
HAL Id: hal-01635432
https://hal.science/hal-01635432

Submitted on 15 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incremental Solid Modeling from Sparse
Structure-from-Motion Data with Improved Visual

Artifacts Removal
Vadim Litvinov, Maxime Lhuillier

To cite this version:
Vadim Litvinov, Maxime Lhuillier. Incremental Solid Modeling from Sparse Structure-from-Motion
Data with Improved Visual Artifacts Removal. IAPR International Conference on Pattern Recogni-
tion, Aug 2014, Stockholm, Sweden. �hal-01635432�

https://hal.science/hal-01635432
https://hal.archives-ouvertes.fr

Incremental Solid Modeling from Sparse
Structure-from-Motion Data with Improved Visual

Artifacts Removal

Vadim Litvinov and Maxime Lhuillier
Institut Pascal, UMR 6602, CNRS/UBP/IFMA, Aubière, France

http://maxime.lhuillier.free.fr

Abstract—In the recent years, a family of 2-manifold surface
reconstruction methods from a sparse Structure-from-Motion
points cloud based on 3D Delaunay triangulation was developed.
This family consists of batch and incremental variations which
include a step that remove visual artifacts. Although been
necessary in the term of surface quality, this step is slow compared
to the other parts of the algorithm and is not well suited to be
used in an incremental manner. In this paper, we present two
other methods for removing visual artifacts. They are evaluated
and compared to the previous one in the incremental context
where the need of new methods is the highest. Taken separately,
they provide medium results, but used together they are as good
as the old method in the terms of surface quality, and at the
same time, processing time is almost three times smaller.

Keywords—3D shape recovery, Stereo and multiple view geom-
etry, Reconstruction and camera motion estimation

I. INTRODUCTION

Despite being around for quite a long time, surface recon-
struction is still an active research topic. In the last few years,
several methods were developed to perform solid modeling
from a sparse Structure-from-Motion (SfM) point cloud, both
in batch [1] and incremental [2] frameworks. The main interest
of this family of methods is their time and space complexities
due to the fact that a dense stereo step is unnecessary. Further-
more, this series of algorithms produces a 2-manifold output
which is useful to initialize a more precise, but heavy, dense
reconstructions or simply allow to perform efficient surface
smoothing. Other surface reconstruction methods [3]–[5] work
in a similar (sparse) context but produce non manifold surfaces.

For memory, a surface has the 2-manifold property if
and only if every point of it has a neighborhood which is
topologically a disk, i.e. each triangle of the surface is exactly
connected by its three edges to three other triangles, the surface
has neither holes nor self-intersections and it divides the space
into separate regions. If the surface is 2-manifold, its genus is
defined as the number of its handles. For example, the genus
of a sphere is 0, that of a torus is 1, etc.

The incremental method [2] considered in this paper is a
sculpting method in a 3D Delaunay triangulation. It takes a
sparse cloud of 3D points sampled on an unknown surface
along with their visibility information produced by SfM. The
3D Delaunay triangulation T of P is a partition of the convex
hull of P such as the circumscribing sphere of every tetrahe-
dron does not contain a vertex in its interior. All the tetrahedra
of T are labeled free-space or matter using the visibility

Fig. 1. A visual artifact (left) and its removal (middle and right). The triangle
orientations are colored (white: ground, red-green-blue: vertical, black: sky).

constraints. A ray is defined as a line segment between a
camera and a point observed by this camera. A tetrahedron
is free-space if it is intersected by at last one ray.

The list of triangles separating free-space and matter can,
at first glance, be directly considered as the output surface,
but the resulting surface is not guaranteed to be a manifold.
To enforce the topology constraint, a region growing approach
as in [6] can be used, but alone it is limited to genus 0 surfaces.
So methods [1], [2] expand it by a topology extension step.

However, the region growing and topology extension steps
alone suffer from a visual artifacts problem as illustrated on
Fig. 1. The artifact that connects the wall of the building to the
ground on the left part of the figure does not exist in reality
and should be removed as shown on the central part. This is
only one example of situations when the problem arise. It can
also occur in other contexts [7].

