in Sec. 3.2, O t+1 ⊆ F t+1 and |δ O t+1 | is manifold (Fig. 2.e). This step is similar to that of the batch method in [START_REF] Yu | Incremental reconstruction of a manifold surface from sparse visual mapping[END_REF]. Here we give an overview of it.

First we apply a "One-Tetrahedron-at-Once Growing". A priority queue Q stores the tetrahedra in F t+1 \ O t+1 which have a triangle in δ O t+1 (we initialize Q with a tetrahedron in F t+1 ∩ E). At each step, Q provides tetrahedron ∆ with the largest ray intersection counter. We try to add ∆ to O t+1 using the addition test. If this is successful, the tetrahedra in F t+1 \ O t+1 which are adjacent to ∆ are added to Q. The process stops when Q is empty. This growing is fast thanks to the addition test, but it can not change the |δ O| genus.

Second we apply a "Several-Tetrahedra-at-Once Growing" to allow genus changes. We find a vertex v in |δ O t+1 | ∩ |E| such that all v-incident tetrahedra are in F t+1 , and try to add to O t+1 those tetrahedra which are in F t+1 \ O t+1 using the general test. If this is successful, we try to start one-tetrahedron-at once growings from these tetrahedra. The overall process stops when we can not find a successful v.

Step 6: Post-Processing

First of all, we apply a genus refinement procedure ("Handle Removal") to O t+1 ∩ E as described in [START_REF] Yu | Genus refinement of a manifold surface reconstructed by sculpting the 3D-Delaunay triangulation of structure-from-motion points[END_REF]. The only difference is that we don't add Steiner points in the middle of the edges such that T t+1 is Delaunay. Then we apply an incremental surface smoothing step [START_REF] Yu | Incremental reconstruction of a manifold surface from sparse visual mapping[END_REF]. First we apply a "One-Tetrahedron-at-Once Shrinking". We remove from Q the tetrahedron ∆ which has the smallest intersection counter. If ∆ / ∈ O t+1 or ∆ does not have a triangle in δ O t+1 , we take another ∆ in Q. Then we try to remove ∆ from O t+1 such that |δ O t+1 | remains manifold using the subtraction test (Sec. 3.1). In case of success, we add to Q the tetrahedra of O t+1 ∩ E which are adjacent to ∆. We continue until Q = / 0. This shrinking is fast thanks to the subtraction test, but it can provide

Details on the Shrinking Step

E ∩ O t+1 = / 0 (e.g. if E ∩ O t+1 = / 0 implies that |δ O t+1 | genus changes).
Second we apply a "Several-Tetrahedra-at-Once Shrinking" to allow genus changes. We find a vertex v which is both in a triangle of δ O t+1 and in a tetrahedron of E, define L as the list of tetrahedra in O t+1 ∩ E which are incident to v, apply O t+1 ← O t+1 \ L, and apply the general test for δ O t+1 at every vertex of L. In case of success, we redefine a list Q with the adjacent tetrahedra of L, and redo the one-tetrahedron-at-once shrinking above. In case of failure, we apply O t+1 ← O t+1 ∪ L and try another v. The overall process stops when we can not find a successful v.

Experiments

Real Image Sequence

The City sequence is taken by a PointGrey Ladybug omnidirectional camera. Ladybug is a (non-central calibrated) rigid multicamera system consisting of six synchronized pinhole cameras each of which takes 1024 × 768 images at 15 fps. It is mounted on a car and is about 4 meters above the ground. The trajectory is 2.5 km long and includes a large loop (2.3 km). First we provide details on SfM. A central approximation simplifies the calculation; we enforce the centers of the 6 cameras to be the same. Moreover, the size of the input images are reduced by a half to improve the computation speed. Then we adapt the incremental SfM in [START_REF] Mouragnon | Generic and real-time structure from motion[END_REF] based on local bundle adjustment. The loop is closed thanks to a global bundle adjustment. At the end of the SfM process, 1306 keyframes are selected in the 7735 available 6-tuples of images, 483k points are reconstructed from 2.64M Harris points detected and matched in the images. Thus the surface should be reconstructed with a small number of points (about 193 per meter). Fig. 3 shows a top view of the SfM result and sequence images.

Second we explain how to initialize our incremental method. Let t be the keyframe index (same notation as in Sec. 3 and4). We construct the 3D Delaunay triangulation T 40 from the points in P t where t ≤ 40, estimate freespace F 40 by ray-tracing every ray in these P t (Sec. 4.4), and obtain O 40 by the growing step (Sec. 4.5) and handle removal [START_REF] Yu | Genus refinement of a manifold surface reconstructed by sculpting the 3D-Delaunay triangulation of structure-from-motion points[END_REF]. The points of P t are filtered as follows. Let v be the vertical direction (||v|| = 1) and s = ∑ 39 t=0 ||c t+1 -c t ||/39. Every point p i in P t meets -3s ≤ (p i -c t ).v (we remove points below the ground surface), ||p i -c t || ≤ 15s (Sec. 3.3) and p i has two rays forming an angle larger than 10 • (standard filtering using aperture angle). The step of the grid of Steiner points is 15s.

Third we apply the incremental method for 40 ≤ t ≤ 1306. Fig. 4 shows the final surface as well as local views of the surface at several times t. The final surface has 528k triangles. The joint video shows the progressive surface reconstruction and the final surface (this video is also in http://www.youtube.com/watch?v=w1AQfvhGx5I).