There were several previous attempts to solve this problem.
First of all, computational geometry only approaches [8],
[9] that use scanner data consider that spurious handles (a
particular, but very usual kind of artifact) are usually small
by contrast to the real world handles that would be large.
Unfortunately this is not always true in our case. Another
idea [1] is to use the visibility information provided by SfM.

The artifact removal method in Sec. 4 of [1] is efficient
in terms of resulting surface quality, but, unfortunately, it
is the slowest part of the calculation if the input is large
enough. Another limitation is the fact that this algorithm
has an artificial (Steiner) points addition step that breaks
Delaunay property of the triangulation. Although this is not
really a problem in the batch case [1], this is not recommended
in the incremental framework [2] where the triangulation is
updated by vertex additions after every artifact removal step.

Indeed, the Delaunay triangulation has theoretical warranties
for surface reconstruction in both geometric [10] and topolog-
ical [11] senses. We also benefit by the fast and incremental
3D Delaunay triangulation in the CGAL library [12].

The main contribution of this paper is two other visual
artifacts removal methods that are faster than the previous one
and don’t require Steiner points addition. Another contribution
is a comparison between these methods applied in the incre-
mental [2] framework.

Sec. II summarizes the batch and incremental surface
reconstruction methods. We remind previous visual artifacts
removal method in Sec. III-A and then explain in detail the
two new methods proposed by this paper in the remaining of
Sec. III. Finally, we compare these methods in Sec. IV.

II. SUMMARY OF SOLID MODELING METHODS

In this section, we summarize the batch and incremental
solid modeling methods. The first and common step of the two
algorithms is Harris points extraction and their 3D reconstruc-
tion by a Structure-from-Motion algorithm. Let P be a set of
3D points reconstructed by SfM, C a list of camera locations.
Let R be the list of rays defined as follow: ∀ci ∈ C, ∀pj ∈ P ,
segment cipj ∈ R if and only if ci has observed pj .

A. Batch surface reconstruction method

Here is a brief overview of the batch method in [1]. First
of all, a 3D Delaunay triangulation T of P is constructed (T
is a list of tetrahedra). For all ∆ ∈ T , we define I(∆) as the
number of intersections between ∆ and the segments of R.
Each tetrahedron ∆ ∈ T is labeled free-space or matter: ∆
is free-space if and only if I(∆) 6= 0. We compute the list
F ⊆ T of the free-space tetrahedra.

As the next step, we define another partition of T . Let
O ⊆ F such as the border ∂O of O is 2-manifold (∂O is the
list of triangles which are faces of exactly one tetrahedron in
O). The tetrahedra in O are outside and the others are inside.

Initially O = ∅. We begin by the region growing step: for
each ∆ ∈ F , we add ∆ to O if ∂O remains manifold. This
property is checked using a very fast test. We begin by adding
tetrahedra with highest I(∆). This way, we begin by adding
tetrahedra with a highest chance of being free-space.

Then, we use the topology extension step to allow the
genus of the resulting surface be higher than zero. We add
the tetrahedra ∆ ∈ F by packs of tetrahedra incident to a
common vertex v ∈ P . To ensure the manifold property, in
this configuration, a slower but more general test is used.

We repeat these two steps until no more tetrahedra can be
added to O. The resulting surface is the border ∂O of O. Some
post-processing steps are then applied to achieve better surface
quality (more details in [1]), including the artifact removal
method which is summarized in Sec. III-A for paper clarity.

B. Incremental surface reconstruction method

To experiment our artifacts removal methods in an incre-
mental context, we use the algorithm described in [2].

Fig. 2. Incremental reconstruction method overview. White tetrahedra are
free-space, gray tetrahedra are matter, green dots are newly added points and
green dashed circle is B.

Let Pt be the set of points computed at time t that will not
be modified by SfM after t (p ∈ Pt and cip ∈ R imply i ≤ t;
i = t exists). At the keyframe/time t + 1, the algorithm has
the following input: Tt is a 3D Delaunay triangulation of Pt,
Ft ⊆ Tt is a list of free-space tetrahedra of Tt and Ot ⊆ Ft
is a list of outside tetrahedra such that ∂Ot is a 2-manifold.