The execution time for every keyframe is on the left of Fig. 5. We use a 4xIntel Xeon W3530 at 2.8 GHz (multi-threading is only used by the ray-tracing step). The most costly step is the handle removal (Sec. 4.6). This step and the (main part of the) other steps are only applied in E. Remind that E is the list of the tetrahedra in the enclosing ball B, which has a bounded radius (Sec. 4.1). According to Fig. 5 (right), the size of E is less than 120k, which is quite smaller than 2066k, the number of tetrahedra in the final 3D Delaunay triangulation.

The large loop (2.3 km) is closed at the very end of the sequence, where we observe a computation time increase. This is due to point increase in B: we reconstruct new points of the loop end at a location where points are already reconstructed at the loop beginning.

According to Sec. 4.2, we can not prove that O t+1 meets O t+1 ∩ D = / 0 and we expect that O t+1 ∩ D is small enough to reject a minority of points (Sec. 4.3). In our experiments, O t+1 ∩ D = / 0 is not met in only 59 keyframes out of 1306 (4.5%). For these keyframes, the maximum percentage of rejected points is 26.6% and 56 keyframes have less than 13.3% of rejected points. Then a minor amount of points can not be added in T t+1 due to O t+1 ∩ D = / 0. 

Synthetic Image Sequence with Ground Truth

This Section provides the reconstruction error of our sparse scheme (central SfM + incremental surface reconstruction) applied in a synthetic urban scene, whose textures are extracted from real images taken in a city. The synthetic sequence has 1553 images generated by ray-tracing and the non-central camera in Sec. 5.1. The camera trajectory is a 621 m long and closed loop.

The SfM reconstructs 346 keyframes and 145k points from 775k Harris points detected and matched in the images. Then we apply our incremental surface reconstruction and estimate the error between the final estimated surface (182k triangles) and the ground truth surface. Now we explain how to estimate the reconstruction error. First, a pose-based registration is used to set both surfaces in the same coordinate system. The i-th keyframe has estimated location c i and ground truth location c g i ; the latter is the mean of the 6 camera centers in the ground truth coordinate system. Then we estimate the similarity transformation S minimizing E(S) = ∑ 345 i=0 ||S(c i ) -c g i || 2 , and use S to map the estimated surface in the ground truth coordinate system. Second, a ray-tracing approach is used to compute the error. Let p be a pixel in the i-th keyframe. Let p e be the first intersection of the estimated surface and the ray defined by p and the estimated i-th pose. Let p g be the first intersection of the ground truth surface and the ray defined by p and the ground truth pose of the i-th keyframe. If both p e and p g exist, we define error e(p) = ||p e -p g ||.

The pose-registration provides E(S)/346 = 14 cm. Then we uniformly sample pixels in the keyframe sequence and examine the distribution of e(p) for 769k pixels. The x-quantile q x is the real such that x percents of the e values are less than q x . We have q 10 = 12, q 20 = 16, q 30 = 18, q 40 = 22, q 50 = 28, q 60 = 48, q 70 = 76, q 80 = 112, q 90 = 174, and 3% of the e values are larger than 600 (all numbers are given in centimeters).

Conclusion

In this paper, we have introduced a new incremental 2-manifold surface reconstruction method taking a sparse SfM data as input. Compared to the previous similar algorithms, it has the advantage to produce a manifold without genus restrictions and without prohibitive complexity in case of large loops in the input trajectory. It has been experimented on a large scale real urban scene as well as on a set of synthetic data with ground truth.

Several improvements of our method are subject of future work. First, the choice of a better (smaller) enclosing area where almost all calculations are done would decrease the computation time. Second, our implementation and matching method should be improved. Moreover, several lines of investigation exists to enhance the quality of the reconstructed surface. In particular, the usage of the other type of the input primitives than the interest points should be explored. We could also think about surface denoising methods that make a better usage of the Structure-from-Motion properties and scene priors.
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 1 Figure 1: Manifold tests (best viewed with colors). See the text for triplets explanation.

Figure 2 :

 2 Figure2: Sculpting method general overview (2D case). White triangles are freespace (in F), grey triangles are matter, red line is border δ O, green dots are newly inserted points and the green circle encloses the tetrahedra that will be deleted by the addition of the green dots.

  We initialize O t+1 = O t and progressively remove tetrahedra in O t+1 such that |δ O t+1 | remains manifold until O t+1 ∩ E = / 0. The O t+1 shrinking is an inverse of growing in Sec. 4.5. Let Q be the list (priority queue) of tetrahedra in O t+1 ∩ E which have a triangle in δ O t+1 .

Figure 3 :

 3 Figure 3: Camera, trajectory, sparse SfM point cloud and images of the City sequence.
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 45 Figure 4: Views of reconstructed surfaces of the city (real) sequence. Top: global and local views of the final surface (the sky is removed to help visualization). Bottom: local views of the surface during computation. The triangle normals are colored: the ground is white, the walls are red-green-blue, the sky is black.

Figure 6 :

 6 Figure 6: Images of the synthetic sequence, SfM results, the final and estimated surface.

  is maintained manifold by removing progressively tetrahedra from O t+1 until O t+1 ∩ D = / 0. Now we add P t+1 in T t without modifying neither O t+1 nor its border. If condition O t+1 ∩ D = / 0 can not be meet exactly, a minority of points in P t+1 are not added in T t to be sure that |δ O t+1 | is manifold. Last we trace rays to obtain the new freespace F t+1 , and grow O t+1 in F t+1 such that |δ O t+1 | is maintained manifold.

  .b). According to Sec. 3.3, we can use B = B r+l (c t+1 ).4.2 Step 2: O Shrinking Now we would like to find O t+1 such that O t+1 ⊆ O t \E (i.e. O t+1 ⊆ O t and O t+1 ∩E = / 0) and |δ O t+1 | is manifold. We initialize O t+1 = O t (Fig.
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