The goal of the algorithm is to update the surface with a set
of new SfM points Pt+1. They can not directly be added into
the triangulation Tt because this can modify Ot and break
the manifold property of its border. So we compute a ball
B centered on ct+1 with the radius big enough to enclose
Pt+1 and neighboring tetrahedra (see Fig. 2). Then we remove
tetrahedra from Ot one-by-one and by packs in the similar
manner than Sec. II-A until ∂Ot is still a manifold and we get
as close as possible to Ot ∩B = ∅. This is the shrinking step.

As the next step, we safely add Pt+1 into Tt without
modifying Ot. We obtain Tt+1. Then, we update the free-
space/matter status of tetrahedra and obtain Ft+1 ⊆ Tt+1.

Finally, to compute the new surface, we initialize Ot+1 =
Ot and we apply the region growing and topology extension
algorithms described in Sec. II-A. To enhance the resulting
surface quality, some post-processing steps are applied locally
to the updated region (see [2] for details).

III. VISUAL ARTIFACTS REMOVAL METHODS

Before we begin the discussion about different artifacts
removal methods, we should precisely define what we seek
to remove. Using the definitions in Sec. II, the 3D Delaunay
triangulation T is encoded by an adjacency graph ΓT in which
the nodes are the tetrahedra of T and the edges are the triangles
between two tetrahedra. In the same manner, for any set S ⊆ T
of tetrahedra, ΓS ⊆ ΓT is the corresponding adjacency graph.

We define a visual artifact A by A ⊆ F \ O and ΓA is
connected, i.e. a set of tetrahedra that is included in the inside
volume (A ∩ O = ∅), but not in the scene matter (A ⊆ F).
Unfortunately, detecting all the artifacts in the resulting model
using this definition alone would be too slow to be useful in
practice. So we define a visually critical edge [1] as a segment
ab such as a ∈ P, b ∈ P and ∃c ∈ C such as âcb > α where
α is a user defined threshold (α = 5 deg in this paper). Then,
we define a visually critical artifact as a visual artifact which
has (at least) a tetrahedron containing a visually critical edge.

The artifacts removal methods discussed in this section
seek to remove as many visually critical artifacts as they can.
We do not use the term spurious handle as in [1], because
it is too restrictive. Our algorithms deal with more than just
“handles”.

3
0 2

20

O1

3
0 2

20

O2

3
0 2

20

O3

f(O3) > f(O1) > f(O2)

Fig. 3. Escape from local extremum thanks to our new artifacts removal (2D
case). White tetrahedra are outside, gray tetrahedra are inside. The number in
tetrahedron ∆ is I(∆). The green dot is the vertex considered by the algorithm
and thick red lines are critical edges. Left: O before removal. Middle: force
neighboring tetrahedra out of O. Right: local growing of O.

A. Summary of previous method

In this section, we briefly discuss the visual artifacts
removal method described in [1]. As its entry, this algorithm
takes the list Eα of the visually critical edges.

First of all, the method splits each edge of Eα in its middle
by adding a Steiner point (i.e. artificial point which wasn’t
seen by any camera). Each edge is split into two parts and
the resulting edges are stored in a list Esplit. Each tetrahedron
including the edge is also split in two and the two resulting
tetrahedra are assigned the same number of intersections and
status as the initial one.

This way, we reduce the size of tetrahedra and hope to
locally unlock region growing in the neighborhood of this
edge. Furthermore, ∂O is still manifold. The drawback is that
the triangulation is not guaranteed to be Delaunay anymore.

After this first step, we create a list Ve of the end vertices
of the edges of Esplit. For each vertex v ∈ Ve, we apply a
force/repair cycle as following.

We begin by the force step. Let Lv be the list of the
tetrahedra incident to v. We define G = (Lv ∩ F) \ O. So
G is a set of tetrahedra forming a visual artifact. We force
them into outside: O ← O ∪ G. If the border of O remains
manifold, we get what we wanted. If it doesn’t, it contains
some vertices whose neighborhood is not topologically a disk.
These vertices are called singular vertices in the remaining of
this paper. We call n the number of these singular vertices.
So, we try to repair O using the next step.

Then, we execute the repair step. We seek to add a bunch
of free-space tetrahedra to O such that ∂O become manifold
once again. To achieve this goal, we apply a local region
growing algorithm to O in F starting in the neighborhood
of G and which decreases n. The algorithm stops if a number
of iterations g0 (fixed by the user) has been reached or no
more tetrahedra can be added to O. If the repair step succeeds
(i.e. n = 0: ∂O is manifold), we was able to remove a visual
artifact and proceed to the next vertex. Otherwise, we restore
O to the previous state.

B. New visual artifacts removal method

As was previously noted, the method in Sec. III-A is good
to improve the surface quality, but unfortunately it has two
problems. The first is the need of Steiner points for good
results, which break the Delaunay property of the triangulation.

The second problem is that artifacts removal method is slow
(48%-72% of the total processing time according to Tab. 2
of [1]). So, we propose a faster visual artifacts removal method
that doesn’t require these Steiner points.

The region growing described in Sec. II is a greedy
optimization algorithm that maximizes

f(O) =
∑
∆∈O

I(∆) (1)

in the discrete search space of tetrahedra lists O such that
O ⊆ F and ∂O is a 2-manifold. In [1], we have a steepest
descent heuristic for function −f(O) (by region growing of O)
which can get stuck to a local maximizer of f(O). A visual
artifact (e.g. spurious handle) can be seen in this situation. The
basic idea of our new method is to remove some tetrahedra
from O (and so to decrease f(O)) to kick the algorithm out
of its local extrema.

As in the previous section, we call Eα the list of visually
critical edges. Let Gα ⊆ F such that every ∆ ∈ Gα has an
edge in Eα. Then, for every vertex v of both ∂O and Gα, we
force neighboring tetrahedra out of O and we try local region
growing beginning from neighboring tetrahedra included in
Gα. If the final value of f(O) is greater than the initial one, we
are able to escape from a local maximum, otherwise we revert
everything to the initial state and try another vertex v. See
Fig. 3 for an example and the algorithm below. Once we tried
all ∂O vertices, we complete the result using region growing
and topology extension (Sec. II-A) restricted to the tetrahedra
included in B (Sec. II-B).

The algorithm in pseudo-code is as follow:
1: function REGION GROWING(∆0)

. Local region growing in Gα
2: Let Q be a priority queue of tetrahedra based on I(∆)
3: PUSH(Q, ∆0)
4: Ladd ← ∅
5: while Q 6= ∅ do
6: ∆← POP(Q)
7: if ∆ /∈ O and ∂(O ∪ {∆}) is manifold then
8: O ← O ∪ {∆}
9: Ladd ← Ladd ∪ {∆}

10: for all ∆′ neighbor of ∆ do
11: if ∆′ ∈ Gα and ∆′ /∈ O then
12: PUSH(Q, ∆′)
13: end if
14: end for
15: end if
16: end while
17: return Ladd
18: end function

19: procedure ARTIFACTS REMOVING
. The main artifacts suppression algorithm

20: sold, s← 0
21: repeat
22: sold ← s
23: for all vertex v of both ∂O and Gα do
24: Nv ← all the tetrahedra incident to v
25: Lsub ← O ∩Nv
26: Lseed ← (Gα ∩Nv) \O
27: Ladd ← ∅

1 2 3

Fig. 4. An example of application of spurious handle removal (in the 2D
case). White tetrahedra are outside, gray tetrahedra are inside, light gray
tetrahedra are freespace inside. The thick blue line is a visually critical edge,
the dashed red line is plane π and red dashed triangles are selected tetrahedra.

28: O ← O \ Lsub . Local shrinking
29: if ∂O is manifold then
30: for all ∆ ∈ Lseed do . Local growing
31: Ladd ← Ladd∪ REGION GROWING(∆)
32: end for
33: Rsub ←

∑
∆∈Lsub

I(∆)
34: Radd ←

∑
∆∈Ladd

I(∆)
35: if Rsub > Radd then
36: O ← O \ Ladd
37: O ← O ∪ Lsub
38: else
39: s← s+Radd −Rsub
40: end if
41: else
42: O ← O ∪ Lsub
43: end if
44: end for
45: until sold 6= s
46: end procedure

C. New spurious handle removal method

We also propose a visual artifacts removal algorithm that is
a specialization of Sec. III-A method. The latter is slow mainly
because it consists in many attempts to remove a small pack of
tetrahedra and the majority of these attempts are unsuccessful.
So, the idea is to remove bigger packs of tetrahedra by placing
ourselves in a less general context.

Instead of trying to remove all the visually critical artifacts,
we seek to remove a particular kind of artifact: the handle. The
fourth column of Fig. 6 shows an example. This is the most
visible kind of artifact for the human eye.

The basic idea of the algorithm is to remove the handle
(by contrast to Sec. III-A where we remove all the tetrahedra
including a vertex) and then try to restore the manifold
property of O by a local region growing. To do that, we begin
as usual, by computing the list Eα of visually critical edges.
For each edge ab ∈ Eα, we check if it is contained in a handle.

We define a plane π perpendicular to ab and intersecting
segment ab in some point. In practice we try several planes
intersecting ab in 2a+b

3 , a+b
2 and a+2b

3 . Let Lπ be the list
of the tetrahedra intersected by π. Let Nab be the list of the
tetrahedra including edge ab. A handle H is a set of tetrahedra
forming a visual artifact, so H ⊆ F \O. With this definition,
we begin to form our handle by H ← (Nab ∩ Lπ ∩ F) \O.

Let NH be the list of the tetrahedra directly adjacent to the
set H (i.e. ∀∆ ∈ NH ,∆ has a 4-neighbor in H). We iteratively

Fig. 5. Global overview of the SfM points cloud of our test trajectory as
well as an example of the Ladybug camera image.

grow H by performing H ← H ∪ ((NH ∩ Lπ ∩ F) \ O)
until no more tetrahedra can be added. Then we check that
the final H is surrounded by O in plane π (see Fig. 4), i.e.
∀∆ ∈ (NH ∩ Lπ) \H,∆ ∈ O.

Once we have detected a handle H , we try to remove it as
in Sec. III-A. First we force H in O (i.e O ← O∪H), then we
try to restore the 2-manifold property of ∂O using the repair
step initialized by the tetrahedra in (NH∩F)\O. If we succeed,
we remove an artifact, otherwise we undo everything and try
another edge in Eα.

IV. EXPERIMENTS

A. Dataset

To perform a quantitative evaluation of the visual artifacts
removal methods discussed in this paper, we use the SfM
dataset in [2]. The video is a 2.5 km. long trajectory taken
in a general urban environment by a PointGrey Ladybug
omnidirectional camera. Our SfM is based on local bundle
adjustment [13] and is refined by a global bundle adjustment to
close the large loop (2.3 km). The SfM selects 1306 keyframes
out of 7735 frames and detects 2.64M Harris interest points.
483k 3D points are reconstructed and shown in Fig. 5. Thus,
we only have 193 points per meter to reconstruct the surface.

B. How to compare the artifact removal methods ?

Every removal method is integrated in the surface post-
processing step of the incremental surface reconstruction
method [2] (before smoothing). To compare the methods in
terms of output surface quality, we manually count the visually
critical artifacts (Sec. III) remaining on the final surface.
Because we seek to remove in priority the artifacts that
are visually critical (and so are easily noticed by a human
eye), we consider this number as a good quantitative metric.
Fig. 6 shows examples of artifacts that are manually counted.
Moreover, we also estimate the final number of freespace
inside tetrahedra (i.e. the union of the visual artifacts) and
the final value of the objective function f (Eq. 1). The latter
quantifies the ability of every method to unlock region growing
and topology extension steps (Sec. II-A), or in other words, the
ability to escape from local extremum of f .

Fig. 6. Results of artifacts removal methods at four locations (one location
per column). Lines from top to bottom: textured scene, no artifacts removal,
method III.A, method III.B, method III.C, method III.B&C.

C. Comparisons

We evaluate five visual artifacts removal methods: None
(no removal method), III.A (the method in [2] summarized
in Sec. III-A), III.B (escape from local extremum using the
method in Sec. III-B), III.C (handle removal using the method
in Sec. III-C), III.B&C (use III.C after III.B). The results are
summarized in Tab. I. The removal methods III.A, III.B, III.C
and III.B&C provide similar improvements (increases) of the
objective function f . The differences between them are small
(less than 0.034%), but we see that III.A is slightly better than
III.B and III.C taken separately. Furthermore, we see that the
combination of III.B and III.C is slightly better than III.A,

TABLE I. ARTIFACTS REMOVAL RESULTS

Removal Mean Max. Num. Size of f=
∑

∆∈O

I(∆) Num.

method time time artif. F \O (M = 106) tests

None 0 0 20 139448 29.822M 0
III.A 1.1 s. 3.87 s 16 93259 30.012M 468M
III.B 0.33 s. 0.94 s 18 92604 30.009M 186M
III.C 0.27 s. 0.99 s 15 94469 30.002M 136M

III.B&C 0.43 s. 1.2 s 13 92280 30.013M 323M

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 200 400 600 800 1000 1200 1400

Ti
m

e
(s

)

Key frame

Computation times comparison

III.A
III.B & III.C

Fig. 7. Computation times at every keyframe for both previous (III.A, red)
and new (III.B&C, green) visual artifact removal methods.

and this is confirmed by both the number of tetrahedra in F \
O (union of all visual artifacts) and the number of artifacts
that are manually detected. Fig. 6 compares the results of all
methods at four locations in the reconstruction and is consistent
with these comparisons. We note that III.B has important visual
artifacts (as the one in the left of this figure) although it has a
good (small) F \O, and III.C can correct them in spite of its
greater F \O. Then we think that the combination III.B&C is
a good choice.

A difference between the four methods is the calculation
time. Indeed, III.B, III.C and III.B&C are significantly faster
than III.A since their mean time per keyframe is about 2.5-4
times smaller (Tab. I and Fig. 7). We also see that III.A needs
the largest number of tests that check the manifold property at
a vertex.

D. More details on III.B&C Result

Fig. 8 shows a global view of the 3D models reconstructed
by the method in [2] including the artifact removal method
III.B&C. At the end of the process, the surface has 600k
triangles and the 3D Delaunay has 2.09M tetrahedra. The
computation times for every keyframe is in Fig. 9. We use
a 4xIntel Xeon W3530 at 2.8Ghz. The surface reconstruction
time for every keyframe has mean 1.87 s. and maximal value
5.39 s. The largest times are at the sequence end, where the
large loop is closed. As in [2], this is due to the fact that we
reconstruct new points of the loop end at a location where
points are already reconstructed at the loop beginning. The
joint video shows the progressive surface reconstruction and
the final surface.

We observe differences with [2]: the artifact removal step
(previously named handle removal) is not the most costly step
anymore, and the global times are roughly divided by 1.5-2.

Fig. 8. Global overview of the final surface obtained by our incremental
surface reconstruction method including III.B&C as visual artifact removal.
We show a textured view (top) and color coded normals (bottom). The triangles
on the sky are removed for visualization purposes.

 0

 1

 2

 3

 4

 5

 6

 7

 0 200 400 600 800 1000 1200 1400

Ti
m

e
(s

)

Key frame

Time statistics

Artifacts removal
Artifacts detection

Post-processing
Grow

Ray tracing
Triangulation

Shrink

Fig. 9. Computation times at every keyframe for the steps of our incremental
surface reconstruction method including III.B&C as visual artifact removal.
Note that these times are accumulated for steps shrink, . . . , artifact removal.

These improvements are the consequences of both our artifact
removals (our contribution) and reasons in the Appendix.

V. CONCLUSION

This paper improves the visual artifact removal step of a
recent incremental method which reconstructs a 2-manifold
surface from sparse Structure-from-Motion data. We replace
this step by the same method restricted on particular cases
of visual artifacts (handles) and preceded by another method
which escapes from the local extrema of the objective function.
Then the processing time of the step is greatly reduced without
loss of surface quality. We experiment on a 2.5km. long video
sequence taken by an omnidirectional camera moving in an

urban environment.

Future work includes improvements of calculation time
and surface quality, e.g. reconstruct and integrate the image
contours in the 3D Delaunay triangulation, improve the interest
point matching, investigate other objective cost functions.

REFERENCES

[1] M. Lhuillier and S. Yu, “Manifold surface reconstruction of an envi-
ronment from sparse Structure-from-Motion data,” Computer Vision and
Image Understanding, vol. 117, no. 11, pp. 1628–1644, 2013.

[2] V. Litvinov and M. Lhuillier, “Incremental solid modeling from sparse
and omnidirectional Structure-from-Motion data,” in Proc. British Ma-
chine Vision Conference (BMVC), 2013.

[3] Q. Pan, G. Reitmayr, and T. Drummond, “ProFROMA: Probabilistic
feature-based on-line rapid model acquisition,” in Proc. British Machine
Vision Conference (BMVC), 2009.

[4] D. Lovi, N. Birkbeck, D. Cobzas, and M. Jagersand, “Incremental free-
space carving for real-time 3D reconstruction,” in Proc. 3D Imaging,
Modeling, Processing, Visualization, Transmission (3DIMPVT), 2012.

[5] C. Hoppe, M. Klopschitz, M. Donoser, and H. Bischof, “Incremental
surface extraction from sparse Structure-from-Motion point clouds,” in
Proc. British Machine Vision Conference (BMVC), 2013.

[6] O. Faugeras, E. Le Bras Mehlman, and J. Boissonnat, “Representing
stereo data with the Delaunay triangulation,” Artificial Intelligence, pp.
41–47, 1990.

[7] R. Chaine, “A geometric convection approach of 3D reconstruction,”
Eurographics Symposium on Geometry Processing, pp. 218–229, 2003.

[8] Z. Wood, H. Hoppe, M. Desbrun, and P. Shröder, “Removing excess
topology from isosurfaces,” ACM Transactions on Graphics (TOG), vol.
23(2), pp. 190–208, 2004.

[9] Q. Zhou, T. Ju, and S. Hu, “Topology repair of solid models using
skeletons,” IEEE Transactions on Visualization and Computer Graphics,
vol. 13(4), pp. 675–685, 2007.

[10] J. Boissonnat and S. Oudot, “Provably good sampling and meshing of
surfaces,” Graphical Models, vol. 67, no. 5, pp. 405–451, 2005.

[11] N. Amenta and M. Bern, “Surface reconstruction by Voronoi filtering,”
Discrete Computational Geometry, vol. 22, no. 4, pp. 481–504, 1999.

[12] CGAL, “Computational Geometry Algorithms Library,” www.cgal.org.
[13] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd,

“Generic and real-time Structure-from-Motion,” in Proc. British Ma-
chine Vision Conference (BMVC), 2007.

APPENDIX

Corrections are applied to the implementation in [2]. An
implementation bug is corrected and the shrinking step is now
slower but more accurate than before. We remember that the
ideal result of shrinking meet O ∩ B = ∅ where B is a ball
where almost all computations are done. Now this condition
is not meet in only one of the 1306 keyframes (before: 4.5%
of the keyframes). As a consequence, the step of the regular
Steiner points grid can be reduced to 10 times mean distance
between consecutive camera locations (before: 15 times). We
remember that this grid is useful to reduce the size of B and
these Steiner points do not break Delaunay property [2].

Moreover, the topology extension step of shrinking and
growing is re-implemented in a multi-threaded fashion. As was
briefly explained in Sec. II, this step consists mainly in trying
to add or remove a pack of tetrahedra to the outside region.
In the new implementation, we simply perform many tests
simultaneously, so these steps are greatly accelerated.

ACKNOWLEDGEMENTS

Thanks to CNRS, FEDER and Auvergne Région for funding.

